1. Circle

Consider the following grammar for a language called Circle:

$$
\begin{aligned}
& e \\
& e \\
& v \\
& v \\
& \text { : }
\end{aligned}:=\text { Duck } e \mid v
$$

We give an operational semantics for this language:

$$
\text { Duck } \frac{e \Rightarrow v}{\text { Duck } e \Rightarrow v} \quad \text { Goose } \overline{\text { Goose } \Rightarrow \text { Goose }}
$$

We state the following theorem:
Theorem 1. Circle is normalizing; that is, $\forall e . \exists v . e \Rightarrow v$.

Prove Theorem 1.

2. Robot

Consider the following grammar for a language called Robot:

$$
\begin{aligned}
e & ::=\text { Beep e e } \mid v \\
v & ::=\text { Boop }
\end{aligned}
$$

We give an operational semantics for this language:

$$
\text { Beep } \frac{e_{1} \Rightarrow v_{1} e_{2} \Rightarrow v_{2}}{\text { Beep } e_{1} e_{2} \Rightarrow v_{2}} \quad \text { Goose } \overline{\text { Goose } \Rightarrow \text { Goose }}
$$

We state the following theorem:
Theorem 2. Robot is normalizing; that is, $\forall e . \exists v . e \Rightarrow v$.

Prove Theorem 2.

3. CoinFlip

Consider the following grammar for a language called CoinFlip:

$$
\begin{aligned}
& e::=\text { Flip } e \mid \text { Stop } \\
& v::=\text { Heads | Tails }
\end{aligned}
$$

We define the opposite of values v in CoinFlip as follows: the opposite of Heads is Tails and the opposite of Tails is Heads.

We give the following operational semantics for CoinFlip, which we denote $e \stackrel{H}{\Rightarrow}$ v :

$$
\text { STOP } \frac{\text { FliP } \frac{e \stackrel{H}{\Rightarrow} v}{} \quad v^{\prime} \text { is the opposite of } v}{\text { Stop } \xlongequal{\Rightarrow} \text { Heads }}
$$

We also give another operational semantics for CoinFlip, this time denoted $e \stackrel{T}{\Rightarrow} v$:

$$
\text { STOP } \frac{\text { FliP } \frac{e \stackrel{\mathrm{~T}}{\Rightarrow} v \quad v^{\prime} \text { is the opposite of } v}{\text { Stop } \stackrel{\mathrm{T}}{\Rightarrow} \text { Tails }} \text { Flip } e \xlongequal{\mathrm{~T}} v^{\prime}}{\text { F }}
$$

Note that these relations give two different ways of evaluating expressions. We state the following theorem:

Theorem 3. If $e \stackrel{H}{\Rightarrow} v$ then $F l i p e \xlongequal{\Rightarrow} v$.

Prove Theorem 3.

4. Addsolute

Consider the following grammar for a language called Addsolute:

$$
\begin{aligned}
& e::=v|e+e|-e \mid \text { Abs } e \\
& v::=0|1| 2 \mid \ldots
\end{aligned}
$$

We give this language the following operational semantics:

$$
\begin{aligned}
& \text { VALUE } \overline{v \Rightarrow v} \quad \text { NegATE } \frac{e \Rightarrow v \quad v^{\prime} \text { is the arithmetic negation of } v}{-e \Rightarrow v^{\prime}} \\
& \text { PLus } \frac{e_{1} \Rightarrow v_{1} \quad e_{2} \Rightarrow v_{2} \quad v \text { is the arithmetic sum of } v_{1} \text { and } v_{2}}{e_{1}+e_{2} \Rightarrow v} \\
& \operatorname{AbS} \operatorname{Pos} \frac{e \Rightarrow v \quad v \geq 0}{\operatorname{Abs} e \Rightarrow v} \quad \text { Abs NEG } \frac{e \Rightarrow v \quad v<0 \quad-e \Rightarrow v^{\prime}}{\operatorname{Abs} e \Rightarrow v^{\prime}}
\end{aligned}
$$

We state the following theorem:
Theorem 4. Addsolute is deterministic; that is, if $e \Rightarrow v$ and $e \Rightarrow v^{\prime}$ then $v=v^{\prime}$ 。

