
Intensional Functions
ZACHARY PALMER, Swarthmore College, USA
NATHANIEL WESLEY FILARDO,Microsoft, Canada
KE WU, Johns Hopkins University, USA

Functions in functional languages have a single elimination form — application — and cannot be compared,
hashed, or subjected to other non-application operations. These operations can be approximated via defunc-
tionalization: functions are replaced with first-order data and calls are replaced with invocations of a dispatch
function. Operations such as comparison may then be implemented for these first-order data to approximate
e.g. deduplication of continuations in algorithms such as unbounded searches. Unfortunately, this encoding is
tedious, imposes a maintenance burden, and obfuscates the affected code.

We introduce an alternative in intensional functions, a language feature which supports the definition of
non-application operations in terms of a function’s definition site and closure-captured values. First-order
data operations may be defined on intensional functions without burdensome code transformation. We give
an operational semantics and type system and prove their formal properties. We further define intensional
monads, whose Kleisli arrows are intensional functions, enabling monadic values to be similarly subjected to
additional operations.

CCS Concepts: • Software and its engineering → Control structures; Functional languages; Coroutines;
Constraints; Procedures, functions and subroutines; Data types and structures.

Additional Key Words and Phrases: function, intensional, closure, continuation, defunctionalization

ACM Reference Format:
Zachary Palmer, Nathaniel Wesley Filardo, and Ke Wu. 2024. Intensional Functions. Proc. ACM Program. Lang.
8, OOPSLA2, Article 274 (October 2024), 26 pages. https://doi.org/10.1145/3689714

1 Introduction
Defunctionalization as proposed by Reynolds [Reynolds 1972] is the process of transforming a
program to replace first-class functions with non-function symbol values. The transformation
also provides a dispatch function which recovers the behavior of a function given its symbol.
Higher-order function calls are replaced with invocations of this dispatch function. While defunc-
tionalization has a variety of uses in program analysis and compiler design, we focus here on its
application as a programmer-managed design pattern in functional software engineering [Danvy
and Nielsen 2001; Koppel 2019]. Programmers may defunctionalize surface-level code so that
operations unavailable to functions, such as equality or serialization, can be defined on first-order
function symbols. This is of particular relevance to algorithms representing work as continuations:
equality might be used to deduplicate continuation symbols while serialization might be used to
persist them for later resumption or render them for transmission across a distributed system.
While defunctionalization is a powerful tool, its manual application to surface-level code is

unfortunately tedious, error-prone, and quite obfuscating. Projects such as CloudHaskell [Epstein

Authors’ Contact Information: Zachary Palmer, zachary.palmer@swarthmore.edu, Swarthmore College, Swarthmore,
Pennsylvania, USA; Nathaniel Wesley Filardo, nfilardo@microsoft.com, Microsoft, Montréal, Quebec, Canada; Ke Wu,
kwu48@jhu.edu, Johns Hopkins University, Baltimore, Maryland, USA.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/10-ART274
https://doi.org/10.1145/3689714

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0003-2286-1189
HTTPS://ORCID.ORG/0009-0002-9698-1503
HTTPS://ORCID.ORG/0009-0008-2647-4198
https://doi.org/10.1145/3689714
https://orcid.org/0000-0003-2286-1189
https://orcid.org/0009-0002-9698-1503
https://orcid.org/0009-0008-2647-4198
https://doi.org/10.1145/3689714
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

274:2 Zachary Palmer, Nathaniel Wesley Filardo, and Ke Wu

et al. 2011] and Scala’s Spores [Miller et al. 2014] have addressed these weaknesses specifically for
the case of serialization. Both projects allow approrpiately-annotated functions in their respective
languages to be serialized and transmitted to other processes with minimal syntactic overhead. As
these projects focus on serialization, however, the functions’ serialized closures are not accessible
to programmers with any meaningful type information.
This paper introduces intensional functions: functions with language-level support for general

user-defined operations over dynamic closures with programmer-visible types. These functions
are intensional in that they can be inspected at runtime in terms of their construction: intensional
functions are equipped with an eliminator which yields the program point at which the function
was defined and another eliminator which produces the values it has captured in closure. In contrast,
traditional functions are extensional: they cannot be examined at runtime and can only be called.
Additionally, intensional functions carry programmer-specified proofs (via type constraints)

about their closure-captued values. This information permits a programmer to define operations
on intensional functions in terms of these proofs: equality on intensional functions, for instance,
may be defined in terms of equality on the contents of their closures (with some care as described
in Section 2.3). Other operations such as sorting and hashing may be defined similarly. Proofs
captured by an intensional function are specified by the programmer, so this model adapts to the
needs of each program’s problem domain. Unlike existing approaches, there are no restrictions on
intensional functions’ closures other than user-specified type constraints.
Section 2 gives a description of intensional functions by example. The code in that section

is written using the syntax of IntensionalFunctions, a Haskell language extension we have
implemented for version 9.2 of the Glasgow Haskell Compiler (GHC). Throughout this paper,
we refer to the Haskell language with this extension enabled as “Haskell+ItsFn”. We find that a
deductive closure algorithm of the Plume program analysis [Fachinetti et al. 2020] written using
intensional functions in Haskell+ItsFn requires 25% fewer lines of code and is subjectively more
readable than the same algorithm written using defunctionalization in Haskell. We note that our
implementation is a proof of concept: it illustrates the coherence and ergonomic convenience of
intensional functions but does not integrate them fully into the language runtime, resulting in
significant slowdown (∼3x in our experience). We believe this poor performance to be a consequence
of engineering rather than theory and discuss Haskell+ItsFn in greater detail in Section 6.
Because intensional functions are both general and language-supported, we are also able to

explore use cases which are infeasible or impossible with existing approaches. Section 3 briefly
examines intensional monads, a reconstruction of the functor hierarchy using intensional func-
tions. Just as extensional monad expressions represent computations as terms, intensional monad
expressions represent computations as terms subject to constraints (such as Haskell’s Ord).
While our motivating examples are written in Haskell+ItsFn, the underlying principles of

intentional functions are not language-specific. Sections 4 and 5 distill these principles to a core
language, _ITS, and use it to prove the equivalence of intensional functions that have the same
program point and environment. We give a type system for _ITS based upon established techniques
and prove it sound in this paper’s supplemental material.

In summary, the primary contributions of this paper are

• a presentation and qualitative analysis of the expressive power of intensional functions
(Section 2);

• the development of intensional monads, a reconstruction of the functor hierarchy using
intensional functions (Section 3);

• a formal treatment of intensional functions with a correctness proof for conservative in-
language function equivalence (Sections 4 and 5); and

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

Intensional Functions 274:3

1 import Data.Map (Map)
2 import qualified Data.Map as Map
3

4 data Cache a b = Cache (a -> b) (Map a b)
5

6 makeCache :: (a -> b) -> Cache a b
7 makeCache fn = Cache fn Map.empty
8

9 apCache :: (Ord a) => Cache a b -> a -> (b, Cache a b)
10 apCache cache@(Cache fn m) arg =
11 case Map.lookup arg m of
12 Just answer -> (answer, cache)
13 Nothing ->
14 let answer = fn arg in
15 (answer, Cache fn $ Map.insert arg answer m)

Fig. 1. Simple Caching Framework (Haskell)

1 example1 =
2 let c0 = makeCache (\n -> n + 1) in
3 let (x,c1) = apCache c0 4 in
4 let (y,c2) = apCache c1 4 in
5 x == y -- True

Fig. 2. Cached Integer Function (Haskell)

Fig. 3. Functional Caching Failure

1 example2 =
2 let c0 = makeCache (\f -> f $ f 0) in
3 let inc = \n -> n + 1 in
4 let (x,c1) = apCache c0 inc in
5 -- ^^ Type error: no Ord for function
6 ...

1 data Symbol = Inc | Plus Int | Twice Symbol
2 deriving (Eq, Ord)
3 example3 =
4 let be Inc = \n -> n + 1
5 be (Plus k) = \n -> k + n
6 be (Twice f) = \n -> be f $ be f $ n in
7 let c0 = makeCache (\f -> be f $ be f $ 0) in
8 let (x,c1) = apCache c0 Inc in -- 2
9 let (y,c2) = apCache c1 Inc in -- 2
10 let (z,c3) = apCache c2 (Twice Inc) in -- 4
11 x == y -- True

Fig. 4a. Defunctionalized Caching (Haskell)

1 example4 =
2 let inc = \%Ord n -> n + 1 in
3 let plus = \%Ord k n -> k + n in
4 let twice = \%Ord f n -> f %$ f %$ n in
5 let c0 = makeCache (\f -> f %$ f %$ 0) in
6 let (x,c1) = apCache c0 inc in -- 2
7 let (y,c2) = apCache c1 inc in -- 2
8 let (z,c3) = apCache c2 (twice %$ inc) in -- 4
9 x == y -- True

Fig. 4b. Caching Intensional Functions (Haskell+ItsFn)

• a discussion of the implementation of the IntensionalFunctions GHC extension as well as
a program analysis artifact written using it (Section 6).

We discuss related work in Section 7 and conclude in Section 8.

2 Intensional Functions
This section illustrates intensional functions by example.We contrast how the caching of functions is
accomplished via defunctionalization and via intensional functions. We then illustrate the properties
of intensional functions and how operations are defined on them. Unless otherwise indicated, these
examples can be compiled using our GHC extension, IntensionalFunctions, which we discuss
in Section 6.

2.1 Defunctionalization by Example
Consider the Haskell code in Figure 1, which implements a generic caching mechanism for functions.
A value of type Cache a b is a function together with a dictionary which maps the function’s domain
values a to codomain values b. Figure 2 illustrates how this code might be used. Crucially, the domain
of the function to be cached is constrained to be orderable; this is a requirement of the dictionary
storing the cached values. This otherwise-generic caching mechanism is thus inapplicable to
higher-order functions, which lack an Ord instance, as exemplified in Figure 3.

A canonical approximation of function comparison is defunctionalization. We define a data type
identifying each function in our problem domain and use that data type in lieu of the original
function. We also define a dispatch function which can recover each original function’s behavior

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

274:4 Zachary Palmer, Nathaniel Wesley Filardo, and Ke Wu

from this data type. In Figure 4a, for instance, the increment function from Figure 3 has been
replaced by the Inc constructor from the Symbol data type. The be function recovers the behavior
represented by a Symbol. As Symbol is a first-order data type, it admits an Ord instance.

Defunctionalization imposes two significant burdens on the programmer. First: all call sites which
previously invoked an implicated function must now be modified to translate the defunctionalized
symbol. The f function symbol on line 7 of Figure 4a must be translated before it can be called. This
transformation can be far-reaching: any function which might reach a transformed call site must
itself be represented by a defunctionalized symbol, so its call sites must be transformed, and so on.
Second: the environments of partially-applied functions must be enumerated. The Symbol type

in Figure 4a represents defunctionalized functions of type Int -> Int. A partially applied addition,
such as (\k n -> k + n) 4, can be represented as Plus 4 using the Plus constructor of Symbol on line 1
of Figure 4a. Note that the translation of Plus on line 5 must acknowledge the difference between
non-local values captured in closure (here, k) and parameters that are expected to be applied after
translation (here, n). This is also reflected in the definition of Symbol on line 1, where the types of
those closure-captured values (here, Int) must be enumerated.

This enumeration becomes especially tedious when a defunctionalized function’s environment
itself contains a function, as this requires the recursive defunctionalization of e.g. the Symbol type
itself. That is, defunctionalization must be deep: functions can refer to non-local function values, so
function environments must be defunctionalized as well. In Figure 4a, the Twice constructor carries
a Symbol in lieu of the Int -> Int value that represents our actual intent.
Both CloudHaskell and Scala Spores provide language-level support for ameliorating these

burdens when serializing functions for transmission to other processes while introducing minimal
syntactic overhead within their respective languages. These systems are typed insofar as they can
ensure safe serialization of closure-captured values. (CloudHaskell, for instance, produces a type
error if closure-captured values are not statically defined.) However, these systems are limited to
the task of serialization; programmers cannot access typed representations of closure-captured
values. We next illustrate how intensional functions allow programmers to choose type constraints
for closure-captured values and use this information to operate on functions.

2.2 Intensional Functions by Example
The problem in Figure 3 is that the argument passed to apCache, a function, does not have an Ord

instance. Defunctionalization replaces this function with first-order data. We present an alternative:
defining a form of function whose properties can be inspected to provide the same constraint-
satisfying behavior (such as Ord) without closure type enumeration or definitional boilerplate.

In Haskell+ItsFn—Haskell with our IntensionalFunctions extension enabled — the syntax of
intensional functions differs from that of extensional functions in two ways. An intensional function
starts with the symbol \% (rather than \); it also requires a constraint function before the list of
parameters. A constraint function is a type of kind Type -> Constraint, such as Eq or Ord [Bolingbroke
2011]. This constraint function is both positive and negative: all values in closure must conform
to it, but the resulting intensional function is guaranteed to conform to it as well. For instance,
\%Eq x -> (x,z) represents an intensional function for constructing a tuple using its parameter and a
non-local variable z. The Eq here indicates that the type of zmust conform to Eq, but it also guarantees
that the type of the function itself conforms to Eq. Thus, let f = \%Eq x -> (x,z) in f == f typechecks
(and evaluates to True) as long as Eq z holds true. Intensional functions are applied using the %@ (left-
associative) and %$ (right-associative) application operators. For instance, (\%Eq x -> x + 1) %@ 3

evaluates to 4. Application does not make use of intensionality.
Momentarily setting aside how intensional functions satisfy their constraint functions, Figure 4b

illustrates how we can use these intensional functions to address the problem presented in Figure 3.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

Intensional Functions 274:5

The inc function defined on line 2 of Figure 4b is an intensional increment function which conforms
to Ord; it is therefore a suitable argument to the apCache function. This Ord instance allows apCache to
recognize inc in the second call on line 7 and retrieve its associated value from the cache.

2.3 Comparing Intensional Functions
We now examine how intensional functions satisfy their constraint functions. Recall from above
that the constraint function of an intensional function must be satisfied by all values captured in
its closure; for instance, an Eq intensional function requires that all values it captures in closure
satisfy Eq. We can use this information about the intensional function’s closure to provide an Eq

definition for the intensional function itself.
At runtime, extensional functions can only be examined in terms of the behavior exhibited

by their sole eliminator: application. Intensional functions, by contrast, have three eliminators:
application, identification, and inspection. The latter two eliminators yield the program point at
which the function was defined and the environment it captured in closure, respectively.

We define an approximation of equality on intensional functions by comparing the program
points and environments of these functions for equality as in Figure 5. The type a ->%Eq b refers to
an intensional function with domain a, codomain b, and constraint function Eq. The type produced
by itsIdentify contains entirely first-order data, allowing an Eq instance to be defined. itsInspect
produces a list of GADT wrappers, each carrying a proof that its contents are Eq. The Eq instance for
an intensional function produces true if the identities and closures of the two functions are equal.

1 instance Eq (a ->%Eq b) where
2 f == g = itsIdentify f == itsIdentify g &&
3 itsInspect f == itsInspect g

Fig. 5. Intensional Function Equality

1 itsEqConst :: forall a b. (Typeable a, Eq a)
2 => a ->%Eq b ->%Eq a
3 itsEqConst = \%Eq x y -> x
4

5 itsConst :: forall c a b. (Typeable a, c a)
6 => a ->%c b ->%c a
7 itsConst = \%c x y -> x

Fig. 6. Intensional Function Polymorphism

We prove correct this form of conservative
equality — that intensional functions which are
considered equal will always have the same
behavior — in Section 5.3. We focus on conser-
vative equality and comparison here for illustra-
tion, but the set of constraint functions which
may be implemented for intensional functions
is open-ended. A Hashable implementation, for
instance, would follow the same pattern as Eq

and allow intensional functions to be used as
keys in a hashtable.

2.4 Polymorphism
The above examples are monomorphic for sim-
plicity, but polymorphism is possible with both
traditional defunctionalization (e.g. via GADT function symbols [Pottier and Gauthier 2004, 2006a])
and intensional functions. In addition to polymorphism of the domain and codomain, intensional
functions must contend with polymorphism of constraint functions and closures.

2.4.1. Parametric Polymorphism
Polymorphism on the domain and codomain of an intensional function is relatively straightforward.
Consider applying the intensional constant value function itsEqConst as defined on line 3 of Figure 6.
The application of this function, e.g. itsEqConst %@ "A", works in the same fashion as its extensional
counterpart: the type of itsEqConst is instantiated and a newly-created type variable is unified with
the type of the argument "A". Thus, this expression has type b ->%Eq String. The type signature of
itsEqConst, however, deserves some attention.

The key difference between this intensional application and its extensional equivalent const "A"

is that the argument of itsEqConst is captured in closure. As a result, the intensional function

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

274:6 Zachary Palmer, Nathaniel Wesley Filardo, and Ke Wu

1 longerThan :: forall a. (Typeable a, Eq a)
2 => [a] ->%Eq Int ->%Eq Bool
3 longerThan = \%Eq xs n -> length xs > n
4

5 example :: Bool
6 example = (longerThan %@ ["A"]) == (longerThan %@ [4])

1 example :: forall a. (Typeable a, Eq a)
2 => Bool ->%Eq a ->%Eq a ->%Eq a
3 example = \%Eq b ->
4 let f :: forall b. (Typeable b, Eq b)
5 => b ->%Eq b ->%Eq b
6 f = \%Eq x y -> if b then x else y
7 in \%Eq x y -> f %@ y %@ x

Fig. 7. Comparing Intensional Functions Fig. 8. Polymorphic Closure Type Error

requires it to conform to the Eq constraint function. (It must also be Typeable, ensuring a runtime
representation of its type. We discuss this requirement in Section 2.4.2.) We must therefore bound
the type parameter a to ensure that it meets this requirement. We are not required to prove Eq b,
however, because no values of type b are captured in closure: once the b value is supplied, the
function’s body is executed.1

Figure 6 also illustrates polymorphism in the constraint function of an intensional function. The
definition of itsConst generalizes itsEqConst to work with any constraint function c. Any constraint
function may be applied to itsConst either explicitly via type application (as in itsConst @Eq) or by
type inference. The closure-captured argument must conform to c (thus the (c a) precondition),
but no other special handling is required. This is a natural consequence of the ConstraintKinds
language extension which was introduced to GHC in version 7.4 [Bolingbroke 2011].

2.4.2. Typeable Environments
In addition to conforming to the constraint function specified by the intensional function, any
closure-captured valuesmust also be Typeable. To seewhy, consider the example in Figure 7. On line 6,
both sides of the comparison have the type Int ->%Eq Bool. Both ["A"] and [4] are captured in their
respective closures and have instances for Eq. Nonetheless, the environments of these functions are
not comparable to each other. More generally, this situation arises when a polymorphic intensional
function captures a value in closure whose type (a) contains an instantiated type variable and (b) is
no longer represented in the resulting function type.
To resolve this issue, we require Typeable of all values captured in closure. When two closures

are e.g. compared for equality, their types are checked at runtime. In Figure 7, for instance, example
evaluates to False: we do not take two functions with differently-typed environments to be equal.2

Rejecting environment polymorphism Although the domain, codomain, and constraint function
of an intensional function may be polymorphic, closure-captured values may not. This restriction
is a consequence of limitations in GHC’s type system and is a weakness of intensional functions in
comparison to their extensional equivalents. Thankfully, this is not a common problem in practice.
This monomorphic closure restriction is illustrated by the convoluted code in Figure 8, which

does not typecheck. The type error arises on line 7 where f, which is polymorphic, is captured in
the closure of the anonymous function. GHC typechecks the analogous extensional code.

We are unconcerned about this limitation for two reasons. The first is that, even if polymorphic
local bindings could be captured in the closure of an intensional function, there would be no effective
way to satisfy the intensional function’s constraint function due to a fundamental limitation of
GHC’s type system. In Figure 8, for instance, we would require an Eq instance for the (polymorphic)

1The constraint Eq a is due to the possibility that a value of type a is captured in closure. For usability, our implementation
imposes such constraints only at call sites where such closures are actually built. We discuss this in Section 6.2.
2Constraint functions defining only unary operators (such as Hashable) shouldn’t require Typeable, but composition of
constraint functions is non-trivial as of GHC version 9.2. We require Typeable of all closure-captured values for ease of use.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

Intensional Functions 274:7

1 combineSpans :: Search ()
2 combineSpans = intensional Ord do
3 (x,i,j) <- lookup AllSpans ()
4 (y,k) <- lookup SpansStartingAt j
5 z <- lookup GrammarCombining (x,y)
6 insert AllSpans () (z,i,k)
7 insert SpansStartingAt i (z,k)

Fig. 9a. Intensional Search (Sugared)

1 combineSpans :: Search ()
2 combineSpans =
3 itsBind (lookup AllSpans ()) %$ \%Ord (x,i,j) ->
4 itsBind (lookup SpansStartingAt j) %$ \%Ord (y,k) ->
5 itsBind (lookup GrammarCombining (x,y)) %$ \%Ord z ->
6 itsBind (insert AllSpans () (z,i,k)) %$ \%Ord () ->
7 insert SpansStartingAt i (z,k)

Fig. 9b. Intensional Search (Desugared)

type of f. GHC does not presently permit typeclass instances for polymorphic types because
inferring uses of such typeclass instances is extremely difficult [Serrano et al. 2020, 2018].
Our second reason for being unconcerned about this limitation is more practical. The authors

of the OutsideIn(X) type system [Vytiniotis et al. 2011] demonstrated that local polymorphic let
bindings are uncommon in practice. In that work, the authors reported that fewer than 4% of the
modules in GHC’s standard libraries relied upon local polymorphic bindings and fewer than 12%
of Hackage packages had any modules which did so. This suggests that actual instances of this
problematic example would be rare in practice. In the rare event that the need arose, a simple
workaround exists: to pack the polymorphic type in a newtype using RankNTypes.

3 Intensional Monads
The introduction of intensional functions prompts us to consider the myriad ways in which
extensional functions are used and to investigate their intensional analogues. Herein, we briefly
discuss one such example: intensional monads, a reconstruction of Haskell’s encoding of monads
with intensional Kleisli functions.3 While the signature of a traditional monad bind operator is
bind :: m a -> (a -> m b) -> m b, the intensional form is itsBind :: m a ->%c (a ->%c m b) ->%c m b

for a particular constraint function c.
Note that the closure of the bound intensional function a ->%c m b must conform to c, so the

itsBind implementation may make use of this guarantee. As an example, we consider early pruning
within an idempotent search: a search in which we are concerned only with results and not how we
arrived at them. Consider a Search monad equipped with some related Index type constructor and
two operations: lookup, which produces each entry in an Index for a given key, and insert, which
adds an entry to an Index. Let us assume the following type signatures:

1 lookup :: (Ord (Index k v), Ord k, Ord v) => Index k v -> k -> Search v
2 insert :: (Ord (Index k v), Ord k, Ord v) => Index k v -> k -> v -> Search ()

Crucially, we expect each an operation bound to a lookup (that is, the f in each itsBind (lookup i k) f)
to run for each associated value in the Index, even those which are added in the future.

We briefly describe how such a Search monad might work. The monad can deduplicate redundant
calls to insert by encapsulating a dictionary data structure to hold indexed values. As new indices
are added to this dictionary, the monad is obligated to pass them to previous lookup operations
as mentioned above. To do this, the monad “catches up” by re-evaluating previous computations
dependent upon that index by passing them the new index value. To track these computations,
the monad must store each continuation (the f in itsBind (lookup i k) f). In an extensional monad,
these continuations f are extensional and so cannot be examined or readily deduplicated.
An intensional Search monad resolves this issue: the continuations passed to itsBind are inten-

sional functions and, if subject to the Ord constraint, can be compared and deduplicated like any
first-order value. For instance, consider the program fragment appearing in Figure 9a and its

3A more thorough examination of intensional monads appears in this paper’s supplementary material.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

274:8 Zachary Palmer, Nathaniel Wesley Filardo, and Ke Wu

desugared counterpart in Figure 9b.4 On line 5 of each, the remainder of the algorithm runs for
each z value associated with the key (x,y) in the index GrammarCombining.
While deduplicating z is straightforward in any implementation, an intensional Search permits

us to deduplicate the continuation \%Ord z -> ... based upon the values of i and k it has captured
in closure: two continuations with the same i and k are equal according to the approximation of
Section 2.3. The value of j, which is no longer relevant at this point, is naturally excluded from this
deduplication process because it is not captured in the continuation’s closure. Observe that the
continuations (i.e., the second arguments) passed to itsBind tend themselves to capture itsBind in
closure; as a result, it is critical that itsBind, and so the monad itself, is intensional.

The next two sections provide a formal treatment of intensional functions in support of this and
other use cases.

4 Lazy Substitution
This section introduces _\ , a small lambda calculus which uses lazy substitution. This prepares
us to introduce in Section 5 the intensional functions lambda calculus, _ITS, which also uses lazy
substitution. A lambda calculus using lazy substitution is equivalent to a lambda calculus using
traditional substitution, but lazy substitution considerably simplifies some _ITS-related proofs.
We discuss in Section 7 some work related to lazy substitution (such as explicit substitution

[Abadi et al. 1990]). This section defines _\ to introduce lazy substitution separately from the details
of intensional functions. Key to lazy substitution is that, while substitutions are manifest as a part
of the grammar, they are not a form of expression.

4.1 Defining _\

We define the syntax of _\ in Figure 10. _\ is a call-by-name lambda calculus in which substitutions
\ – sequences of mappings from variables to expressions – appear as components of the grammar.
By representing these typical capture-avoiding substitution operations explicitly, we are able to
simplify proofs of properties about the effects of substitutions on evaluation.

𝑒 ::= 𝑥 | _\𝑥 . 𝑒 | 𝑒 𝑒 expressions
\ ::= [𝑥 ↦→ 𝑒, . . .] substitutions

Fig. 10. _\ Syntax

To discuss the syntax in this figure, we require some basic notation:
Definition 4.1. We write fv(𝑒) to denote the free variables of 𝑒 and dom(\) for {𝑥 | 𝑥 ↦→ 𝑒 ∈ \ }.

Substitutions are formally defined as a list of mappings from variable to expression. We define the
substitution operation in Figure 11, overloading mathematical function notation. This is a typical
capture-avoiding substitution definition except that (1) it performs each of a list of substitutions and
(2) substitutions stop at lambda abstractions. Upon reaching a lambda abstraction, the substitution
to be performed is stored in the \ position of the lambda rather than being applied directly to the
body. This is the sense in which substitution is “lazy”: we will not perform substitution until it is
required to continue reduction.

We define the call-by-name operational semantics for _\ in Definition 4.2. TheAppl rule performs
on the function’s body any substitutions which were previously deferred (in addition to the
substitution of the parameter). These rules do not allow evaluation under binders; we make this
choice to simplify our statements below.

4Some readers may recognize this as a rule from CKY chart parsing [Cocke 1969; Kasami 1965; Sakai 1961; Younger 1967].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

Intensional Functions 274:9

[] (𝑒′) = 𝑒′

([𝑥 ↦→ 𝑒] ∥ \) (𝑥) = \ (𝑒)
([𝑥 ↦→ 𝑒] ∥ \) (𝑥 ′) = \ (𝑥 ′) , 𝑥 ≠ 𝑥 ′

([𝑥 ↦→ 𝑒] ∥ \) (_\ ′𝑥 . 𝑒′) = \ (_\ ′𝑥 . 𝑒′)
([𝑥 ↦→ 𝑒] ∥ \) (_\ ′𝑥 ′ . 𝑒′) = \ (_ (\ ′ ∥ [𝑥 ↦→𝑒])𝑥

′ . 𝑒′) , 𝑥 ≠ 𝑥 ′, 𝑥 ′ ∉ fv(𝑒)
\ (𝑒1 𝑒2) = \ (𝑒1) \ (𝑒2)

Fig. 11. _\ Substitution

Red-Left
𝑒1 −→ 𝑒′1

𝑒1 𝑒2 −→ 𝑒′1 𝑒2
Appl

𝑒′ = (\ ∥ [𝑥 ↦→ 𝑒2]) (𝑒1)
(_\𝑥 . 𝑒1) 𝑒2 −→ 𝑒′

Fig. 12. _\ Operational Semantics

Definition 4.2. Let 𝑒 −→ 𝑒′ be the least relation satisfying the rules in Figure 12 as well as
traditional 𝛼-renaming. Let 𝑒 −→∗ 𝑒′ be the transitive closure of this relation.

In the next section, we discuss some formal properties of _\ . We will use these same properties
in the larger setting of the _ITS system defined in Section 5, but the relative simplicity of _\
correspondingly simplifies the initial presentation of these properties.

4.2 Formal Properties of _\
We note that a bisimulation exists which relates an expression’s evaluation in _\ to its evaluation in a
traditional call-by-name lambda calculus: at each step, suspended substitutions in the _\ expression
can be eagerly performed to produce the traditional expression. (We elide formal definitions and
proof for brevity.) We also observe that the set of unique function bodies in _\ expressions is
nonincreasing as evaluation proceeds. Formally:
Lemma 4.3. Suppose 𝑒1 −→ 𝑒2. Let 𝐸𝑘 = {𝑒 | (_\𝑥 . 𝑒) appears in 𝑒𝑘 } for 𝑘 ∈ {1, 2}. Then 𝐸1 ⊇ 𝐸2.

Proof. By induction first on the height of 𝑒1 −→ 𝑒2 and then on the height of the substitution
applied in the Appl rule. In summary: substitution does not modify the bodies of functions and the
Appl rule removes the applied function’s (substituted) body from its surrounding function. □

Note that Lemma 4.3 relies upon the fact that _\ does not permit evaluation under lambdas. Any
such evaluation would modify the body of a function and thus break this property.

While Lemma 4.3 demonstrates that function bodies are nonincreasing as evaluation proceeds, this
is not true of functions themselves. As an expression evaluates, new _\𝑥 . 𝑒 subexpressions appear
with variations in the \ position. Intuitively, \ is an environment: its substitutions correspond to
bindings for the function body’s non-local variables. This illustrates our interest in the _\ -calculus:
functions are explicitly defined in terms of their original definition in the source program and
the values captured in their closure. Lemma 4.3 is a common invariant of functional compilation
systems: new environments appear at runtime but new code does not.

Our overall goal is to show the (conservative) equality of functions with the same environment.
Substitutions act as environments but require a notion of equivalence. For instance, the substitutions
[𝑥1 ↦→ (_[]𝑥0 . 𝑥0)] and [𝑥1 ↦→ 𝑥2, 𝑥2 ↦→ (_[]𝑥0. 𝑥0)] are grammatically distinct entities but will,
when applied, always have the same results. Intuitively, two substitutions are equivalent if, for all
input expressions, they produce substitution-equivalent expressions; substitution equivalence on
expressions is a homomorphic extension of this definition. Formally:
Definition 4.4.We mutually define relations of the forms \ ≃ \ and 𝑒 ≃ 𝑒 as the least relations
conforming to the following:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

274:10 Zachary Palmer, Nathaniel Wesley Filardo, and Ke Wu

\1 ≃ \2 if ∀𝑒. \1 (𝑒) ≃ \2 (𝑒) 𝑥 ≃ 𝑥

𝑒1 𝑒2 ≃ 𝑒′1 𝑒
′
2 if 𝑒1 ≃ 𝑒′1 and 𝑒2 ≃ 𝑒′2 _\1𝑥 . 𝑒1 ≃ _\2𝑥 . 𝑒2 if \1 ≃ \2 and 𝑒1 ≃ 𝑒2

Substitution equivalence allows us to make observations about substitutions in _\ . For instance,
substitutions only affect the free variables in the expressions to which they are applied. (This is
intuitive from inspection of Definition 11 but is crucial in our later proof and so deserves formal
treatment.) Let us denote sets of variables as 𝑋 . Then, in keeping with our view of substitutions as
functions on expressions, let us define a restriction of substitutions to a specific set of variables.

Definition 4.5.
[] |𝑋 = []

([𝑥 ↦→ 𝑒] ∥ \) |𝑋 = \ |𝑋 , 𝑥 ∉ 𝑋

([𝑥 ↦→ 𝑒] ∥ \) |𝑋 = [𝑥 ↦→ 𝑒] ∥(\ |𝑋∪fv(𝑒)) , 𝑥 ∈ 𝑋

Definition 4.5 filters a substitution by discarding mappings for variables not in the set of approved
variables. We must be careful to preserve substitutions for variables which will be introduced by
other substitutions. Using this notation, we can formally state the above claim:
Lemma 4.6. For any substitution \ and any expression 𝑒 , \ (𝑒) ≃ \ |fv(𝑒) (𝑒).

Proof. By induction on the length of \ , then the height of 𝑒 , then case analysis of Definition 11.
□

We also observe that substitutions which produce equivalent results on a particular expression
will produce equivalent results on all expressions with the same free variables. Formally:
Lemma 4.7. If \1 (𝑒) ≃ \2 (𝑒) then (\1 |fv(𝑒)) ≃ (\2 |fv(𝑒)).

Proof. By induction on the height of 𝑒 and by using Figure 11 and \1 (𝑒) to infer the substitutions
performed by \1. In summary: we view 𝑒 as a template structure holding free variables. Substitution
is homomorphic except on variables (which are immediately replaced) and functions (which store
the substitution directly in their \ position). This does not allow us to infer the exact \1 or \2 —
different substitutions may yield the same results on the free variables of 𝑒 — but we learn enough
to determine how the substitutions behave on those free variables. □

In the following sections, we will define and prove formal properties about the larger _ITS

system which includes intensional functions. While the grammar of _ITS is much larger, these same
arguments regarding _\ still apply to _ITS.

5 Formalization of Intensional Functions
This section defines _ITS, a lambda calculus equipped with intensional functions and the features
to make them meaningful, and examines the formal properties of that system. Most importantly,
we prove the correctness of the intuitive conservative function equality model we presented in
Section 2.3. We also give a type system in Section 5.4 which is proven correct in this paper’s
supplemental material. Section 5.5 illustrates an example of a small _ITS program.

5.1 _ITS Features
The grammar of _ITS appears in Figure 13. We now briefly motivate each of its features.

_ITS includes constraint functions 𝐹 which name single-variable polymorphic types. We use con-
straint functions to represent properties we wish to define on intensional functions; for instance, the
type bool

Eq−−→ bool denotes intensional functions (from booleans to booleans) which are equatable.
Constraint functions are defined using the class keyword as they correspond to a weak form of
typeclass. A reader may safely think of these constraint functions as single-method typeclasses
which conflate the name of the method with the name of the class. For instance, a _ITS program

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

Intensional Functions 274:11

𝑥 variables
ℓ program points
𝐹 constraint functions
𝜙 ::= ⟨𝐹, 𝑒, 𝜏⟩ closure items
𝑞 ::= 𝐹 𝜏 constraints
𝑄 ::= {𝑞, . . .} constraint sets

𝐶 ::= {𝐹 ↦→ 𝜎, . . .} constraint names
𝑊 ::= {𝑞 ↦→ 𝑒, . . .} constraint witnesses
Γ ::= {𝑥 ↦→ 𝜎, . . . , } type environments
𝜓 ::= 𝑥 ↦→ 𝑒 | 𝛼 ↦→ 𝜏 substitutions
\ ::= [𝜓, . . .] substitution sequences

𝑣 ::= 𝑥 | ℓ | 𝐹 | 𝜙 | 𝑒 :: 𝑒 | nil𝜏 | true | false |
tyrep 𝜏 | _𝐹

ℓ,𝑒,\
𝑥:𝜏.𝑒 | Λ𝛼.𝑄 ⇒ 𝑒

values

𝑒 ::= 𝑣 | 𝑒 𝑒 | 𝑒 𝜏 | identify 𝑒 | inspect 𝑒 |
pack 𝑒 as 𝑞 | unpack 𝑥 : ∃𝛼 as 𝑥 = 𝑒 in 𝑒 |
let 𝑥:𝜎 = 𝑒 in 𝑒 | 𝑒 ~ 𝑒 ? 𝑒 : 𝑒 | 𝑒 == 𝑒 |
hd 𝑒 | tl 𝑒 | nil? 𝑒 | if 𝑒 then 𝑒 else 𝑒

expressions

𝑐 ::= class 𝐹 : ∀𝛼. 𝜏; class declarations
𝑑 ::= instance 𝑞 = 𝑒; instance declarations

𝑝 ::= 𝑐 𝑑 𝑒 programs

𝜏 ::= 𝛼 | 𝜏 𝐹−→𝜏 | [𝜏] | bool | ppt |
clo 𝐹 | tyrep 𝜏

monotypes

𝜎 ::= ∀𝛼.𝑄 ⇒ 𝜎 | 𝜏 polytypes

Fig. 13. _ITS Grammar

might include class Eq : ∀a. a Eq−−→ a
Eq−−→ bool to designate the type of equality functions. (Equality

functions themselves are equatable in this definition. We discuss this further in Section 5.5.)
Constraints are satisfied by ad-hoc instantiations. Constraints 𝑞 are syntactic pairs of a constraint

function and a monotype to satisfy it. Constraint functions appear as terms in the expression
grammar to be used via explicit type application to identify a particular instantiation. For in-
stance, a previously-defined equality on booleans may be named as Eq bool; the expression
(Eq bool) true false would evaluate to false. In general, constraint functions themselves will
be single-variable polymorphic functions with empty type constraint sets.
Intensional functions themselves are written _𝐹

ℓ,𝑒′,\𝑥:𝜏.𝑒 . The three rightmost positions in this
form — 𝑥 , 𝜏 , and 𝑒 — are a parameter, its type, and the function body as in a typical typed lambda
calculus. 𝐹 is the constraint function to which the intensional function conforms. The ℓ in the first
lower position corresponds to a unique program point at which the function was originally defined;
𝑒′ is a closure expression which will, in practice, be a list of type-tagged closure items 𝜙 . The \
position corresponds to the substitutions described in the _\ -calculus in Section 4.
Although _ITS is much more complex than _\ , substitutions operate in the same fashion. For

brevity, we omit much of the definition of capture-avoiding substitution for _ITS, but we give the
clauses pertaining to intensional functions (including type substitution) for clarity.
Definition 5.1. We use \ (𝑒) to denote the lazy capture-avoiding substitution of \ in the expression
𝑒; we use similar notation for other grammar terms such as 𝑝 and 𝜏 .

([𝑥 ′ ↦→ 𝑒′] ∥ \) (_𝐹
ℓ,𝑒′′,\ ′𝑥:𝜏.𝑒) = \ (_𝐹

ℓ,𝑒′′,\ ′𝑥:𝜏.𝑒) , 𝑥 = 𝑥 ′

([𝑥 ′ ↦→ 𝑒′] ∥ \) (_𝐹
ℓ,𝑒′′,\ ′𝑥:𝜏.𝑒) = \ (_𝐹

ℓ,𝑒′′,(\ ′ ∥ [𝑥 ′ ↦→𝑒′])𝑥:𝜏.𝑒) , 𝑥 ≠ 𝑥 ′, 𝑥 ∉ fv(𝑒′)
([𝛼 ′ ↦→ 𝜏 ′] ∥ \) (_𝐹

ℓ,𝑒′′,\ ′𝑥:𝜏.𝑒) = \ (_𝐹
ℓ,𝑒′′,(\ ′ ∥ [𝛼 ′ ↦→𝜏 ′])𝑥:𝜏.𝑒)

...

Let us consider an example intensional function expression. To ease the presentation of such
examples throughout this section, we will use the simple syntactic sugar presented in Figure 14.
The function

(
_
Eq
1,[],[]a:bool._

Eq
2,[pack a as Eq bool],[]b:bool.a and b

)
is a two-argument function

performing the logical conjunction of its arguments. We denote program points as integers 1 and
2 to distinguish them from other terms. The first function’s closure is [] as that function’s body
has no non-local variables. The second function’s closure contains a single element, a type-tagged
packing of a, because a is non-local and free in that function’s body. The Eq bool appearing in that
pack expression is an annotation for the type system signifying that an instance of Eq must exist

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

274:12 Zachary Palmer, Nathaniel Wesley Filardo, and Ke Wu

for bool, the type of a. Both functions have [] in their substitution position as neither has yet been
subjected to any substitutions during evaluation.

𝑒1 and 𝑒2 ≡ if 𝑒1 then 𝑒2 else false
𝑒1 or 𝑒2 ≡ if 𝑒1 then true else 𝑒2
[𝑒1,. . .,𝑒𝑛] ≡ 𝑒1::. . .::𝑒𝑛::nil

Fig. 14. _ITS Syntactic Sugar

We have specific expectations of the _ITS pro-
grams we will consider: program points should
be unique at the start of evaluation, closures
should capture all (and only) non-local vari-
ables of their corresponding functions, and sub-
stitutions should be initially empty and accumulate lazy substitution operations over time. However,
these expectations cannot be enforced by syntax any more than whether expressions are closed.
Section 5.3 will formally define invariants to identify which programs conform to these expectations
and are therefore included in our study. In practice, these invariants are enforced by an encoding
system (such as Haskell+ItsFn) which translates from a higher-level language that does not require
the programmer to articulate program points, closures, or substitutions.

As we continue to examine the syntax of _ITS, recall from Section 2.4: even if we know that two
intensional functions’ closures are comprised of equatable elements, we must further know that
they are equatable to each other. _ITS supports runtime type comparisons using a special form of
conditional expression written 𝑒1 ~ 𝑒2 ? 𝑒3 : 𝑒4. Here, 𝑒1 and 𝑒2 must be runtime type witnesses of
the form tyrep 𝜏 . This expression reduces to 𝑒3 if they are equal and 𝑒4 if they are not. We briefly
discuss the typing of this expression using standard techniques in Section 5.4.
The grammar of _ITS also supports bounded polymorphism via explicit type application. While

polymorphism isn’t strictly necessary in _ITS, we include it to demonstrate its compatibility with
intensional functions. Polymorphism is bounded via qualified constraints. [Jones 1992]

5.2 Operational Semantics
We now formalize _ITS beginning with the operational semantics of expressions. As _ITS has several
expression forms, we abbreviate our definition using evaluation contexts [Felleisen and Hieb 1992]
to identify points of reduction. Evaluation contexts are similar to the expression grammar and
contain a single “hole”, denoted •, to indicate the point at which reduction can occur. As our
operational semantics are call-by-name, the evaluation contexts defined in Figure 15 are sufficient.
We write b (𝑒) to denote the expression produced by substituting 𝑒 for the hole appearing in b .

b ::= • | b 𝑒 | b 𝜏 | identify b | inspect b | unpack 𝑥 : ∃𝛼 as 𝑥 = b in 𝑒 evaluation contexts
| b ~ 𝑒 ? 𝑒 : 𝑒 | 𝑣 ~ b ? 𝑒 : 𝑒 | b == 𝑒 | 𝑣 == b | hd b | tl b | nil? b | if b then 𝑒 else 𝑒

Fig. 15. _ITS Evaluation Contexts

Our operational semantics relation is defined in terms of a witness environment𝑊 which maps
each constraint (e.g. Eq bool) to its corresponding definition. We use𝑊 [𝑞] to denote the lookup
of a constraint’s expression in this environment. We now define the operational semantics of _ITS:
Definition 5.2. We define𝑊 ⊢ 𝑒 −→ 𝑒 to be the least relation satisfying the rules in Figure 16.

Application of intensional functions is identical to that of extensional functions in _\ (which is, as
previously mentioned, bisimilar to a traditional call-by-name lambda calculus). Lazy substitution is
performed at application and when the closure of a function is obtained via the inspect primitive;
the identify primitive simply retrieves the corresponding program point. _ITS includes primitives
for conditions, lists, and comparing program points for equality.

The E-Witness rule deserves some brief attention. Although the rest of the operational semantics
is substitution-based, the invocation of constraint implementations is environment-based. This is
due to polymorphism: while variable bindings are immediate from lexical analysis, the connection

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

Intensional Functions 274:13

E-Red
𝑊 ⊢ 𝑒 −→ 𝑒′

𝑊 ⊢ b (𝑒) −→ b (𝑒′)
E-App

𝑊 ⊢ (_𝐹
ℓ,𝑒′,\𝑥:𝜏.𝑒1) 𝑒2 −→ (\ ∥ [𝑥 ↦→ 𝑒2]) (𝑒1)

E-TApp
𝑊 ⊢ (Λ𝛼.𝑄 ⇒ 𝑒) 𝜏 −→ [𝛼 ↦→ 𝜏] (𝑒)

E-Witness
𝑊 ⊢ 𝐹 𝜏 −→𝑊 [𝐹 𝜏]

E-Identify
𝑊 ⊢ identify (_𝐹

ℓ,𝑒′,\𝑥:𝜏.𝑒) −→ ℓ
E-Inspect

𝑊 ⊢ inspect (_𝐹
ℓ,𝑒′,\𝑥:𝜏.𝑒) −→ \ (𝑒′)

E-Pack
𝑊 ⊢ pack 𝑒 as 𝐹 𝜏 −→ ⟨𝐹, 𝑒, 𝜏⟩

E-Unpack
𝑊 ⊢ unpack 𝑥1 : ∃𝛼 as 𝑥2 = ⟨𝐹, 𝑒, 𝜏⟩ in 𝑒′ −→ [𝑥1 ↦→ 𝑒, 𝑥2 ↦→ tyrep 𝜏, 𝛼 ↦→ 𝜏] (𝑒′)

E-Let
𝑊 ⊢ let 𝑥:𝜎 = 𝑒 in 𝑒′ −→ [𝑥 ↦→ 𝑒] (𝑒′)

E-Like
𝑊 ⊢ (tyrep 𝜏 ~ tyrep 𝜏 ? 𝑒1 : 𝑒2) −→ 𝑒1

E-Unlike
𝜏1 ≠ 𝜏2

𝑊 ⊢ (tyrep 𝜏1 ~ tyrep 𝜏2 ? 𝑒1 : 𝑒2) −→ 𝑒2

(omitted for brevity: rules for ==, ::, nil?, and if)

Fig. 16. _ITS Operational Semantics: Expression Evaluation Rules

P-Step
𝑊 =

{
𝑞 ↦→ 𝑒

��� (instance 𝑞 = 𝑒;) ∈ 𝑑

}
𝑊 ⊢ 𝑒 −→ 𝑒′

𝑐 𝑑 𝑒 −→ 𝑐 𝑑 𝑒′

Fig. 17. _ITS Operational Semantics: Program Evaluation

between a constraint definition and its usage may not be apparent until after a type application.
There are no occurrences of “Eq bool” in the expression “(Λ𝛼. ∅ ⇒ Eq 𝛼) bool”, for instance, but
application of the E-TApp rule reveals a use of the Eq bool constraint. For this reason, we must
maintain an environment𝑊 of constraints to be consulted once type application is resolved.
We evaluate _ITS programs simply by packing their witnesses into a static𝑊 dictionary and

stepping the body expression. We define all constraints at top level to simplify the use of𝑊 : because
it is global, one static𝑊 can be used throughout evaluation. Formally:
Definition 5.3.We define 𝑝 −→ 𝑝′ to be the least relation satisfying the rule in Figure 17. We
define 𝑝 −→∗ 𝑝′ to hold iff either 𝑝 = 𝑝′ or 𝑝 −→ . . . −→ 𝑝′.

5.3 Closure Consistency
We now prove correct the conservative comparison of intensional functions described in Section 2.3.
That model equates functions which have the same program point and environment. We will
show that, for well-formed _ITS programs, the program point and environment of each intensional
function decide the rest of that function. While this proof is limited to conservative equality,
arguments of similar structure can be used to support other operations (e.g. function comparison
or hashing).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

274:14 Zachary Palmer, Nathaniel Wesley Filardo, and Ke Wu

We begin by establishing some preliminaries:
Definition 5.4. We define fv(𝑒) to be the set of free variables 𝑥 appearing in 𝑒 . We define ftv(𝜏)
to be the set of free type variables 𝛼 appearing in 𝜏 . We extend ftv to operate homomorphically on
constraint sets 𝑄 , environments Γ, expressions 𝑒 , and polytypes 𝜎 . Let Canon be a function from
sets of variables and type variables to a list of those variables in some canonical order.

We then establish a canonical closure representation for _ITS functions.
Definition 5.5. For a parameter𝑥0, a body expression 𝑒 , and a constraint function 𝐹 , let [𝑥1, . . . , 𝑥𝑛] =
Canon(fv(𝑒)\{𝑥0}) and let [𝛼1, . . . , 𝛼𝑚] = Canon(ftv(𝑒)). An expression 𝑒′ is a canonical closure
of 𝑥0, 𝑒 , and 𝐹 iff 𝑒′ = [pack 𝑥1 as 𝐹 𝜏1, . . ., pack 𝑥𝑛 as 𝐹 𝜏𝑛, pack (tyrep 𝛼1) as 𝐹 (tyrep 𝛼1),
. . ., pack (tyrep 𝛼𝑚) as 𝐹 (tyrep 𝛼𝑚)] for some 𝜏1, . . . , 𝜏𝑛 .
Note that Definition 5.5 describes a canonical closure, not the canonical closure, of the defining

lexical components of a function. This is because the monotypes 𝜏1, . . . , 𝜏𝑛 are not lexically fixed by
these lexical components. We discuss typechecking of _ITS in Section 5.4 and, when typechecking,
only one selection of these monotypes will produce a canonical typing of the program. For the
purposes of the proofs in this section, however, we need not constrain these monotypes.

We now define closure consistency, the property we aim to show of well-formed programs which
will support our conservative approximation of function equality.
Definition 5.6. An expression 𝑒 is closure consistent iff the following are true:
(1) For every function _𝐹

ℓ,𝑒1,\
𝑥:𝜏.𝑒2 appearing in 𝑒 ,

(a) 𝑒1 is a canonical closure of 𝑥 , 𝑒2, and 𝐹 .
(b) 𝑥 ∉ dom(\).

(2) For every pair of functions _𝐹1
ℓ,𝑒′1,\1

𝑥1:𝜏1.𝑒
′′
1 and _𝐹2

ℓ,𝑒′2,\2
𝑥2:𝜏2.𝑒

′′
2 (note same ℓ!) in 𝑒 ,

(a) 𝐹1 = 𝐹2, 𝑒′1 = 𝑒′2, 𝑥1 = 𝑥2, 𝜏1 = 𝜏2, and 𝑒′′1 = 𝑒′′2 . (That is: any two functions with the same
program point differ only by substitutions.)

(b) \1 (𝑒′1) ≃ \2 (𝑒′2) implies \1 (𝑒′′1) ≃ \2 (𝑒′′2). (That is: any two functions with the same
program point and equivalent substitutions will produce equivalent bodies after applying
their substitutions.)

We extend the definition of closure consistency homomorphically to programs 𝑝 and constraint
witnesses𝑊 .

Closure consistency allows us to reason about functions in terms of their program points and
environments rather than substitutions on their bodies. By including lazy substitution, we can
reason instead about program points and substitutions. As a consequence, we can use properties
similar to those shown in Section 4.2 to validate our conservative equality model.

We thus aim to preserve closure consistency throughout evaluation. However, many _ITS programs
are not closure consistent. For example, the program “[_Eq1,[],[]a:bool.true,_

Eq
1,[],[]a:bool.false]”

contains two functions with the same program points and environments but different bodies.
We proceed by defining a set of initial programs which meet this closure consistency property

and then showing preservation of closure consistency among those programs during evaluation. As
mentioned above, we expect programmers to write in a higher-level language (e.g. Haskell+ItsFn)
which only requires (and only permits) the programmer to specify 𝐹 . The encoding should then
establish functions’ program points and environments. We define initial programs as follows:
Definition 5.7. A program 𝑝 is initial iff the following are true:
(1) For every function _𝐹

ℓ,𝑒1,\
𝑥:𝜏.𝑒2 appearing in 𝑝 , 𝑒1 is a canonical closure of 𝑥 , 𝑒2, and 𝐹 .

(2) For every function _𝐹
ℓ,𝑒1,\

𝑥:𝜏.𝑒2 appearing in 𝑝 , \ = [].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

Intensional Functions 274:15

(3) For every pair of functions _𝐹1
ℓ1,𝑒′,\1

𝑥1:𝜏1.𝑒
′′
1 and _

𝐹2
ℓ2,𝑒′,\2

𝑥2:𝜏2.𝑒
′′
2 appearing in 𝑝 , we have

ℓ1 ≠ ℓ2. (That is: no two functions have the same program point.)
To establish a starting point, we show that these programs are closure consistent:

Lemma 5.8. Any initial program 𝑝 is closure consistent.

Proof. By clauses 1 and 2 of Definition 5.7, all functions in 𝑝 have canonical closure expressions
and empty substitutions; this satisfies clauses 1a and 1b of Definition 5.6. By clause 3 of Definition 5.7,
all functions in 𝑝 have distinct program points; this satisfies clauses 2a and 2b of Definition 5.6. □

Lemma 5.8 is our base case for proving that initial programs are closure consistent throughout
evaluation. We next prove that closure consistency is preserved as evaluation proceeds, writing
one lemma for each clause of Definition 5.6. First, we show that canonical closures are preserved.
Lemma 5.9. If 𝑝 is closure consistent and 𝑝 −→ 𝑝′ then, for every function _𝐹

ℓ,𝑒1,\
𝑥:𝜏.𝑒2 appearing

in 𝑝′, 𝑒1 = \ (𝑒3) where 𝑒3 is a canonical closure of 𝑥 , 𝑒2, and 𝐹 .

Proof. For any function appearing in 𝑝′, it either appears in 𝑝 or it does not. In the former case,
our goal is immediately satisfied by Definition 5.6 and because 𝑝 is closure consistent.
In the latter case, we observe by inspection of the rules in Figures 16 and 17 that any function

appearing in 𝑝′ which does not appear in 𝑝 is the result of substitution of a function appearing
in 𝑝 . By this observation and Definition 5.1, some function _𝐹

ℓ,𝑒′1,\
′𝑥:𝜏.𝑒2 appears in 𝑝 such that

𝑒1 = \ ′′ (𝑒′1) and \ = \ ′ ∥ \ ′′. (Note that \ ′′ is not necessarily the same as a substitution appearing
in an operational semantics rule because \ ′′, by Definition 5.1, excludes all substitutions of 𝑥 .)

Because 𝑝 is closure consistent, we have that 𝑒′1 = \ ′ (𝑒3) for some 𝑒3 which is a canonical closure
of 𝑥 , 𝑒2, and 𝐹 . We have 𝑒1 = \ ′′ (𝑒′1), so 𝑒1 = \ ′′ (\ ′ (𝑒3)). By Definition 5.1 and because \ = \ ′ ∥ \ ′′,
we have 𝑒1 = \ (𝑒3), so we are finished. □

We next show the preservation of the second clause of Definition 5.6: functions’ parameters do
not appear in the domains of functions’ substitutions. We use a similar strategy to the previous
lemma, using the fact that new functions appear as substitutions of previously-existing functions.
Lemma 5.10. If 𝑝 is closure consistent and 𝑝 −→ 𝑝′ then, for every function _𝐹

ℓ,𝑒1,\
𝑥:𝜏.𝑒2 appearing

in 𝑝′, 𝑥 ∉ dom(\).

Proof. For any function appearing in 𝑝′, it either appears in 𝑝 or it does not. In the former case,
our goal is immediately satisfied by Definition 5.6 and because 𝑝 is closure consistent.
In the latter case, consider a function _𝐹

ℓ,𝑒′1,\
′𝑥:𝜏.𝑒2 appearing in 𝑝′ but not appearing in 𝑝 .

By inspection of the rules in Figures 16 and 17, this function is the result of substitution of a
function appearing in 𝑝 . Because 𝑝 is closure consistent, the function upon which that substitution
is performed does not contain 𝑥 in the domain of its substitution. By Definition 5.1, 𝑥 is not
introduced to the domain of the substitution. Thus, 𝑥 ∉ dom(\). □

The next clauses of Definition 5.6 involve pairs of functions, so we extend the previous strategy
accordingly. The cases in which either or both functions are new conveniently generalize.
Lemma 5.11. If 𝑝 is closure consistent and 𝑝 −→ 𝑝′ then, for every pair of functions _𝐹1

ℓ,𝑒′1,\1
𝑥1:𝜏1.𝑒

′′
1

and _𝐹2
ℓ,𝑒′2,\2

𝑥2:𝜏2.𝑒
′′
2 appearing in 𝑝′, we have 𝐹1 = 𝐹2, 𝑥1 = 𝑥2, 𝜏1 = 𝜏2, and 𝑒′′1 = 𝑒′′2 .

Proof. For any function appearing in 𝑝′, it either appears in 𝑝 or it does not. We thus have three
cases: either both functions appear in 𝑝 , only one function appears in 𝑝 , or neither function appears
in 𝑝 . In the first case, we are immediately finished because 𝑝 is closure consistent. By inspection of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

274:16 Zachary Palmer, Nathaniel Wesley Filardo, and Ke Wu

the rules in Figures 16 and 17, any function appearing in 𝑝′ which does not appear in 𝑝 is the result
of substitution of a function appearing in 𝑝 .

Consider the case in which neither function appears in 𝑝 . By the above observation, there exists
some function _𝐹3

ℓ3,𝑒
′
3,\3

𝑥3:𝜏3.𝑒
′′
3 which appears in 𝑝 such that \ ′′3 (_

𝐹3
ℓ3,𝑒

′
3,\3

𝑥3:𝜏3.𝑒
′′
3) = _

𝐹1
ℓ,𝑒′1,\1

𝑥1:𝜏1.𝑒
′′
1

for some substitutions \ ′′3 . Similarly, there exists some function _
𝐹4
ℓ4,𝑒

′
4,\4

𝑥4:𝜏4.𝑒
′′
4 which appears in

𝑝 such that \ ′′4 (_
𝐹4
ℓ4,𝑒

′
4,\4

𝑥4:𝜏4.𝑒
′′
4) = _

𝐹2
ℓ,𝑒′2,\2

𝑥2:𝜏2.𝑒
′′
2 for some substitutions \ ′′4 . By Definition 5.1, we

have 𝐹1 = 𝐹3, 𝑒′1 = 𝑒′3, 𝑥1 = 𝑥3, 𝜏1 = 𝜏3, 𝑒′′1 = 𝑒′′3 , and ℓ = ℓ3. Similarly, we have 𝐹2 = 𝐹4, 𝑒′2 = 𝑒′4,
𝑥2 = 𝑥4, 𝜏2 = 𝜏4, 𝑒′′2 = 𝑒′′4 , and ℓ = ℓ4. Since ℓ3 = ℓ = ℓ4 and 𝑝 is closure consistent, we have 𝐹3 = 𝐹4,
𝑥3 = 𝑥4, 𝜏3 = 𝜏4, and 𝑒′′3 = 𝑒′′4 . By transitivity we have 𝐹1 = 𝐹2, 𝑒′1 = 𝑒′2, 𝑥1 = 𝑥2, 𝜏1 = 𝜏2, and 𝑒′′1 = 𝑒′′2 .

The remaining case, in which one function appears in 𝑝 but the other does not, proceeds similarly.
The only difference in this case is that, effectively and without loss of generality, \ ′′4 = []. □

The remaining clause of Definition 5.6 is the most interesting as it demonstrates the relationship
between the (substituted) closure environment and the (substituted) body of any function in a _ITS

program. This lemma makes thorough use of closure consistency as well as previous lemmas, but
we use much the same strategy in the previous lemma to merge cases.
Lemma 5.12. If 𝑝 is closure consistent and 𝑝 −→ 𝑝′ then, for every pair of functions _𝐹1

ℓ,𝑒′,\1
𝑥1:𝜏1.𝑒

′′
1

and _𝐹2
ℓ,𝑒′,\2

𝑥2:𝜏2.𝑒
′′
2 appearing in 𝑝′, we have \1 (𝑒′1) ≃ \2 (𝑒′2) implies \1 (𝑒′′1) ≃ \2 (𝑒′′2).

Proof. For any function appearing in 𝑝′, it either appears in 𝑝 or it does not. We thus have three
cases: either both functions appear in 𝑝 , only one function appears in 𝑝 , or neither function appears
in 𝑝 . In the first case, we are immediately finished because 𝑝 is closure consistent.
Consider the case in which neither function appears in 𝑝 . By Lemma 5.11, we have 𝐹1 = 𝐹2,

𝑒′1 = 𝑒′2, 𝑥1 = 𝑥2, 𝜏1 = 𝜏2, and 𝑒′′1 = 𝑒′′2 . For clarity, let 𝐹 = 𝐹1, 𝑒′ = 𝑒′1, 𝑥 = 𝑥1, 𝜏 = 𝜏1, and 𝑒′′ = 𝑒′′1 ; then
we are considering two functions which appear in 𝑝′ but not in 𝑝 which are written _𝐹

ℓ,𝑒′,\1
𝑥:𝜏.𝑒′′

and _𝐹
ℓ,𝑒′,\2

𝑥:𝜏.𝑒′′. It remains to show that, if \1 (𝑒′) ≃ \2 (𝑒′), then \1 (𝑒′′) ≃ \2 (𝑒′′).
We observe by inspection of the rules in Figures 16 and 17 that any function appearing in 𝑝′

which does not appear in 𝑝 is the result of substitution of a function appearing in 𝑝 . There must
then exist a function 𝑒3 in 𝑝 such that \ ′3 (𝑒3) = _𝐹

ℓ,𝑒′,\1
𝑥:𝜏.𝑒′′ for some \ ′3. Similarly, there must

exist a function 𝑒4 in 𝑝 such that \ ′4 (𝑒4) = _𝐹
ℓ,𝑒′,\2

𝑥:𝜏.𝑒′′ for some \ ′4.
By assumption, we have \1 (𝑒′) ≃ \2 (𝑒′). Let 𝑋 ′ = fv(𝑒′) ∪ ftv(𝑒′); then, by the argument of

Lemma 4.7, we have (\1 |𝑋 ′) ≃ (\2 |𝑋 ′). By Lemma 5.10 and because 𝑝 is closure consistent, we have
𝑥 ∉ dom(\1) and 𝑥 ∉ dom(\2); thus, (\1 |𝑋 ′) ≃ (\1 |𝑋 ′∪{𝑥 }) and (\2 |𝑋 ′) ≃ (\2 |𝑋 ′∪{𝑥 }).

Let 𝑋 ′′ = fv(𝑒′′) ∪ ftv(𝑒′′). Because 𝑝 is closure consistent and 𝑒3 appears within 𝑝 , 𝑒′ is a
canonical closure of 𝑥 , 𝜏 , and 𝑒′′. By Definition 5.5,𝑋 ′ = 𝑋 ′′\{𝑥}. We have two cases: either𝑋 ′′ = 𝑋 ′

or𝑋 ′′ = 𝑋 ′∪{𝑥}. In either case, the above properties of substitutions give us that (\1 |𝑋 ′′) ≃ (\2 |𝑋 ′′).
By Definition 4.4, we have (\1 |𝑋 ′′ (𝑒′′)) ≃ (\2 |𝑋 ′′ (𝑒′′)). By the argument of Lemma 4.6 and because
𝑋 ′′ contains the free variables of 𝑒′′, we have \1 (𝑒′′) ≃ \2 (𝑒′′) and we are finished. □

We now combine the previous four lemmas to formalize closure consistency preservation.
Lemma 5.13. If 𝑝 is closure consistent and 𝑝 −→ 𝑝′ then 𝑝′ is closure consistent.

Proof. By Definition 5.6 and Lemmas 5.9, 5.10, 5.11, and 5.12. □

Finally, by combining this most recent result with the base case for initial programs above, we
prove that initial programs demonstrate closure consistency throughout execution.
Theorem 1. Let 𝑝0 be an initial program such that 𝑝0 −→∗ 𝑝𝑛 . Then 𝑝𝑛 is closure consistent.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

Intensional Functions 274:17

Proof. By induction on the length 𝑛 of the evaluation chain, proving the base case with
Lemma 5.8 and the inductive step with Lemma 5.13. □

Theorem 1 serves as the basis by which we justify our conservative model of function equality,
but it is not itself sufficient to do so. This theorem shows that syntactically identical program points
and equivalent environments imply syntactically equivalent function bodies. To make practical
use of intensional function equality, however, a programmer needs to be able to evaluate whether
two closures are equal during the program’s execution and thus relies upon e.g. instances of the Eq
typeclass to determine if two closures are equal. Of course, a faulty implementation of equality
could easily produce undesirable results.

For intensional function equality to conservatively approximate semantic function equality, we
insist upon one additional intuitive requirement: that, for any two values captured in the closures
of intensional functions, semantic equality via Eq implies operational equivalence. Since two
syntactically equivalent _ITS terms in the same evaluation context are operationally equivalent, we
can use the conclusions of Theroem 1 to support a broader argument that operationally equivalent
program points and environments imply operationally equivalent functions.
As stated above, the practical expectation is that the programmer has written in a higher-level

language which encodes exclusively into initial _ITS programs. Our GHC extension follows this
process in spirit, encoding intensional functions into a form that guarantees closure consistency.
As a result, the programmer may assume the conclusions drawn from Theorem 1.

5.4 Type Checking
We now present a type system for _ITS. As with the operational semantics, the type system is driven
not by a specific novel feature but by the combination and specialization of existing type theory.
In particular, we include notions of qualified types [Jones 1992], existential types [Mitchell and
Plotkin 1988], and Leibniz equality [Baars and Swierstra 2002; Cheney and Hinze 2002a; Sheard
2005; Weirich 2000; Yakeley 2008].
As mentioned in Section 5.1, _ITS must support branch-aware runtime type checking. The ex-

pression tyrep 𝜏1 ~ tyrep 𝜏2 ? 𝑒3 : 𝑒4 reduces to 𝑒3 if 𝜏1 = 𝜏2 and 𝑒4 otherwise. Reduction to 𝑒3
should also provide that 𝜏1 = 𝜏2 so that e.g. a function expecting 𝜏1 may accept 𝜏2 in that branch. We
support this behavior via a standard most general unifier (MGU) relation [Pierce 2002; Robinson
1965], defined as follows to acommodate our list-based representation of substitutions.

Definition 5.14. We write 𝜏1 \∼ 𝜏2 to denote that \ is a most general unifier of 𝜏1 and 𝜏2. Specifically,
let substitution equivalence ≃ be defined for _ITS in a fashion similar to Definition 4.4. Then 𝜏1 \∼ 𝜏2
iff (1) \ (𝜏1) = \ (𝜏2); and (2) for any other \ ′1 such that \ ′1 (𝜏1) = \ ′1 (𝜏2), there exists some \ ′2 and \

′′

such that \ ′1 ≃ \ ′2 and \
′
2 = \ ∥ \ ′′.

The typing relation of _ITS uses two mappings, 𝐶 and Γ, from Figure 13. We overload square
brackets to denote the lookup of an item by key (e.g. Γ [𝑥]) and the insertion of a key-value pair
(e.g. Γ [𝑥 ↦→ 𝜎]). We define the typing of expressions in _ITS as follows:
Definition 5.15. Let 𝐶;𝑄 ; Γ ⊢ 𝑒 : 𝜎 be the least relation satisfying the rules in Figure 18.
In addition to a typical type environment, expression, and checked type, this relation includes

places for a constraint name mapping𝐶 and a constraint set𝑄 .𝐶 tracks the type of each constraint
function, allowing us to determine e.g. the type of Eqwhen its corresponding constraint is mentioned.
𝑄 indicates available constraint instances and mirrors𝑊 of the operational semantics. These
structures are fundamental to the T-Witness rule, which consults 𝑄 to ensure that the constraint is
satisfied and consults 𝐶 to determine the type of its implementation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

274:18 Zachary Palmer, Nathaniel Wesley Filardo, and Ke Wu

T-Clo
𝐶;𝑄 ; Γ ⊢ 𝑒 : 𝜏 𝐹 𝜏 ∈ 𝑄

𝐶;𝑄 ; Γ ⊢ ⟨𝐹, 𝑒, 𝜏 ′⟩ : clo 𝐹
T-TRep

𝐶;𝑄 ; Γ ⊢ tyrep 𝜏 : tyrep 𝜏

T-Lam
𝐶;𝑄 ; Γ ⊢ \ (𝑒′) : [clo 𝐹] 𝐶;𝑄 ; Γ [𝑥 ↦→ \ (𝜏)] ⊢ \ (𝑒) : 𝜏 ′

𝐶;𝑄 ; Γ ⊢ (_𝐹
ℓ,𝑒′,\𝑥:𝜏.𝑒) : \ (𝜏)

𝐹−→𝜏 ′

T-TLam
𝐶;𝑄 ∪𝑄 ′; Γ ⊢ 𝑒 : 𝜎 𝛼 ∉ ftv(𝑄, Γ)
𝐶;𝑄 ; Γ ⊢ (Λ𝛼.𝑄 ′ ⇒ 𝑒) : (∀𝛼.𝑄 ′ ⇒ 𝜎)

T-App
𝐶;𝑄 ; Γ ⊢ 𝑒1 : 𝜏

𝐹−→𝜏 ′ 𝐶;𝑄 ; Γ ⊢ 𝑒2 : 𝜏
𝐶;𝑄 ; Γ ⊢ 𝑒1 𝑒2 : 𝜏 ′

T-TApp
𝐶;𝑄 ; Γ ⊢ 𝑒 : ∀𝛼.𝑄 ′ ⇒ 𝜎 [𝛼 ↦→ 𝜏] (𝑄 ′) ⊆ 𝑄

𝐶;𝑄 ; Γ ⊢ 𝑒 𝜏 : [𝛼 ↦→ 𝜏] (𝜎)
T-Witness

𝐹 𝜏 ∈ 𝑄 𝐶 [𝐹] = ∀𝛼 ′ . 𝜏 ′

𝐶;𝑄 ; Γ ⊢ 𝐹 𝜏 : [𝛼 ′ ↦→ 𝜏] (𝜏 ′)

T-Ident
𝐶;𝑄 ; Γ ⊢ 𝑒 : 𝜏 𝐹−→𝜏 ′

𝐶;𝑄 ; Γ ⊢ identify 𝑒 : ppt
T-Inspect

𝐶;𝑄 ; Γ ⊢ 𝑒 : 𝜏 𝐹−→𝜏 ′

𝐶;𝑄 ; Γ ⊢ inspect 𝑒 : [clo 𝐹]

T-Pack
𝐶;𝑄 ; Γ ⊢ 𝑒 : 𝜏 𝐹 𝜏 ∈ 𝑄

𝐶;𝑄 ; Γ ⊢ pack 𝑒 as 𝐹 𝜏 : clo 𝐹

T-Unpack

𝐶;𝑄 ; Γ ⊢ 𝑒 : clo 𝐹
𝐶;𝑄 ∪ {𝐹 𝛼}; Γ [𝑥1 ↦→ 𝛼] [𝑥2 ↦→ (tyrep 𝛼)] ⊢ 𝑒′ : 𝜎 𝛼 ∉ ftv(𝑄, Γ, 𝜎)

𝐶;𝑄 ; Γ ⊢ unpack 𝑥1 : ∃𝛼 as 𝑥2 = 𝑒 in 𝑒
′ : 𝜎

T-Let
𝐶;𝑄 ; Γ ⊢ 𝑒 : 𝜎 𝐶;𝑄 ; Γ [𝑥 ↦→ 𝜎] ⊢ 𝑒′ : 𝜎 ′

𝐶;𝑄 ; Γ ⊢ let 𝑥:𝜎 = 𝑒 in 𝑒′ : 𝜎 ′

T-Like

𝐶;𝑄 ; Γ ⊢ 𝑒1 : tyrep 𝜏1
𝐶;𝑄 ; Γ ⊢ 𝑒2 : tyrep 𝜏2 𝜏1

\∼ 𝜏2 𝐶;\ (𝑄);\ (Γ) ⊢ 𝑒3 : 𝜎 𝐶;𝑄 ; Γ ⊢ 𝑒4 : 𝜎
𝐶;𝑄 ; Γ ⊢ 𝑒1 ~ 𝑒2 ? 𝑒3 : 𝑒4 : 𝜎

(omitted for brevity: rules for 𝑥 , ℓ , true, false, ==, nil𝜏 , ::, nil?, and if)

Fig. 18. _ITS Expression Type Checking

Most of the rules presented in Figure 18 are typical for a type system supporting these features.We
discuss here the rules which are most relevant to typing intensional functions and their applications.
The T-Lam rule is unusual, for instance, in that it performs substitution operations on the expressions
that it is typechecking. While substitutions generated by the evaluation of expressions would call
the decidability of the type system into question, the substitutions performed here are already part
of the expression being typechecked and do not present such a difficulty. To establish decidability,
we consider a function which eagerly performs all of the substitutions suspended in intensional
functions throughout the program. The result of that function serves as evidence for a well-founded
induction to establish that this type system is otherwise syntax directed. Incidentally, we define
this substitution function in this paper’s supplemental material as part of our soundness proof.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

Intensional Functions 274:19

T-Prog

𝐶 = {𝐹 ↦→ ∀𝛼. 𝜏 | (class 𝐹 : ∀𝛼. 𝜏;) ∈ 𝑐}
𝑊 =

{
𝑞 ↦→ 𝑒′

��� (instance 𝑞 = 𝑒′;) ∈ 𝑑

}
𝑄 = {𝑞 | (𝑞 ↦→ 𝑒′) ∈𝑊 }

∀(𝐹 𝜏 ↦→ 𝑒′) ∈𝑊 . ∃(𝐹 ↦→ ∀𝛼. 𝜏 ′) ∈ 𝐶.𝐶;𝑄 ; ∅ ⊢ 𝑒′ : [𝛼 ↦→ 𝜏] (𝜏 ′) 𝐶;𝑄 ; ∅ ⊢ 𝑒 : 𝜎
⊢ 𝑐 𝑑 𝑒 : 𝜎

Fig. 19. _ITS Program Type Checking

The T-Lam rule is also notable because it requires 𝑒′ to have type [clo 𝐹]where 𝐹 is the constraint
function of the intensional function being typed. clo 𝐹 is a bounded existential type satisfying 𝐹 .
This ensures that the closure of the intensional function is the list of type-tagged values expected
in Section 5.3. These values can be extracted with the inspect projector via the T-Inspect rule.

The type-tagged values in these closures are packed using the T-Pack rule, which matches typical
presentations of bounded existential types. The T-Unpack rule is somewhat unusual in that the
unpack expression syntax includes three bindings: one for the packed value, a second for the type of
that value, and a third for a runtime witness of that type (in the form tyrep 𝜏). This type witness is
used in runtime type comparison expressions 𝑒1 ~ 𝑒2 ? 𝑒3 : 𝑒4 similar to (but without the elaborate
GADT machinery of) Refl in Haskell [Baars and Swierstra 2002; Yakeley 2008].

Having defined expression typechecking, we now define program typechecking:
Definition 5.16. Let 𝑝 : 𝜎 be the least relation satisfying the rules in Figure 19.
This definition consists of a single rule which, like E-Prog, creates appropriate environmental

structures from the program and then handles the program’s body expression. This rule also checks
to ensure that each typeclass instance’s expression conforms to the type given in its typeclass.

We assert the soundness of _ITS as follows:
Theorem 2 (Soundness). Suppose ⊢ 𝑝 : 𝜎 . Then either 𝑝 is of form 𝑐 𝑑 𝑣 or there exists some 𝑝′
such that 𝑝 −→ 𝑝′ and ⊢ 𝑝′ : 𝜎 .
The proof of this theorem proceeds first by encoding _ITS in another language established to

be sound and then proving that the properties of the encoding together with the soundness of
the target language imply the soundness of _ITS. The encoding process is generally unremarkable
in light of previous work: _ITS is a form of System F [Girard 1971; Reynolds 1974] extended with
existential types [Mitchell and Plotkin 1988], runtime type witnesses [Baars and Swierstra 2002;
Cheney and Hinze 2002a; Sheard 2005; Weirich 2000; Yakeley 2008], degenerate type classes [Hall
et al. 1996], and a typical qualification of types using constraints [Jones 1992]. Each of these features
have established encodings [Cheney and Hinze 2002b; Hall et al. 1996; Pottier and Gauthier 2006b;
Xi et al. 2003] into System F extended with GADTs, which has been proven sound in many forms (e.g.
[Sulzmann et al. 2007; Xi et al. 2003] among others). Our proof appears in this paper’s supplemental
material.

5.5 Discussion By Example
We now illustrate this system by discussing an example program we present incrementally. We
begin with a small code fragment which defines the notion of equality and specifies the behavior
of equality on program points.

1 class Eq: ∀a. a Eq−−→ a
Eq−−→ bool;

2 instance Eq ppt = _
Eq
1,[],[]x:ppt. _

Eq
2,[pack x as Eq ppt],[]y:ppt. x == y;

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

274:20 Zachary Palmer, Nathaniel Wesley Filardo, and Ke Wu

The constraint function Eq is associated with a typical type signature for equality. The instance
defines equality for ppt, the type of program points, in terms of a primitive built for this purpose.
Note that the inner function captures the value x, of type ppt, in closure. This incurs an interesting
typing burden: we must prove that ppt is Eq, and this is what we are in the process of defining! This
burden inspired our choice to make top-level instances in _ITS recursively bound. This choice is not
out of place: Haskell, for instance, has the same need for recursive instance bindings to support
instances on recursive data types.

We next define equality on booleans:

3 instance Eq bool = _
Eq
3,[],[]x:bool. _

Eq
4,[pack x as Eq bool],[]y:bool.

4 if x then y else if y then false else true;

This definition follows the same structure as with program points above. Our next step is to define
equality on individual closure items which indicate that they are equatable:

5 instance Eq (clo Eq) = _
Eq
5,[],[]x:clo Eq. _

Eq
6,[pack x as Eq (clo Eq)],[]y:clo Eq.

6 unpack vx:∃ tx as rx = x in
7 unpack vy:∃ ty as ry = y in
8 rx ~ ry ? (Eq tx) vx vy : false ;

This example illustrates the need for runtime type comparison: although we know that the elements
in the two closures have definitions of equality, we must know that they are the same type to apply
such a definition to both elements. We accomplish this by unpacking both existentials to obtain
their values and their runtime type representatives. If these representatives match, then we know
the types are the same and can use the equality definition of either value to compare them both.
Otherwise, the values are not of the same type and so we know they are not equal.

We next define equality on lists of closures:

9 instance Eq [clo Eq] = _
Eq
7,[],[]x:[clo Eq]. _

Eq
8,[pack x as Eq ([clo Eq])],[]y:[clo Eq].

10 if nil? x and nil? y then true else if nil? x or nil? y then false else
11 (Eq (clo Eq)) (hd x) (hd y) and (Eq [clo Eq]) (tl x) (tl y) ;

This definition simply compares the lists’ elements pointwise, relying upon the definition of closure
item equality above. We can finally give a definition for equality between two intensional functions:

11 instance Eq (bool
Eq−−→ bool) =

12 _
Eq
9,[],[]x:bool

Eq−−→ bool. _
Eq

10,[pack x as Eq (bool
Eq−−→ bool)],[]

y:bool
Eq−−→ bool.

13 (Eq ppt) (identify x) (identify y) and (Eq [clo Eq]) (inspect x) (inspect y) ;

This definition compares the identities and closures of the intensional functions as discussed in
Section 2 (recall Figure 5). While the simplified typeclasses of _ITS do not permit polymorphism in
the function’s domain or codomain, our Haskell+ItsFn implementation does.
We can finally create two functions using different expressions and compare the functions

themselves for equality:

14 let f:(bool
Eq−−→ bool) = (Eq bool) true in

15 let g:(bool
Eq−−→ bool) = (Eq bool) true in

16 (Eq (bool
Eq−−→ bool)) f g

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

Intensional Functions 274:21

Our two functions are partially-applied boolean equality functions, both of which have captured
true in closure and both of which have the program label 4. As a result, they are considered equal
and this program evaluates to true.

6 Implementation
6.1 Intensional Functions
We have implemented[Palmer and Filardo 2024b] the IntensionalFunctions extension in a
branch of GHC 9.2. Ideally, intensional functions would be well-integrated into the language
runtime; intensional functions could, for instance, be given a dedicated heap representation similar
to extensional functions to minimize runtime overhead. But this approach is rife with subtle
challenges worthy of their own study. What impacts do compiler optimizations such as inlining
have on the semantics of intensional functions? Is a compiler permitted to inline a value which
would otherwise be captured in closure? Is a compiler permitted to deduplicate identical function
definitions within a module or across modules? These and other problems appear surmountable
but require careful consideration which we leave to future work.

1 data ClosureItem c where
2 ClosureItem :: forall c a.
3 (c a, Typeable a) => a -> ClosureItem c
4 data ItsFun c i o =
5 ItsFun Label [ClosureItem c] (i -> o)

Fig. 20. Simplified Intensional Functions Encoding

Our IntensionalFunctions extension of
GHC is a proof-of-concept which performs a high-
level binding-aware encoding. Intensional func-
tions are defined internally using types similar
to those in Figure 20. ItsFun carries the values
produced by the three intensional function elimi-
nators: identification, inspection, and application.
The ClosureItem GADT represents values captured in closure while the Label type uniquely iden-
tifies the definition site of the function. (The actual types used in our encoding are somewhat
more elaborate for reasons described below in Section 6.2.) An expression like \%Eq x -> x + y is
translated internally to ItsFun lbl [ClosureItem @Eq y] (\x -> x + y). Here, @Eq is a type application:
the ClosureItem constructor requires an Eq instance for the type of y.
This encoding is not merely syntactic. Note that there are two free variables in the expression

\x -> x + y, but we did not capture the operator (+) in a ClosureItem. In this example, we presume y

to be locally defined while (+) is defined at top level in another module. GHC provides top-level
bindings by linking and only captures local values in closure at runtime. Our encoding must match
this behavior and so performs desugaring after, and with regards to, name resolution.

6.2 Saturated Application
The code in Figure 20 is simplified for presentation. Our Haskell+ItsFn implementa-
tion uses more elaborate types, which we initially motivate using the _ITS expression(
_
Eq
1,[],[]x:ppt. _

Eq
2,[pack x as Eq],[]y:ppt.x == y

)
a b.

The variable x is captured in the closure of the inner function because it is free where that
function is defined. As x (of type ppt is captured in closure, we must show Eq ppt. But note that
the overall expression applies both arguments a and b simultaneously; there is no opportunity for
the constraint Eq ppt to be used. An uncurried form of this function, when called, would have no
need for a proof of this constraint.

The problem is more compelling when considering itsBind as described in Section 3, which has
type m a ->%c (a ->%c m b) ->%c m b. Just as above, calling itsBind would require us to prove c (m a).
While this may sometimes be satisfiable, it would be onerous to expect of every intensional monad.
itsBind is typically called with both arguments at once, meaning that the closure for which we are
proving this constraint will often be unused.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

274:22 Zachary Palmer, Nathaniel Wesley Filardo, and Ke Wu

Table 1. Comparing Plume Implementations

Implementation Code Lines in Closure Definition Unit Test TimeType Decl. Type Annot. Term Defn. Total
Extensional 89 106 438 633 1.72
Intensional 10 84 402 496 4.95

Briefly, consider modifying the grammar of _ITS in three ways. First, we now write functions
as _𝐹

ℓ,𝑒′,\𝑥:𝜏.𝑒 to allow multiple parameters. Second, we write applications as 𝑒 𝑒 so function
applications may have multiple arguments. Finally, we write function types as 𝜏

𝐹−→𝜏 ′ to reflect these
changes. Call sites which saturate the callee need not create a closure and therefore do not impose
a constraint on the provided arguments. Note that this moves the burden of proving constraints to
function calls rather than function definitions, as we do not know until application whether the
constraints will be necessary. Our implementation of Haskell+ItsFn uses this saturation awareness
to ease typing burdens, especially in the case of intensional monads.

6.3 Intensional Plume
As a preliminary test of the usability of Haskell+ItsFn, we have reimplemented a program analysis,
Plume [Fachinetti et al. 2020], in Haskell twice. Plume encodes program behavior as reachability
properties in a specialized pushdown automaton, the closure of which is well-suited to an intensional
monad as described in Section 3. Our first artifact implements Plume using intensional monads for
indexing and lookup. Our second artifact uses extensional functions and manual defunctionalization.
Table ?? shows the number of lines of code used in each implementation to define Plume’s

deductive closure algorithm. For illustration, we break these line counts into three categories:
type declarations (e.g. data, newtype), type annotations (e.g. function signatures, instance), and term
definitions (e.g. function bodies). Other code (e.g. comments, import declarations) were not included.
We observe that the implementations’ term definitions are comparably verbose. Both imple-

mentations include type annotation boilerplate; for each closure rule, the intensional implementa-
tion repeats a type signature while the extensional implementation declares a typeclass instance.
However, the extensional implementation must declare data types to represent defunctionalized
continuations (and their explicit closures) as in line 1 of Figure 4a; this alone accounts for more than
half of the 25% increase in line count between the implementations. Subjectively, the intensional
implementation is much more readable; we elaborate on this difference in the supplemental material
associated with this paper.

As mentioned in Section 6.1, Haskell+ItsFn is a proof-of-concept extension despite being built
on a production-grade compiler. Table ?? includes a rudimentary benchmark: the average of ten
single-threaded executions of the Plume unit tests (drawn from the original artifact). We observe
that the intensional implementation takes approximately three times longer to produce the same
results.
While we have not directly examined Haskell+ItsFn to identify the cause of this poor perfor-

mance, our proof-of-concept implementation has several qualities that help to explain it. First: the
GADT encoding in Figure 20 stores its own copy of the function’s environment separate from that
kept by the GHC runtime, leading to needless allocation and copying. Second: this copy is stored
in the form of a linked list, meaning that e.g. Ord between two intensional functions could involve
numerous indirections. Third: as ClosureItems individually capture their constraints, GHC is unable
to fuse their implementations of e.g. Ord as it would when deriving Ord for a constructor of multiple
arguments as in a manually defunctionalized artifact.
We suspect that the above problems would be addressed by integrating intensional functions

properly with the GHC runtime, giving them a heap representaton extending that of extensional

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

Intensional Functions 274:23

functions. Intensional functions would then store a single, unboxed environment and a single
pointer to the fused implementation of its constraint. This would additionally allow existing
optimizations (e.g. tail call optimization) to be applied to intensional functions almost transparently.
Although full integration does raise some interesting questions, such as when a compiler can inline
or eliminate values from a closure in light of intensional constraints, this proper integration is
primarily an engineering task distinct from the theoretical development above and so beyond the
scope of this paper.

7 Related Work
Defunctionalization was originally developed [Reynolds 1972] as a whole-program transformation
of an untyped program to use a single global dispatch function in place of every higher-order
function call. Many related advancements are summarized in the later republication of that work
[Reynolds 1998]. Defunctionalization has been extended to simply-typed [Bell et al. 1997; Tolmach
and Oliva 1998] and polymorphically-typed [Pottier and Gauthier 2004, 2006a] languages, the
latter of which relied upon a GADT-based encoding of function symbols as in our extensional
encoding in Section 2. Similarly, modular (as opposed to whole-program) defunctionalization has
been developed [Fourtounis et al. 2014] in a fashion similar to our implementation’s approach.
Reynolds’s original defunctionalization confounds program analyses and optimizers as, on

simplistic inspection, all higher-order call sites reach a function containing the bodies of all higher-
order functions. Flow analysis has been used to refine generated dispatch functions to make the
functions available at specific call sites more apparent [Cejtin et al. 2000]. Recent work [Contractor
and Fluet 2020] has combined this technique with polymorphic type support. Defunctionalization
has also been used to make higher-order programs more comprehensible to first-order program
analysis and transformations [Avanzini et al. 2015; Mitchell and Runciman 2009].

Defunctionalization has been used as a conceptual bridge between first-order and higher-order
languages [Danvy and Nielsen 2001]. This work relates, for instance, evaluation contexts as pre-
sented in Figure 15 to continuations. Later work [Danvy and Millikin 2009] considers refunctional-
ization, an inverse of defunctionalization, to form similar theoretical connections.
Defunctionalization has traditionally been applied to compilation pipelines [Cejtin et al. 2000;

Hutton and Bahr 2016; Palmer and Raty 2018; Tolmach and Oliva 1998] and in similar back-end
settings. Interestingly, Reynolds originally conceptualized defunctionalization as a programmer-
facing design technique [Reynolds 1998], a perspective which has gained recent traction [Epstein
et al. 2011; Koppel 2019; Miller et al. 2014] and which we share here.

One of the most developed programmer-facing uses of defunctionalization is that of serializing
function values. CloudHaskell [Epstein et al. 2011] as implemented by the distributed-closure
library [Tweag I/O Limited 2020] uses GHC-supported static pointers to serve as serializable
defunctionalized symbols for static functions (which have empty closures). Spores [Miller et al. 2014]
in the Scala language perform a similar task but have no static restriction; instead, values captured
in closure by spores are required to be instances of Serializable. Language support for closure
equality was proposed [Appel 1996] long before these works on serialization and closure equality
has been applied heuristically in works like the LMS metaprogramming framework [Rompf and
Odersky 2010]. Intensional functions generalize these approaches by abstracting over the operation
being applied to the closure in question. Although intensional functions are largely compatible
with existing approaches to function serialization — we might, for instance, require the underlying
function to be static when the constraint function is Serializable to support a CloudHaskell-like
approach — we leave to future work the exploration of whether a more general mechanism exists
for supporting constraint functions with specialized constructors such as deserialization.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

274:24 Zachary Palmer, Nathaniel Wesley Filardo, and Ke Wu

Section 6.2 discusses saturation-aware application of intensional functions. Optimizations based
upon call arity have been thoroughly studied. GHC itself features call arity transformations to aid
in optimization [Breitner 2015a] which have been proven sound [Breitner 2015b].

The _\ - and _ITS-calculi in our formalization are lazy substitution calculi: substitution is delayed
until function application. Explicit substitution calculi [Abadi et al. 1990] are similar, but represent
substitution as an expression form with its own operational semantics. Calculi with explicit repre-
sentation of substitution have been proposed as a common functional compilation target [Hardin
et al. 1996]. We similarly seek to understand semantics after code transformation, but our lazy
substitution is more restrictive in a fashion crucial to our proofs: substitutions may only appear
suspended in lambda terms rather than in any subexpression.
In Section 5.3, we observe that the lazy substitutions of intensional functions are similar to

environments captured in closure: non-locals are associated with substitutions rather than values.
Contextual types [Jang et al. 2021; Nanevski et al. 2008] similarly differentiate between locals and
non-locals using an explicit box construction. Similarly, modal logic has been used to represent
functions capturing non-local values as decomposable structures [Licata et al. 2008] with the goal
of unifying binding and computation under a single logical framework.

8 Conclusions and Future Work
We have presented intensional functions, a type of function which supports user-defined operations
other than application. Such operations are defined in terms of two new eliminators: identification,
which yields a unique identity for a given function (in terms of its definition site in the program); and
inspection, which produces the values the function has captured in closure. Intensional functions
impose type constraints such as equality or orderability on their closures which may then be used
to define e.g. conservative equality on the functions themselves.
We have formalized a lazy substitution lambda calculus, _ITS, supporting intensional functions

and defined operational semantics and a type system for it. We have also proven the correctness
of conservative equality on intensional functions. This proof can be used as the basis for other
correctness arguments using various type constraints.

Our IntensionalFunctionsGHC extension is not merely syntactic: it uses the scope of bindings
to eliminate unnecessary closure elements and provides a form of saturation-aware application
to avoid constructing unused closures. We have demonstrated its robustness by reimplementing
a program analysis using an intensional coroutine monad. Our extension is, however, a proof of
concept; a more complete implementation would integrate with the language runtime to reduce
overhead and benefit from optimization decisions made later in the compiler pipeline. We leave
these engineering tasks and the theoretical questions they inspire to future work.

Data Availability Statement
The sources for the proof-of-concept Haskell+ItsFn compiler can be found on GitHub.com[Palmer
and Filardo 2024b]. This compiler is accompanied by a standard library for intensional func-
tions[Palmer and Filardo 2024c], a library defining modular deductive closure engines[Palmer
and Filardo 2024a], and implementations of the Plume program analysis with[Palmer and Filardo
2024d] and without[Palmer et al. 2024] intensional functions. A pre-built virtual machine image is
available on Zenodo[Palmer 2024].

References
M. Abadi, P. L. Curien, and J. J. Levy. 1990. Explicit substitutions. In POPL 1990. ACM Press, San Francisco, California, United

States. https://doi.org/10.1145/96709.96712

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

https://doi.org/10.1145/96709.96712

Intensional Functions 274:25

Andrew W. Appel. 1996. Intensional equality ;=) for continuations. ACM SIGPLAN Notices 31, 2 (Feb. 1996), 55–57.
https://doi.org/10.1145/226060.226069

Martin Avanzini, Ugo Dal Lago, and Georg Moser. 2015. Higher-Order Complexity Analysis: Harnessing First-Order Tools.
Arthur I. Baars and S. Doaitse Swierstra. 2002. Typing dynamic typing. (2002), 157–166. https://doi.org/10.1145/581478.

581494
Jeffrey M. Bell, Françoise Bellegarde, and James Hook. 1997. Type-Driven Defunctionalization. In Proceedings of the Second

ACM SIGPLAN International Conference on Functional Programming (Amsterdam, The Netherlands) (ICFP ’97). Association
for Computing Machinery, 25–37.

Max Bolingbroke. 2011. Constraint Kinds for GHC. http://blog.omega-prime.co.uk/2011/09/10/constraint-kinds-for-ghc/
Joachim Breitner. 2015a. Call Arity. In Trends in Functional Programming. Springer International Publishing, 34–50.
Joachim Breitner. 2015b. Formally proving a compiler transformation safe. ACM SIGPLAN Notices 50, 12 (Aug 2015), 35–46.
Henry Cejtin, Suresh Jagannathan, and Stephen Weeks. 2000. Flow-Directed Closure Conversion for Typed Languages. In

Programming Languages and Systems. Springer Berlin Heidelberg, 56–71.
James Cheney and Ralf Hinze. 2002a. A lightweight implementation of generics and dynamics. In Proceedings of the 2002

ACM SIGPLAN workshop on Haskell. ACM, 90–104.
James Cheney and Ralf Hinze. 2002b. A lightweight implementation of generics and dynamics. In Proceedings of the 2002

ACM SIGPLAN workshop on Haskell. ACM, Pittsburgh Pennsylvania, 90–104. https://doi.org/10.1145/581690.581698
John Cocke. 1969. Programming Languages and Their Compilers: Preliminary Notes. New York University, USA.
Maheen Riaz Contractor and Matthew Fluet. 2020. Type- and Control-Flow Directed Defunctionalization. In Proceedings of

the 32nd Symposium on Implementation and Application of Functional Languages (IFL 2020). Association for Computing
Machinery, 79–92.

Olivier Danvy and Kevin Millikin. 2009. Refunctionalization at work. Science of Computer Programming 74 (Jun 2009),
534–549.

Olivier Danvy and Lasse R. Nielsen. 2001. Defunctionalization at work (PPDP ’01). 162–174.
Jeff Epstein, Andrew P. Black, and Simon Peyton-Jones. 2011. Towards Haskell in the Cloud. In Proceedings of the 4th ACM

Symposium on Haskell (Haskell ’11). Association for Computing Machinery, 118–129.
Leandro Fachinetti, Zachary Palmer, Scott F. Smith, Ke Wu, and Ayaka Yorihiro. 2020. A Set-Based Context Model for

Program Analysis. In Programming Languages and Systems. Springer International Publishing, 3–24.
Matthias Felleisen and Robert Hieb. 1992. The revised report on the syntactic theories of sequential control and state.

Theoretical Computer Science 103, 2 (1992), 235–271.
Georgios Fourtounis, Nikolaos Papaspyrou, and Panagiotis Theofilopoulos. 2014. Modular polymorphic defunctionalization.

Computer Science and Information Systems 11 (2014), 1417–1434.
J. Y. Girard. 1971. Une extension de l’interprétation de Gödel à l’analyse, et son application à l’élimination des coupures

dans l’analyse et la théorie des types. In Proceedings of the Scandinavian Logic Symposium. 63–92.
Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. 1996. Type classes in Haskell. ACM

Transactions on Programming Languages and Systems 18, 2 (March 1996), 109–138. https://doi.org/10.1145/227699.227700
Thérèse Hardin, Luc Maranget, and Bruno Pagano. 1996. Functional back-ends within the lambda-sigma calculus. In ICFP

’96. ACM Press. https://doi.org/10.1145/232627.232632
Graham Hutton and Patrick Bahr. 2016. Cutting Out Continuations. Springer International Publishing, Cham.
Junyoung Jang, Samuel Gélineau, Stefan Monnier, and Brigitte Pientka. 2021. Moebius: Metaprogramming using Contextual

Types – The stage where System F can pattern match on itself (Long Version). arXiv:2111.08099 (Nov. 2021). https:
//doi.org/10.48550/arXiv.2111.08099 arXiv:2111.08099 [cs].

Mark P. Jones. 1992. A Theory of Qualified Types. Sci. Comput. Program. 22 (1992), 231–256.
Tadao Kasami. 1965. An Efficient Recognition and Syntax-Analysis Algorithm for Context-Free Languages. Technical

Report AFCRL-65-758. Air Force Cambridge Research Laboratory. A slightly later edition may be found at https:
//hdl.handle.net/2142/74304.

James Koppel. 2019. The Best Refactoring You’ve Never Heard Of. (2019). https://www.pathsensitive.com/2019/07/the-best-
refactoring-youve-never-heard.html Compose.

Daniel R. Licata, Noam Zeilberger, and Robert Harper. 2008. Focusing on Binding and Computation. In 2008 23rd Annual
IEEE Symposium on Logic in Computer Science. IEEE, Pittsburgh, PA, USA, 241–252. https://doi.org/10.1109/LICS.2008.48

Heather Miller, Philipp Haller, and Martin Odersky. 2014. Spores: A Type-Based Foundation for Closures in the Age
of Concurrency and Distribution. In Proceedings of the 28th European Conference on ECOOP 2014 — Object-Oriented
Programming - Volume 8586. Springer-Verlag, Berlin, Heidelberg, 308–333. https://doi.org/10.1007/978-3-662-44202-9_13

John C. Mitchell and Gordon D. Plotkin. 1988. Abstract types have existential type. ACM Transactions on Programming
Languages and Systems 3 (Jul 1988), 470–502.

Neil Mitchell and Colin Runciman. 2009. Losing Functions without Gaining Data: Another Look at Defunctionalisation. In
Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell (Haskell ’09). Association for Computing Machinery, 13–24.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

https://doi.org/10.1145/226060.226069
https://doi.org/10.1145/581478.581494
https://doi.org/10.1145/581478.581494
http://blog.omega-prime.co.uk/2011/09/10/constraint-kinds-for-ghc/
https://doi.org/10.1145/581690.581698
https://doi.org/10.1145/227699.227700
https://doi.org/10.1145/232627.232632
https://doi.org/10.48550/arXiv.2111.08099
https://doi.org/10.48550/arXiv.2111.08099
https://hdl.handle.net/2142/74304
https://hdl.handle.net/2142/74304
https://www.pathsensitive.com/2019/07/the-best-refactoring-youve-never-heard.html
https://www.pathsensitive.com/2019/07/the-best-refactoring-youve-never-heard.html
https://doi.org/10.1109/LICS.2008.48
https://doi.org/10.1007/978-3-662-44202-9_13

274:26 Zachary Palmer, Nathaniel Wesley Filardo, and Ke Wu

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual modal type theory. ACM Transactions on
Computational Logic 9, 3 (June 2008), 1–49. https://doi.org/10.1145/1352582.1352591

Zachary Palmer. 2024. Intensional Functions Virtual Machine Image. https://doi.org/10.5281/zenodo.13381352
Zachary Palmer and Nathaniel Wesley Filardo. 2024a. Intensional Functions closure engine. https://github.com/zepalmer/

intensional-functions-closure-engine
Zachary Palmer and Nathaniel Wesley Filardo. 2024b. Intensional Functions GHC. https://github.com/zepalmer/intensional-

functions-ghc
Zachary Palmer and Nathaniel Wesley Filardo. 2024c. Intensional Functions libraries. https://github.com/zepalmer/

intensional-functions-lib
Zachary Palmer and Nathaniel Wesley Filardo. 2024d. Plume with Intensional Functions. https://github.com/zepalmer/

intensional-functions-plume
Zachary Palmer, Nathaniel Wesley Filardo, and Ke Wu. 2024. Modular Extensional Plume. https://github.com/zepalmer/

extensional-modular-plume
Zachary Palmer and Charlotte Raty. 2018. A Schematic Pushdown Reachbility Language. DSLDI 2018.
Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press.
François Pottier and Nadji Gauthier. 2004. Polymorphic Typed Defunctionalization (POPL ’04). Association for Computing

Machinery.
François Pottier and Nadji Gauthier. 2006a. Polymorphic Typed Defunctionalization and Concretization. Higher Order

Symbol. Comput. 19, 1 (2006), 125–162.
François Pottier and Nadji Gauthier. 2006b. Polymorphic typed defunctionalization and concretization. Higher-Order and

Symbolic Computation 19, 1 (March 2006), 125–162. https://doi.org/10.1007/s10990-006-8611-7
John C. Reynolds. 1972. Definitional interpreters for higher-order programming languages. In Proceedings of the ACM

annual conference, Vol. 2. ACM Press, Boston, Massachusetts, United States.
John C. Reynolds. 1974. Towards a theory of type structure. In Symposium on Programming.
John C. Reynolds. 1998. Definitional Interpreters Revisited. Higher Order Symbol. Comput. 11, 4 (Dec 1998), 355–361.
J. A. Robinson. 1965. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12, 1 (Jan. 1965), 23–41.

https://doi.org/10.1145/321250.321253
Tiark Rompf and Martin Odersky. 2010. Lightweight modular staging: a pragmatic approach to runtime code generation

and compiled DSLs. In Proceedings of the Ninth International Conference on Generative Programming and Component
Engineering (Eindhoven, The Netherlands) (GPCE ’10). Association for Computing Machinery, New York, NY, USA,
127–136. https://doi.org/10.1145/1868294.1868314

Itiroo Sakai. 1961. Syntax in universal translation. In EARLYMT.
Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios Vytiniotis. 2020. A quick look at impredicativity.

Proceedings of the ACM on Programming Languages 4, ICFP (Aug 2020).
Alejandro Serrano, Jurriaan Hage, Dimitrios Vytiniotis, and Simon Peyton Jones. 2018. Guarded impredicative polymorphism.

In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2018).
Association for Computing Machinery, 783–796.

Tim Sheard. 2005. Putting curry-howard to work. In Proceedings of the 2005 ACM SIGPLAN workshop on Haskell (Haskell
’05). Association for Computing Machinery, 74–85.

Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly. 2007. System F with Type
Equality Coercions. In Proceedings of the 2007 ACM SIGPLAN International Workshop on Types in Languages Design and
Implementation (TLDI ’07). ACM, New York, NY, USA, 53–66. https://doi.org/10.1145/1190315.1190324

Andrew Tolmach and Dino P. Oliva. 1998. FromML to Ada: Strongly-Typed Language Interoperability via Source Translation.
J. Funct. Program. 8, 4 (Jul 1998), 367–412.

Tweag I/O Limited. 2020. distributed-closure. https://github.com/tweag/distributed-closure.
Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin Sulzmann. 2011. OutsideIn(X): Modular type inference

with local assumptions. Journal of Functional Programming 21 (Sep 2011), 333–412.
Stephanie Weirich. 2000. Type-safe cast: (functional pearl). In Proceedings of the fifth ACM SIGPLAN international conference

on Functional programming (ICFP ’00). Association for Computing Machinery, 58–67.
Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded recursive datatype constructors. In Proceedings of the 30th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (New Orleans, Louisiana, USA) (POPL ’03).
Association for Computing Machinery, New York, NY, USA, 224–235. https://doi.org/10.1145/604131.604150

Ashley Yakeley. 2008. Witnesses and OpenWitnesses. (2008). https://semantic.org/wp-content/uploads/Open-Witnesses.pdf
Daniel H. Younger. 1967. Recognition and parsing of context-free languages in time n3. Information and Control 10, 2 (1967).

Received 2024-04-02; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.

https://doi.org/10.1145/1352582.1352591
https://doi.org/10.5281/zenodo.13381352
https://github.com/zepalmer/intensional-functions-closure-engine
https://github.com/zepalmer/intensional-functions-closure-engine
https://github.com/zepalmer/intensional-functions-ghc
https://github.com/zepalmer/intensional-functions-ghc
https://github.com/zepalmer/intensional-functions-lib
https://github.com/zepalmer/intensional-functions-lib
https://github.com/zepalmer/intensional-functions-plume
https://github.com/zepalmer/intensional-functions-plume
https://github.com/zepalmer/extensional-modular-plume
https://github.com/zepalmer/extensional-modular-plume
https://doi.org/10.1007/s10990-006-8611-7
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1145/1190315.1190324
https://github.com/tweag/distributed-closure
https://doi.org/10.1145/604131.604150
https://semantic.org/wp-content/uploads/Open-Witnesses.pdf

	Abstract
	1 Introduction
	2 Intensional Functions
	2.1 Defunctionalization by Example
	2.2 Intensional Functions by Example
	2.3 Comparing Intensional Functions
	2.4 Polymorphism

	3 Intensional Monads
	4 Lazy Substitution
	4.1 Defining
	4.2 Formal Properties of

	5 Formalization of Intensional Functions
	5.1 ITS Features
	5.2 Operational Semantics
	5.3 Closure Consistency
	5.4 Type Checking
	5.5 Discussion By Example

	6 Implementation
	6.1 Intensional Functions
	6.2 Saturated Application
	6.3 Intensional Plume

	7 Related Work
	8 Conclusions and Future Work
	References

