Principles of Programming Languages
Version 1.0.2

Mike Grant
Zachary Palmer
Scott Smith

http://pl.cs.jhu.edu/pl/book

1.0.2
http://pl.cs.jhu.edu/pl/book

Copyright (© 2002-2016 Scott F. Smith.

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United
States License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

This document was last compiled on February 10, 2018.

http://creativecommons.org/licenses/by-sa/3.0/us/

Contents

Preface

1 Introduction

1.1
1.2
1.3

The Pre-History of Programming Languages
A Brief Early History of Languages
This Book e

2 Operational Semantics

2.1
2.2

2.3

2.4

A First Look at Operational Semantics
BNF grammars and Syntax oo
2.2.1 Operational Semantics for Logic Expressions
2.2.2 Abstract Syntax L
2.2.3 Operational Semantics and Interpreters
The Fb Programming Languageo
231 FbSyntax i
2.3.2 Variable Substitution
2.3.3 Operational Semantics for Fb
2.3.4 The Expressiveness of Fb
2.3.5 Russell’s Paradox and Encoding Recursion
2.3.6 Call-By-Name Parameter Passing
2.3.7 Fb Abstract Syntax
Operational Equivalence
2.4.1 Defining Operational Equivalence
2.4.2 Properties of Operational Equivalence
2.4.3 Examples of Operational Equivalence
2.4.4 The A-Calculus

3 Tuples, Records, and Variants

3.1
3.2

3.3

Tuples e
Records o
3.2.1 Record Polymorphism
3.2.2 The FOR Language o v v v v v v i i
Variants o Lo
3.3.1 Variant Polymorphism
3.3.2 The FbV Language

ii

CONTENTS

4 Side Effects: State and Exceptions

4.1

4.2
4.3

4.4

State e e
4.1.1 The FbS Language oo v i i
4.1.2 Cyclical Stores
4.1.3 The “Normal” Kind of State
4.1.4 Automatic Garbage Collection
Environment-Based Interpreters.
The FOSR Language o v v v v vttt
4.3.1 Multiplication and Factorial
4.3.2 Merge Sorto
Exceptions and Other Control Operations
4.4.1 Interpreting Return L.
442 The FOX Language o v v v v v v v v i it
4.4.3 TImplementing the FbX Interpreter

5 Object-Oriented Language Features

5.1

5.2

Encoding Objects in FbSR.
5.1.1 Simple Objects
5.1.2 Object Polymorphism
5.1.3 Information Hiding
5.1.4 Classes o e
5.1.5 Imheritance
5.1.6 Dynamic Dispatch 0.
5.1.7 Static Fields and Methods
The FOOB Language o v v v vttt
5.2.1 Concrete Syntaxo o
5.2.2 A Direct Interpreter
5.2.3 Translating FPOB to FbSR.

6 Type Systems

6.1
6.2

6.3
6.4
6.5

6.6

6.7

An Overview of Types
TFb: A Typed Fb Variation
6.2.1 DesignlIssues e
6.2.2 The TFb Language o o v v v i it et
Type Checking
Types for an Advanced Language: TFbSRX
Subtyping
6.5.1 Motivation
6.5.2 The STFbR Type System: TFb with Records and Subtyping . . .
6.5.3 Implementing an STFHR Type Checker
6.5.4 Subtyping in Other Languages
Type Inference and Polymorphism
6.6.1 Type Inference and Polymorphism
6.6.2 An Equational Type System: EFb
6.6.3 PEFbH: EFb with Let Polymorphism
Constrained Type Inference

iii

58
58
59
64
66
66
67
68
69
70
73
74
76
7

79
82
82
84
85
87
88
89
91
92
93
94
96

CONTENTS

7 Concurrency
T.1 OVerview e e e e
7.1.1 The Java Concurrency Model
7.2 The Actor Model and AFbV
7.2.1 Syntax of AFOV
722 AnExample
7.2.3 Operational Semantics of Actors
7.2.4 The Local Rules
725 TheGlobal Rule
7.2.6 The Atomicity of Actors
8 Compilation by Program Transformation
8.1 Closure Conversion v v i i e
8.1.1 The Official Closure Conversion
8.2 A-Translation e
8.2.1 The Official A-Translation
8.3 Function Hoisting
8.4 Translation to C e
8.4.1 Memory Layout
8.4.2 The toC translation
8.4.3 Compilation to Assembly code
8.5 SUmMmMAry e
8.6 Optimization e
8.7 Garbage Collection e
Bibliography

Index

v

127
127
128
129
130
130
131
132
133
133

134
135
138
139
141
142
144
146
151
154
154
154
155

156

158

Preface

This book is an introduction to the study of programming languages. The material has
evolved from lecture notes used in a programming languages course for juniors, seniors,
and graduate students at Johns Hopkins University [21].

The book treats programming language topics from a foundational. It is foundational
in that it focuses on core concepts in language design such as functions, records, objects,
and types and not directly on applied languages such as C, C++, or Java. We show how
the particular core concepts are realized in these modern languages, and so the reader
should emerge from this book with a stronger sense of how they are structured.

While the book uses formal mathematical techniques such as operational semantics
and type systems, it does not emphasize proofs of properties of these systems. We will
sketch the intuitions of some properties but not do any detailed proofs.

The OCaml Language

The OCaml programming language [15] is used throughout the book, and assignments
related to the book are best written in OCaml. OCaml is a modern dialect of ML which
has the advantages of being reliable, fast, free, and available on just about any platform
through http://caml.inria.fr.

The FbDK

Complementing the book is the Fb Development Kit, FbDK. It is a set of OCaml utilities
and interpreters for designing and experimenting with the toy Fb and FbSR languages
defined in the book. It is available from the book homepage at http://pl.cs. jhu.edu/
pl/book, and is documented in Appendix ?7.

Background Needed

The book assumes familiarity with the basics of OCaml, including the module system
(but not the objects, the “O” in OCaml). Beyond that there is no absolute prerequisite,
but knowledge of C, C++, and Java is helpful because many of the topics in this book are
implemented in these languages. The compiler presented in chapter 8 produces C code
as its target, and so a basic knowledge of C will be needed to implement the compiler.
More nebulously, a certain “mathematical maturity” greatly helps in understanding the
concepts, some of which are deep. for this reason, previous study of mathematics, for-
mal logic and other foundational topics in Computer Science such as automata theory,
grammars, and algorithms will be a great help.

http://caml.inria.fr
http://pl.cs.jhu.edu/pl/book
http://pl.cs.jhu.edu/pl/book

Chapter 1

Introduction

General-purpose computers have the amazing property that a single piece of hardware
can do any computation imaginable. Before general-purpose computers existed, there
were special-purpose computers for arithmetic calculations, which had to be manually
reconfigured to carry out different calculations. A general-purpose computer, on the other
hand, has the configuration information for the calculation in the computer memory itself,
in the form of a program. The designers realized that if they equipped the computer with
the program instructions to access an arbitrary memory location, instructions to branch
to a different part of the program based on a condition, and the ability to perform basic
arithmetic, then any computation they desired to perform was possible within the limits
of how much memory, and patience waiting for the result, they had.

These initial computer programs were in machine language, a sequence of bit pat-
terns. Humans understood this language as assembly language, a textual version of
the bit patterns. So, these machine languages were the first programming languages,
and went hand-in-hand with general-purpose computers. So, programming languages
are a fundamental aspect of general-purpose computing, in contrast with e.g., networks,
operating systems, and databases.

1.1 The Pre-History of Programming Languages

The concept of general-purpose programming in fact predates the development of com-
puters. In the field of mathematical logic in the early 20th century, logicians created
their own programming languages. Their motivation originally sprang from the concept
of a proof system, a set of rules in which logical truths could be derived, mechanically.
Since proof rules can be applied mechanically, all of the logically true facts can be me-
chanically enumerated by a person sitting there applying all of the rules in every order
possible. This means the set of provable truths are recursively enumerable. Logicians
including Frege, Church, and Curry wanted to create a more general theory of logic and
proof; this led Church to define the A-calculus in 1932, an abstract language of functions
which also defined a logic. The logic turned out to be inconsistent, but by then logicians
had discovered that the idea of a theory of functions and their (abstract) computations
was itself of interest. They found that some interesting logical properties (such as the
collection of all truths in certain logical systems) were in fact not recursively enumerable,

CHAPTER 1. INTRODUCTION 2

meaning no computer program could ever enumerate them all. So, the notion of general-
purpose computation was first explored in the abstract by logicians, and only later by
computer designers. The A-calculus is in fact a general-purpose programming language,
and the concept of higher-order functions, introduced in the Lisp programming language
in the 1960’s, was derived from the higher-order functions found in the A-calculus.

1.2 A Brief Early History of Languages

There is a rich history of programming languages that is well worth reading about; here
we provide a terse overview.

The original computer programming languages, as mentioned above, were so-called
machine languages: the human and computer programmed in same language. Machine
language is great for computers but not so great for humans since the instructions are
each very simple and so many, many instructions are required. High-level languages were
introduced for ease of programmability by humans. FORTRAN was the first high-level
language, developed in 1957 by a team led by Backus at IBM. FORTRAN programs
were translated (compiled) into machine language to be executed. They didn’t run as
fast as hand-coded machine language programs, but FORTRAN nonetheless caught on
very quickly because FORTRAN programmers were much more productive. A swarm of
early languages followed: ALGOL in ’58, Lisp in the early 60’s, PL/1 in the late 60’s,
and BASIC in 1966.

Languages have developed on many fronts, but there is arguably a major thread of
evolution of languages in the following tiers:

1. Machine language: program directly in the language of the computer

2. FORTRAN, BASIC, C, Pascal, . ..: first-order functions, nested control structures,
arrays.

3. Lisp, Scheme, ML: higher-order functions, automated garbage collection, memory
safety; strong typing in ML

Object-oriented language development paralleled this hierarchy.
1. (There was never an object-oriented machine language)

2. Simula67 was the original object-oriented language, created for simulation. It was
FORTAN-like otherwise. C++ is another first-order object-oriented language.

3. Smalltalk in the late 70’s: Smalltalk is a higher-order object-oriented language
which also greatly advanced the concept of object-oriented programming by show-
ing its applicability to GUI programming. Java is partly higher order, has auto-
mated garbage collection, and is strongly typed.

Domain-specific programming languages (DSLs) are languages designed to solve a
more narrow domain of problems. All languages are at least domain-specialized: FOR-
TRAN is most highly suited to scientific programming, Smalltalk for GUI programming,
Java for Internet programming, C for UNIX system programming, Visual Basic for Mi-
crosoft Windows. Some languages are particularly narrow in applicability; these are

CHAPTER 1. INTRODUCTION 3

called Domain-specific languages. SNOBOL and Perl are text processing languages.
UNIX shells such as sh and csh are for simple scripting and file and text hacking. Prolog
is useful for implementing rule-based systems. ML is to some degree a DSL for language
processing. Also, some languages aren’t designed for general programming at all, in that
they don’t support full programmability via iteration and arbitrary storage allocation.
SQL is a database query language; XML is a data representation language.

1.3 This Book

In this book, our goal is to study the fundamental concepts in programming languages,
as opposed to learning a wide range of languages. Languages are easy to learn, it is the
concepts behind them that are difficult. The basic features we study in turn include
higher-order functions, data structures in the form of records and variants, mutable
state, exceptions, objects and classes, and types. We also study language implementa-
tions, both through language interpreters and language compilers. Throughout the book
we write small interpreters for toy languages, and in Chapter 8 we write a principled
compiler. We define type checkers to define which programs are well-typed and which
are not. We also take a more precise, mathematical view of interpreters and type check-
ers, via the concepts of operational semantics and type systems. These last two concepts
have historically evolved from the logician’s view of programming.
Now, make sure your seat belts are buckled, sit back, relax, and enjoy the ride. ..

Chapter 2

Operational Semantics

2.1 A First Look at Operational Semantics

The syntax of a programming language is the set of rules governing the formation of
expressions in the language. The semantics of a programming language is the meaning
of those expressions.

There are several forms of language semantics. Axiomatic semantics is a set of ax-
iomatic truths in a programming language. Denotational semantics involves modeling
programs as static mathematical objects, namely as set-theoretic functions with specific
properties. We, however, will focus on a form of semantics called operational semantics.

An operational semantics is a mathematical model of programming language erecu-
tion. It is, in essence, an interpreter defined mathematically. However, an operational
semantics is more precise than an interpreter because it is defined mathematically, and
not based on the meaning of the programming language in which the interpreter is writ-
ten. This might sound sound like a pedantic distinction, but interpreters interpret e.g. a
language’s if statements with the if statement of the language the interpreter is written
in. This is in some sense a circular definition of if. Formally, we can define operational
semantics as follows.

Definition 2.1 (Operational Semantics). An operational semantics for a program-
ming language is a mathematical definition of its computation relation, e = v, where e
s a program in the language.

e = v is mathematically a 2-place relation between expressions of the language, e, and
values of the language, v. Integers and booleans are values. Functions are also values
because they don’t compute to anything. e and v are metavariables, meaning they
denote an arbitrary expression or value, and should not be confused with the (regular)
variables that are part of programs.

An operational semantics for a programming language is a means for understanding in
precise detail the meaning of an expression in the language. It is the formal specification
of the language that is used when writing compilers and interpreters, and it allows us to
rigorously verify things about the language.

CHAPTER 2. OPERATIONAL SEMANTICS 5

2.2 BNF grammars and Syntax

Before getting into meaning we need to take a step back and first precisely define language
syntax. This is done with formal grammars. Backus-Naur Form (BNF) is a standard
grammar formalism for defining language syntax. You could well be familiar with BNF
since it is often taught in introductory courses, but if not we provide a brief overview.
All BNF grammars comprise terminals, nonterminals (aka syntactic categories), and
production rules. Terminals are traditionally identified using lower-case letters; non-
terminals are identified using upper-case letters. Production rules describe how non-
terminals are defined. The general form of production rules is:

(nonterminal) ::= (form 1) | - - - | (form n)

where each “form” above describes a particular language form — that is, a string of
terminals and non-terminals. A term in the language is a string of terminals which
matches the description of one of these rules (traditionally the first).

For example, consider the language Sheep. Let {S} be the set of nonterminals, {a, b}
be the set of terminals, and the grammar definition be:

S:u=bl Sa
Note that this is a recursive definition. Examples of terms in Sheep are
b, ba, baa, baaa, baaaa, . . .

That is, any string starting with the character b and followed by zero or more a characters
is a term in Sheep. The following are examples that are not terms in SHEEP:

e a: Terms in Sheep must start with a b.

e bbaaa: Sheep does not allow multiple b characters in a term.

e baah: h is not a terminal in Sheep.

e Saaa: S is a non-terminal in Sheep. Terms may not contain non-terminals.

Another way of expressing a grammar is by the use of a syntax diagram. Syntax
diagrams describe the grammar visually rather than in a textual form. For example, the
following is a syntax diagram for the language Sheep:

N gy
S—()

The above syntax diagram describes all terms of the Sheep language. To generate
a form of S, one starts at the left side of the diagram and moves until one reaches the
right. The rectangular nodes represent non-terminals while the rounded nodes represent
terminals. Upon reaching a non-terminal node, one must construct a term using that
non-terminal to proceed.

CHAPTER 2. OPERATIONAL SEMANTICS 6
As another example, consider the language Frog. Let {F, G} be the set of nontermi-
nals, {r,4,b,t} be the set of terminals, and the grammar definition be:

F == rF|iG
G == bG|bF |t

Note that this is a mutually recursive definition. Note also that each production rule
defines a syntactic category. Terms in FROG include:

ibit, ribbit, ribibibbbit . . .
The following terms are not terms in Frog:

e rbt: When a term in Frog starts with r, the following non-terminal is F. The
non-terminal F' may only be exapnded into rF or iG, neither of which start with
b. Thus, no string starting with b is a term in Frog.

e rabbit: a is not a terminal in Frog.
e rrrrrrF: F'is a non-terminal in Frog; terms may not contain non-terminals.

e bit: The only forms starting with b appear as part of the definition of G. As F' is
the first non-terminal defined, terms in Frog must match F' (which does not have
any forms starting with b).

The following syntax diagram describes Frog:

F —_—

2.2.1 Operational Semantics for Logic Expressions

In order to get a feel for what an operational semantics is and how it is defined, we will
now examine the operational semantics for a very simple language: propositional boolean
logic with no variables. The syntax of this language is as follows. An expression e is
recursively defined to consist of the values True and False, and the expressions e And e,
e Or e, e Implies e, and Not e.! This syntax is known as the concrete syntax,

Throughout the book we use syntax very similar to OCaml in our toy languages, but with the
convention of capitalizing keywords to avoid potential conflicts with the OCaml language.

CHAPTER 2. OPERATIONAL SEMANTICS 7

because it is the syntax that describes the textual representation of an expression in the
language. We can express it in a BNF grammar as follows:

e == wv|Not e|e And e|e Or e|e Implies e|(e) expressions
v == True |False values

The following is an equivalent syntax diagram:

e

N

o

) [-]

Lo
iy
Implies

EE @ E

® (¢

;

False

i

Note that the syntax above breaks tradition somewhat by using lower-case letters
for non-terminals. Terminals are printed in fixed-width font. The rationale for this is
consistency with the metavariables we will be using in operational semantics below and
will become clear shortly.

We can now discuss the operational semantics of the boolean language. Operational
semantics are written in the form of logic rules, which are written as a series of pre-
conditions above a horizontal line and the conclusion below it. For example, the logic
rule

Red(z) Shiny(z)
Apple(z)

(Apple Rule)

indicates that if a thing is red and shiny, then that thing is an apple. This is, of course, not
true; many red, shiny things exist which are not apples. Nonetheless, it is a valid logical
statement. In our work, we will be defining logical rules pertaining to a programming
language; as a result, we have control over the space in which the rules are constructed.
We need not necessarily concern ourselves with intuitive sense so long as the programming
language has a mathematical foundation.

Operational semantics rules discuss how pieces of code evaluate. For example, let us
consider the And rule. We may define the following rule for And:

And Rule (Try 1
(And Rule (Tty 1)) True And False = False

CHAPTER 2. OPERATIONAL SEMANTICS 8

This rule indicates that the boolean language code True And False evaluates to
False. The absence of any preconditions above the line means that no conditions must
be met; this operational semantics rule is always true. Rules with nothing above the line
are termed axioms since they have no preconditions and so the conclusion always holds.

As a rule, though, it isn’t very useful. It only evaluates a very specific program.
This rule does not describe how to evaluate the program True And True, for instance.
In order to generalize our rules to describe a full language and not just specific terms
within the language, we must make use of metavariables.

To maintain consistency with the above BNF grammar, we use metavariables starting
with e to represent expressions and metavariables starting with v to represent values.
We are now ready to make an attempt at describing every aspect of the And operator
using the following new rule:

And Rule (Try 2
(An ule (Try 2)) v1 And v = the logical and of v; and v

Using this rule, we can successfully evaluate True And False, True and True, and
so on. Note that we have used a textual description to indicate the value of the expression
v1 And wvo; this is permitted, although most rules in more complex languages will not
use such descriptions.

We very quickly encounter limitations in our approach, however. Consider the pro-
gram True And (False And True). If we tried to apply the above rule to that program,
we would have v; = True and v9 = (False And True). These two values cannot be ap-
plied to logical and as (False and True) is not a boolean value; it is an expression.
Our boolean language rule does not allow for cases in which the operands to And are
expressions. We therefore make another attempt at the rule:

e1 = V1 €2 = U2

And Rule (T
(An ule (Tty 3)) e1 And e; = the logical and of v; and wv9

This rule is almost precisely what we want; in fact, the rule itself is complete. Intu-
itively, this rule says that e; And ey evaluates to the logical and of the values represented
by e; and es. But consider again the program True And False, which we expect to
evaluate to False. We can see that e; = True and that e = False, but our evaluation
relation does not relate v1 or v9 to any value. This is because, strictly speaking, we do
not know that True = True.

Of course, we would like that to be the case and, since we are in the process of
defining the language, we can make it so. We simply need to declare it in an operational
semantics rule.

(Value Rule)

CHAPTER 2. OPERATIONAL SEMANTICS 9

The value rule above is an axiom declaring that any value always evaluates to itself.
This satisfies our requirement and allows us to make use of the And rule. Using this
formal logic approach, we can now prove that True And (False And True) = False
as follows:

False = False True = True
True = True False And True = False
True And (False And True) = False

One may read the above proof tree as an explanation as to why True And (False
And True) evaluates to False. We can choose to read that proof as follows: “True And
(False And True) evaluates to False by the And rule because we know True evaluates
to True, that False And True evaluates to False, and that the logical and of true and
false is false. We know that False And True evaluates to False by the And rule because
True evaluates to True, False evaluates to False, and the logical and of true and false
is false.”

An equivalent and similarly informal format for the above is:

True And (False And True) = False, because by the And rule
True = True, and
(False And True) = False, the latter because
True = True, and
False = False

The important thing to note about all three of these representations is that they are
describing a proof tree. The proof tree consists of nodes which represent the application
of logical rules with preconditions as their children. To complete our boolean language,
we define the = relation using a complete set of operational semantics rules:

(Value Rule)

v
e=v
Not Rul
(Not Rule) Not e = the negation of v
(And Rule) ‘A= n 27 b

e1 And es = the logical and of v; and v9

The rules for Or and Implies are left as an exercise to the reader (see Exercise 2.4).

These rules form a proof system as is found in mathematical logic. Logical rules
express incontrovertible logical truths. A proof of e = v amounts to constructing a
sequence of rule applications such that, for any given application of a rule, the items
above the line appeared earlier in the sequence and such that the final rule application
is e = v. A proof is structurally a tree, where each node is a rule, and the subtree rules
have conclusions which exactly match what the parent’s assumptions are. For a proof

CHAPTER 2. OPERATIONAL SEMANTICS 10

tree of e = v, the root rule has as its conclusion e = v. Note that all leaves of a proof
tree must be axioms. A tree with a non-axiom leaf is not a proof.

Notice how the above proof tree is expressing how this logic expression could be
computed. Proofs of e = v corresponds closely to how the execution of e produces the
value v as result. The only difference is that “execution” starts with e and produces the
v, whereas a proof tree describes a relation between e and v, not a function from e to v.

Lemma 2.1. The boolean language is deterministic: if e = v and e = v/, then v = v'.
Proof. By induction on the height of the proof tree. O

Lemma 2.2. The boolean language is normalizing: For all boolean expressions e, there
s some value v where e = v.

Proof. By induction on the size of e. O

When a proof e = v can be constructed for some program e, we say that e converges.
When no such proof exists, e diverges. Because the boolean language is normalizing, all
programs in that language are said to converge. Some languages (such as OCaml) are not
normalizing; there are syntactically legal programs for which no evaluation proof exists.
An example of a OCaml program which is divergent is let rec f x = f x in f 0;;.

2.2.2 Abstract Syntax

Our operational semantics rules have expressed the evaluation relation in terms of con-
crete syntax using metavariables. Operators, such as the infix operator And, have ap-
peared in textual format. This is a good representation for humans to read because it
appeals to our intuition; it is not, however, an ideal computational representation. We
read True And False as “perform a logical and with operands True and False”. We
read True And (False And True) as “perform a logical and with operands False and
True and then perform a logical and with operands True and the result of the last oper-
ation.” If we are to write programs (such as interpreters) to work with our language, we
need a representation which more accurately describes how we think about the program.

The abstract syntax of a language is such a representation. A term in an abstract
syntax is represented as a syntax tree in which each operation to be performed is a
node and each operand to that operation is a child of that node. In order to represent
abstract syntax trees for the boolean language, we might use the following OCaml data

type:

type boolexp =
True | False |
Not of boolexp |
And of boolexp * boolexp |
Or of boolexp * boolexp |
Implies of boolexp * boolexp;;

To understand how the abstract and concrete syntax relate, consider the following
examples:

CHAPTER 2. OPERATIONAL SEMANTICS 11

Example 2.1.

Concrete:
True
Abstract:
True

Example 2.2.

Concrete:
True And False @

And(True, False)

Example 2.3.

Concrete: @

(True And False) Implies

((Not True) And False) @ @

Implies(And(True,False) ,

And (Not (True) ,False)) @

There is a simple and direct relationship between the concrete syntax of a language
and the abstract syntax. As mentioned above, the abstract syntax is a form which more
directly represents the operations being performed whereas the concrete syntax is the
form in which the operations are actually expressed. Part of the process of compiling
or interpreting a program is to translate the concrete syntax term (source file) into an
abstract syntax term (AST) in order to manipulate it. We define a relation [c¢] = a
to map concrete syntax form c to abstract syntax form a (in this case for the boolean
language):

[True] = True
[False] = False
[Not e] = Not(e)
[er And es] = And([e1], [e2])
[e1 Or ea] = Or(Jei], [e2])
Jer Implies e3] = Implies([er], [ez])

For example, this relation indicates the following:

CHAPTER 2. OPERATIONAL SEMANTICS 12

[(True And False) Implies ((Not True) And False)]

= Implies([True And False], [(Not True) And False])
Implies(And([True], [False]), And([Not True], [False]))
= Implies(And(True, False), And(Not([True]), False))
= Implies(And(True, False), And(Not(True), False))

The grammar we give is ambiguous in that there are multiple parse trees for some
concrete expressions, but we implicitly assume the usual operator precedence applies
with And binding tighter than Or binding tighter than Implies. Consider the following
examples:

Example 2.4.

Concrete: @
True Or True And False

Abstract:
And (0r (True,True) ,False)

True = True True = True
True Or True = True False = False
True Or True And False = False

Example 2.5.

Concrete: @
True Or (True And False)
Abstract:

Or (True,And(True,False)) @ @

True = True False = False
True = True True And False = False
True Or (True And False) = True

The expression in example 2.4 will evaluate to False because one must evaluate the Or
operation first and then evaluate the And operation using the result. Example 2.5, on the
other hand, performs the operations in the opposite order. Note that in both examples,
though, the parentheses themselves are no longer overtly present in the abstract syntax.
This is because they are implicitly represented in the structure of the AST; that is, the
AST in example 2.5 would not have the shape that it has if the parentheses were not
present in the concrete syntax of the form.

CHAPTER 2. OPERATIONAL SEMANTICS 13

In short, parentheses merely change how expressions are grouped. In example 2.5, the
only rule we can match to the entire expression is the Or rule; the And rule obviously can’t
match because the left parentheses would be part of e; while the right parenthesis would
be part of ea (and expressions with unmatched parentheses make no sense). Similarly but
less obviously, example 2.4 can only match the And rule; the associativity implicitly forces
the Or rule to happen first, giving the And operator that entire expression to evaluate.
This distinction is clearly and correspondingly represented in the ASTs of the examples,
a fact which is key to the applicability of operational semantics.

2.2.3 Operational Semantics and Interpreters

As alluded above, there is a very close relationship between an operational semantics
and an actual interpreter written in OCaml. Given an operational semantics defined via
the relation =, there is a corresponding (OCaml) evaluator function eval.

Definition 2.2 (Faithful Implementation). A (OCaml) interpreter function eval faith-
fully implements an operational semantics e = v if:
e = v if and only if eval([e]) returns result [v].

To demonstrate this relationship, we will demonstrate the creation of an eval function
in OCaml. Our first draft of the function will, for sake of simplicity, only consist of the
And rule and the value rule:

let eval exp =
match exp with
| True -> True
| False -> False
| And(expO,expl) ->
begin
match (expO, expl) with
| (True,True) -> True
| (_,False) -> False
| (False,_) -> False
end

At first glance, this function appears to have the behavior we desire. True evaluates to
True, False to False, and True And False to False. This is not, however, a complete
implementation.

To find out why, consider the concrete term True And True And True. As we have
seen before, this translates to the abstract term And (And (True,True) ,True). When the
eval function receives that value as its parameter, it matches the value to the case And
and defines exp0 and expl as And (True,True) and True, respectively. We then enter the
inner match, and this match fails! None of the terms can match the tuple (exp0,expl)
because exp0O is an entire expression and not just a value, as the match expression is
expecting.

Looking back at our attempts to write the And rule above, we can see why this eval
function is flawed: this version of the function does not consider the operands of And
to be expressions - it expects them to be values. We can see, then, that the And clause

CHAPTER 2. OPERATIONAL SEMANTICS 14

in our function is a faithful implementation of Try 2 of our And rule, a rule which we
rejected precisely because it could not handle nested expressions.

How can we correct this problem? We are trying to write a faithful implementation of
our final And rule, which relies on the evaluation of the And rule’s operands. Thus, in our
implementation, we must evaluate those operands; we make this possible by declaring
our evaluation function to be recursive.

let rec eval exp =
match exp with
| True -> True
| False -> False
| And (expO,expl) ->
begin
match (eval expO, eval expl) with
| (True,True) -> True
| (_,False) -> False
| (False,_) -> False
end

Observe that, in the above code, we have changed very little. We modified the eval
function to be recursive. We also added a call to eval for each of the operands to the
And operation. That call alone is sufficient to fix the problem; the process of evaluating
those arguments represents the e; = v; and es = vo preconditions on the And rule, while
the use of the resultings values in the tuple causes the match to be against v; and wve
rather than e; and es. The above code is a faithful implementation of the value rule and
the And rule.

We can now complete the boolean language interpreter by continuing the eval fuction
in the same form:

let rec eval exp =
match exp with
True -> True
| False -> False
| Not(expO) -> (match eval exp0O with
True -> False
| False -> True)
| And (expO,expl) -> (match (eval exp0O, eval expl) with
(True,True) -> True
| (_,False) -> False
| (False,_) -> False)

| Or(expO,expl) -> (match (eval expO, eval expl) with
(False ,False) -> False
| (_,True) -> True
| (True,_) -> True)

| Implies (expO,expl) -> (match (eval exp0O, eval expl) with
(False,_) -> True

CHAPTER 2. OPERATIONAL SEMANTICS 15

| (True,True) -> True
| (True,False) -> False)

The only difference between the operational semantics and the interpreter is that
the interpreter is a function. We start with the bottom-left expression in a rule, use
the interpreter to recursively produce the value(s) above the line in the rule, and finally
compute and return the value below the line in the rule.

Note that the boolean language interpreter above faithfully implements its opera-
tional semantics: e = v if and only if eval([e]) returns [v] as result. We will go back
and forth between these two forms throughout the book. The operational semantics
form is used because it is independent of any particular programming language. The
interpreter form is useful because we can interpret real programs for nontrivial numbers
of steps, something that is difficult to do “on paper” with an operational semantics.

Definition 2.3 (Metacircular Interpreter). A metacircular interpreter is an inter-
preter for (possibly a subset of) a language x that is written in language x.

Metacircular interpreters give you some idea of how a language works, but suffer
from the non-foundational problems implied in Exercise 2.5. A metacircular interpreter
for Lisp (that is, a Lisp interpreter written in Lisp) is a classic programming language
theory exercise.

2.3 The Fb» Programming Language

Now that we have seen how to define and understand operational semantics, we will
begin to study our first programming language: Fb. Fb is a shunk (flattened) pure func-
tional programming language. 2 It has integers, booleans, and higher-order anonymous
functions. In most ways Fb is much weaker than OCaml: there are no reals, lists, types,
modules, state, or exceptions.

Fb is untyped, and in this way is it actually more powerful than OCaml. It is
possible to write some programs in Fb that produce no runtime errors, but which will
not typecheck in OCaml. For instance, our encoding of recursion in Section 2.3.5 is not
typeable in OCaml. Type systems are discussed in Chapter 6. Because there are no
types, runtime errors can occur in Fb, such as the application (5 3).

Although very simplistic, Fb is still Turing-complete. The concept of Turing-
completeness has been defined in numerous equivalent ways. One such definition is as
follows:

Definition 2.4 (Turing Completeness). A computational model is Turing-complete if
every partial recursive function can be expressed within it.

This definition, of course, requires a definition of partial recursive functions (also
known as computable functions). Without going into an extensive discussion of founda-
tional material, the following somewhat informal definition will suffice:

2 Also, any readers familiar with the programming language Cf as well as basic music theory should
find this at least a bit humorous.

CHAPTER 2. OPERATIONAL SEMANTICS 16

Definition 2.5 (Partial Recursive Function). A function is a partial recursive function
if an algorithm exists to calculate it which has the following properties:

o The algorithm must have as its input a finite number of arguments.
e The algorithm must consist of a finite number of steps.

o Ifthe algorithm is given arguments for which the function is defined, it must produce
the correct answer within a finite amount of time.

o If the algorithm is given arguments for which the function is not defined, it must
either produce a clear error or otherwise not terminate. (That is, it must not appear
to have produced an incorrect value for the function if no such value is defined.)

The above definition of a partial recursive function is a mathematical one and thus
does not concern itself with execution-specific details such as storage space or practical
execution time. No constraints are placed against the amount of memory a computer
might need to evaluate the function, the range of the arguments, or that the function
terminate before the heat death of the universe (so long as it would eventually terminate
for all inputs for which the function is defined).

The practical significance of Turing-completeness is this: there is no computation
that could be expressed in another deterministic programming language that cannot be
expressed in Fb.? In fact, Fb is even Turing-complete without numbers or booleans. This
language, one with only functions and application, is known as the pure lambda-calculus
and is discussed briefly in Section 2.4.4. No deterministic programming language can
compute more than the partial recursive functions.

2.3.1 Fb Syntax

We will take the same approach in defining Fb as we did in defining the boolean language
above. We start by describing the grammar of the Fb language to define its concrete
syntax; the abstract syntax is deferred until Section 2.3.7. We can define the grammar
of Fb using the following BNF":

3This does not guarantee that the Fb representation will be pleasant. Programs written in Fb to
perform even fairly simplistic computations such as determining if one number is less than another are
excruciating, as we will see shortly.

CHAPTER 2. OPERATIONAL SEMANTICS 17

x == (a|b]|...|2z) lower-case letters
(A|B|...|Z capital letters
la|bl|...|z lower-case letters
|[O|1]...]9 digits
|2])% other characters

vou= T variable values
| True | False boolean values
loj1]|-1]2|-2]... integer values
| Function =z — e function values

e u= v value expressions
| (e) parenthesized expressions
|e And e |e Or e|Not e boolean expressions
le +ele-ele=¢e] numerical expression
lee application expression
| If e Then e Else e conditional expressions
|Let z = e In e let expression

|Let Rec fa = e In e recursive let expression

Note that in accordance with the above BNF, we will be using metavariables e, v,
and x to represent expressions, values, and variables respectively. Note the last point:
the metavariable = refers to an arbitrary Fb variable, not necessarily to the Fb variable
X.

Associativity in Fb works in a fashion very similar to OCaml. Function application,
for instance, is left associative, meaning that a b ¢ has the same meaning as (a b) c.
As with any language, this associativity is significant in that it affects how source code
is parsed into an AST.

2.3.2 Variable Substitution

The main feature of Fb is higher-order functions, which also introduces variables. Recall
that programs are computed by rewriting them:

(Function x -> x + 2)(3 + 2 + 5) = 12

because
3 + 2 + 5 = 10
because
3+ 2 =5
and
5 + 5 = 10
and

10 + 2 = 12

Note how in this example, the argument is substituted for the variable in the body—this
gives us a rewriting interpreter. In other words, Fb functions compute by substituting
the actual argument for the for parameter; for example,

CHAPTER 2. OPERATIONAL SEMANTICS 18

(Function x -> x + 1) 2

will compute by substituting 2 for z in the function’s body z+1, i.e. by computing 2+ 1.
This is not a very efficient method of computing, but it is a very simple and accurate
description method, and that is what operational semantics is all about — describing
clearly and unambiguously how programs are to compute.

Bound and Free Occurrences of Variables We need to be careful about how
variable substitution is defined. For instance,

(Function x -> Function x -> x) 3

should not evaluate to Function x -> 3 since the inner x is bound by the inner param-
eter. To correctly formalize this notion, we need to make the following definitions.

Definition 2.6 (Variable Occurrence). A variable use x occurs in e if x appears some-
where in e. Note we refer only to variable uses, not definitions.

Definition 2.7 (Bound Occurrence). Any occurrences of variable x in the expression

Function x -> e

are bound, that is, any free occurrences of x in e are bound occurrences in this expression.
Similarly, in the expression

Let Rec fx =e1 In e

occurrences of f and x are bound in e; and occurrences of f are bound in ea. Note that
x 18 not bound in eq, but only in ey, the body of the function.

Definition 2.8 (Free Occurrence). A variable = occurs free in e if it has an occurrence
in e which is not a bound occurrence.

Let’s look at a few examples of bound versus free variable occurrences.

Example 2.6.
Function xl/—>\x + 1

x is bound in the body of this function.

Example 2.7.

Function x -> Function y > x +y + z

x and y are bound in the body of this function. z is free.

CHAPTER 2. OPERATIONAL SEMANTICS 19

Example 2.8.
Let z = 5 In Function x -> Function y -> x + y + z

X, v, and z are all bound in the body of this function. x and y are bound by
their respective function declarations, and z is bound by the Let statement. Note
that, while Fb contains Let as syntax, it can be defined as a macro (see Section 2.3.4
below). Binding rules work similarly for Functions and Let statements.

Example 2.9.
Function x -> Function x -> x + X

x is bound in the body of this function.
to the inner variable x.

Note that both x usages are bound

Definition 2.9 (Closed Expression). An expression e is closed if it contains no free
variable occurrences. All programs we execute are closed (no link-time errors) — non-
closed programs don’t diverge, we can’t even contemplate executing them because they are
not in the domain of the evaluation relation.

Of the examples above, Examples 2.6, 2.8, and 2.9 are closed expressions. Example
2.7 is not a closed expression.

Now that we have an understanding of bound and free variables, we can give a formal
definition of variable substitution.

Definition 2.10 (Variable Substitution). The wariable substitution of x for €' in e,
denoted ele’ /], is the expression resulting from the operation of replacing all free occur-
rences of x in e with €. For now, we assume that €' is a closed expression.

Here is an equivalent inductive definition of substitution:

zv/z] = v

dv/x] = o x £
(Function x — e)[v/x] = (Function x — e)
(Function 2/ — e)[v/x] = (Function z/ — e[v/z]) x#£a
(Let x = €1 Ineg)[v/x] = Let x =ejfv/z] In ey
(Let 2’ = €1 Ineg)[v/z] = Let 2’ =e1[v/z] In egv/z] x # 2

nlv/z] = nforneZ

True[v/z] = True
False[v/xz] = False
(er+ea)lofe] = erfofa] +ealv/a
(e1 And e9)[v/x] = ei[v/x] And es]v/z]

For example, let us consider a simple application of a function: (Function x -> x +
1) 2. We know that, to evaluate this function, we simply replace all instances of x in
the body with 2. This is written (x + 1) [2/x]. Given the above definition, we can
conclude that the result must be 3.

CHAPTER 2. OPERATIONAL SEMANTICS 20

While this may not seem like an illuminating realization, the fact that this is mathe-
matically discernable gives us a starting point for more complex subsitutions. Consider
the following example.

Example 2.10.

Expression:
(Function x -> Function y -> (x + x + y)) 5

Substitution:

(Function y -> (x + x + y))[5/%]
(Function y -> (x + x + y)[5/x])
Function y -> (x[5/x| + x[5/x] + y[5/x])
Function y -> (5 + 5 + y)

a~-conversion

In Example 2.9, we saw that it is possible for two variables to share the same name.
The variables themselves are, of course, distinct and follow the same rules of scope in
Fb as they do in OCaml. But reading expressions which make frequent use of the same
variable name for different variables can be very disorienting. For example, consider the
following expression.

Let Rec f x =
If x = 1 Then
(Function £ -> f (x - 1)) (Function x -> x)
Else
f (x - 1)
In £ 100

How does this expression evaluate? It is a bit difficult to tell simply by looking at it
because of the tricky bindings. We can make it much easier to understand by using
different names. «-conversion is the process of replacing a variable definition and all
occurrences bound to it with a variable of a different name.

Example 2.11.
Function x -> x + 1
becomes

Function z—l/>\z + 1

Example 2.11 shows a simple case in which x is substituted for z. For cases in which
the same variable name is used numerous times, we can use the same approach. Consider
Example 2.12 in which the inner variable x is a-converted to z.

Example 2.12.

Function x -> Function m
becomes

Function x -> Function m

Similarly, we could rename the outer variable to z as shown in Example 2.13. Note
that in this case, the occurrence of x is not changed, as it is bound by the inner variable
and not the outer one.

CHAPTER 2. OPERATIONAL SEMANTICS 21

Example 2.13.

Function (X) -> Function x -> x
becomes

Function (z) -> Function x -> x

Let’s figure out what variable occurrences are bound to which function in our previous
confusing function and rewrite the function in a clearer way by using a-conversion. One
possible result is as follows:

Let Rec f x =
If x = 1 Then
(Function z -> z (x - 1)) (Function y -> y)
Else
f(x-1)
In £ 100

Now it’s much easier to understand what is happening. If the function f is applied
to an integer which is not 1, it merely applies itself again to the argument which is one
less than the one it received. Since we are evaluating £ 100, that results in £ 99, which
in turn evaluates £ 98, and so on. Eventually, £ 1 is evaluted.

When f 1 is evaluated, we explore the other branch of the If expression. We know
that x is 1 at this point, so we can see that the evaluated expression is (Function z ->
z 0) (Function y -> y). Using substitution gives us (Function y -> y) 0, which in
turn gives us 0. So we can conclude that the expression above will evaluate to 0.

Observe, however, that we did not formally prove this; so far, we have been treating
substitution and other operations in a cavalier fashion. In order to create a formal proof,
we need a set of operational semantics which dictates how evaluation works in Fb. Section
2.3.3 walks through the process of creating an operational semantics for the Fb language
and gives us the tools needed to prove what we concluded above.

2.3.3 Operational Semantics for Fb

We are now ready to begin defining operational semantics for Fb. For the same reasons
as in our boolean language, we will need a rule which relates values to values in =:

(Value Rule)

We can also define boolean operations for Fb in the same way as we did for the boolean
language above. Note, however, that not all values in Fb are booleans. Fortunately, our
definition of the rules addresses this for us, as there is (for example) no logical and of
the values 5 and 3. That is, we know that these rule only apply to Fb boolean values
because they use operations which are only defined for Fb boolean values.

CHAPTER 2. OPERATIONAL SEMANTICS 22

e=v
Not Rul
(Not Rule) Not e = the negation of v
(And Rule) I A

e1 And e; = the logical and of v; and v

We can also define operations over integers in much the same way. For sake of clarity,
we will explicitly restrict these rules such that they operate only on expressions which
evaluate to integers.

e1 = v ey = v9 where v1,v9 € Z

e1 + ey = the integer sum of v; and v

e1 = v1, €2 = vy where vi,v9 €7Z

(- Rule)

e1 - eg = the integer difference of v; and vo

As with the boolean rules, observe that these rules allow the = relation to be ap-
plied recursively: 5 + (4 - 3) can be evaluated using the + rule because 4 - 3 can be
evaluated using the - rule first.

These rules allow us to write Fb programs containing boolean expressions or Fb pro-
grams containing integer expressions, but we currently have no way to combine the two.
There are two mechanisms we use to mix the two in a program: conditional expressions
and comparison operators. The only comparison operator in Fb is the = operator, which
compares the values of integers. We define the = rule as follows.

el = v1, €2 = vy where vi,vo € Z

= Rule
() e1 = ey = True if v and vy are identical, else False

Note that the = rule is defined only where v; and ve are integers. Due to this
constraint, the expression True = True is not evaluatable in Fb. This is, of course, a
matter of choice; as a language designer, one may choose to remove that constraint and
allow boolean values to be compared directly. To formalize this, however, a change to
the rules would be required. A faithful implementation of Fb using the above = rule is
required to reject the expression True = True.

An intuitive definition of a conditional expression is that it evalutes to the value of
one expression if the boolean is true and the value of the other expression if the boolean
is false. While this is true, the particulars of how this is expressed in the rule are vital.
Let us consider the following flawed attempt at a conditional expression rule:

€1 = V1 €2 = V9 €3 =13

(Flawed If Rule) . - -
If e; Then ey Else e3 = vy if vy is True, v3 otherwise

CHAPTER 2. OPERATIONAL SEMANTICS 23

It seems that this rule allows us to evaluate many of the conditional expressions we
want to evaluate. But let us consider this expression:

If True Then 0 Else (True + True)

If we attempted to apply the above rule to the previous expression, we would find that
the precondition e3 = v3 would not hold; there is no rule which can relate True + True =
v for any v since the + rule only applies to integers. Nonetheless, we want the expression
to evaluate to 0. So how can we achieve this result?

In this case, we have no choice but to write two different rules with distinct pre-
conditions. We can capture all of the relationships in the previous rule and yet allow
expressions such as the previous to evaluate by using the following two rules:

e1 = True, es = v9

(If True Rule)
If e; Then ey Else e3 = v9

e1 = False, e3 = v3

(If False Rule)
If e; Then ey Else e3 = v3

Again, the key difference between these two rules is that they have different sets of
preconditions. Note that the If True rule does not evaluate ez, nor does the If False
rule evaluate es. This allows the untraveled logic paths to contain unevaluatable expres-
sions without necessarily preventing the expression containing them from evaluating.

Application

We are now ready to approach one of the most difficult Fb rules: application. How can
we formalize the evaluation of an expression like (Function x -> x + 1) (56 + 2)7
We saw in Section 2.3.2 that we can evaluate a function application by using variable
substitution. As we have a mathematical definition for the substitution operation, we
can base our function application rule around it.

Suppose we wish to evaluate the above expression. We can view application in two
parts: the function being applied and the argument to the function. We wish to know to
what the expression evaluates; thus, we are trying to establish that e;es = v for some v.

Applicati le (Part 1 _
(Application Rule (Part 1)) p—

In our boolean operations, we needed to evaluate the arguments before attempting
an operation over them (in order to allow recursive expressions). The same is true of our
application rule; in (Function x -> x + 1) (5 + 2), we must evaluate 5 + 2 before
it can be used as an argument.* We must do likewise with the function we are applying.

4 Actually, some languages would perform substitution before evaluating the expression, but Fb and
most traditional languages do not. Discussion of this approach is handled in Section 2.3.6.

CHAPTER 2. OPERATIONAL SEMANTICS 24

€] = V1 €3 = VU ?

Application Rule (Part 2
(Application Rule (Part 2)) p—

We obviously aren’t finished, though, as we still don’t have any preconditions which
allow us to relate v to something. Additionally, we know we will need to use variable
substitution, but we have no metavariables representing Fb variables in the above rule.
We can fix this by reconsidering how we evaluate the first argument; we know that the
application rule only works when applying functions. In restricting our rule to applying
functions, we can name some metavariables to describe the function’s contents.

e; = Function ¢ -> e ey = vy 7

Application Rule (Part 3
(pp1ca10H ue(al")) e1 e =0

In the above rule, x is the metavariable representing the function’s variable while
e represents the function’s body. Now that we have this information, we can define
function application in terms of variable substitution. When we apply Function x ->
x + 1 to a value such as 7, we wish to replace all instances of x, the function’s variable,
in the function’s body with 7, the provided argument. Formally,

= F ti -> = =
(Application Rule) a unction e _ex=>uvy efnp/r]=v

€1 €y = U

Fb Recursion

We now have a very complete set of rules for the Fb language. We do not, however,
have a rule for Let Rec. As we will see, Let Rec is not actually necessary in basic Fb;
it is possible to build recursion out of the rules we already have. Later, however, we will
create variants of Fb with type systems in which it will be impossible for that approach
to recursion to work. For that reason as well as our immediate convenience, we will
define the Let Rec rule now.

Again, we start with an iterative approach. We know that we want to be able to eval-
uate the Let Rec expression, so we provide metavariables to represent the components
of the expression itself.

(Recursive Application Rule (Part 1))
?

Let Rec fx = e In exg =0

Let us consider what we wish to accomplish. Consider for a moment a recursive
approach to the summation of the numbers between 1 and 5:

CHAPTER 2. OPERATIONAL SEMANTICS 25

Let Rec f x =
If x = 1 Then
1
Else
f(x-1) +x
In £ 5

If we focus on the last line (In £ 5), we can see that we want the body of the
recursive function to be applied to the value 5. We can write our rule accordingly by
replacing £ with the function’s body. We must make sure to use the same metavariable
to represent the function’s argument in order to allow the new function body’s variable
to be captured. We reach the following rule.

(Recursive Application Rule (Part 2))

ea[(Function = -> e1)/f] = v
Let Rec fz = e In es =0

We can test our new rule by applying it to our recursive summation above.

777

f (5-1) =>v' 5=5
5 = 1 = False f (6-1) + 5=
Function x ->.-- = Function x ->--- 5=5 If 5 =1 Then 1 Else f (5-1) + 5= v
(Function x -> If x = 1 Then 1 Else f (x-1) + x) 5=
Let Rec f x = If x = 1 Then 1 Else f (x-1) + x In f 5=

As foreshadowed by its label above, our recursion rule is not yet complete. When we
reach the evaluation of £ (5-1), we are at a loss; f is not bound. Without a binding for
f, we have no way of repeating the recursion.

In addition to replacing the invocation of f with function application in es, we need
to ensure that any occurrences of f in the body of the function itself are bound. To
what do we bind them? We could try to replace them with function applications as
well, but this leads us down a rabbit hole; each function application would require yet
another replacement. We can, however, replace applications of f in e; with recursive
applications of f by reintroducing the Let Rec syntax. This leads us to the following
application rule:

(Recursive Application Rule (Part 3))

ez[Function = -> ej[(Let Rec fz =e; In f)/f]/fl="v
Let Rec fx = e In exg = v

While this makes a certain measure of sense, it isn’t quite correct. In Section 2.3.2,
we saw that substitution must replace a variable with a wvalue, while the Let Rec term

CHAPTER 2. OPERATIONAL SEMANTICS 26

above is an expression. Fortunately, we have functions as values; thus, we can put the
expression inside of a function and ensure that we call it with the appropriate argument.

(Recursive Application Rule)

eg[Function = -> ej[(Function x -> Let Rec fxz = e In f x)/f]/f] = v
Let Rec fx = e In exg =0

Now, instead of encountering £ (5-1) when we evaluate the summation example, we
encounter Let Rec £ x = If x = 1 Then 1 Else f (x-1) + x In f (5-1). Thisal-
lows us to recurse back into the Let Rec rule. Eventually, we may reach a branch which
does not evaluate the Else side of the conditional expression, in which case that Let
Rec is not expanded (allowing us to terminate). Each application of the rule effectively
“unrolls” one level of recursion.

In summary, we have the following operational semantics for Fb (excluding some
repetetive rules such as the - rule):

(Value Rule)

v
e=v

(Not Rule) :

Not e = the negation of v
(And Rule) S I A

e1 And es = the logical and of v; and wv9

el = v1, €2 = vy where vi,vo € Z
(+ Rule) 1 1 2' 2 1,02
e1 + eg = the integer sum of v; and v
e = v eo = v9 where vy, vo € Z

e1 = ey = True if v; and vy are identical, else False

e1 = True, eg = 12

(If True Rule)
If e; Then ey Else e3 = v9

e1 = False, e3=w
(If False Rule) ! 3

If e; Then ey Else e3 = v3

e; = Function = -> e, ey = v, e[va/x|=v

Applicati 1
(Application Rule) P—

e1 = v esvi/z] = vo
Let x =e1 In ey = vy

(Let Rule)

(Let Rec)

eg[Function = -> ej[(Function x -> Let Rec fx = e In f z)/f]/f]=v
Let Rec fx = e In exg = v

CHAPTER 2. OPERATIONAL SEMANTICS 27

Let us consider a few examples of proof trees using the Fb operational semantics.

Example 2.14.

Expression:
If 3 =4 Then 5 Else 4 + 2

Proof:
3=3 4=4 4=4 2=2
3 = 4 = False 4 +2=6

If 3 =4 Then 5 Else 4 + 2=6

Example 2.15.

Expression:
(Function x -> If 3 = x Then 5 Else x + 2) 4

Proof:
by Example 2.14

Function x ->-.- = Function x ->--- 4=4 1If 3 =4 Then 5 Else 4 + 2=6
(Function x -> If 3 = x Then 5 Else x + 2) 4 =6

Example 2.16.

Expression:
(Function f -> Function x -> f(f x)) (Function y -> y - 1) 4

Proof:
Due to the size of the proof, it is broken into multiple parts. We use v = % as an abbreviation
for v =v (when v is lengthy) for brevity.

Part 1:
Function f -> Function x -> f(f x) = % Function y -> y - 1= % (Function x -> (Function y -> y - 1) ((Function y -> y - 1) x)) = %
(Function f -> Function x -> £(f x)) (Function y —> y - 1) = (Function x -> (Function y -> y - 1) ((Function y > y - 1) x))
Part 2:
4=4 1=1
Function y > y - 1> % 4—=4 4-1=>3 323 151
Function y >y - 1= % ((Function y >y - 1) 4) =3 3-1=2
(by part 1) 4=4 (Function y -> y - 1) ((Function y ->y - 1) 4) =2
(Function f -> Function x -> f(f(x))) (Function y -> y - 1) 4=2

Interact with Fb. Tracing through recursive evaluations is difficult, and there-
<= fore the reader should invest some time in exploring the semantics of Let Rec.
A good way to do this is by using the Fb interpreter. Try evaluating the expression we
looked at above:

Let Rec f x =
If x =1 Then 1 Else x + f (x - 1)
In £ 3;;
=> 6

Another interesting experiment is to evaluate a recursive function without applying
it. Notice that the result is equivalent to a single application of the Let Rec rule. This
is a good way to see how the “unwrapping” actually takes place:

CHAPTER 2. OPERATIONAL SEMANTICS 28

Let Rec f x =
If x =1 Then 1 Else x + f (x - 1)
In f;;
==> Function x ->
If x = 1 Then
1
Else
x + (Let Rec f x =
If x = 1 Then

1
Else
x+ (£) (x-1)
In
) (x -1

As we mentioned before, one of the main benefits of defining an operational semantics
for a language is that we can rigorously verify claims about that language. Now that we
have defined the operational semantics for Fb, we can prove a few things about it.

Lemma 2.3. Fb is deterministic.
Proof. By inspection of the rules, at most one rule can apply at any time. O
Lemma 2.4. Fb is not normalizing.

Proof. To show that a language is not normalizing, we simply show that there is some e
such that there is no v with e = v. Let e be (Function x -> x x) (Function x -> x
x). e # v for any v. Thus, Fb is not normalizing. O

The expression in this proof is a very interesting one which we will examine in more
detail in Section 2.3.5. It does not evaluate to a value because each step in its evaluation
produces itself as a precondition. This is roughly analogous to trying to prove proposition
A by using A as a given.

In this case, the expression does not evaluate because it never runs out of work to do.
This is not the only kind of non-normalizing expression which appears in Fb; another
kind consists of those expressions for which no evaluation rule applies. For example, (4
3) is a simpler expression that is non-normalizing. No rule exists to