Create the world's best Semantic Music Discovery Engine

Create the world's best

Discovery Engine

Create the world's best

Music Discovery Engine

Create the world's best **Semantic Music Discovery Engine**

Meerkat

I Made A Lovers Prayer by Gillian Welch

Blue Diamond Mines by The Johnson Mountain Boys

Whiskey Lullaby by Alison Krauss

Tramp On The Street by Dian & The Greenbriar Boys

Count Me In by Deana Carter

'Whiskey Lullaby' Tags:

folk influences

country women

chicks

country

easy listening

female-vocalists

Station Tags:

Add Tag

old time country X

bluegrass X

female vocals X

Problem:

Music Annotaation is Hard

Music **IR Basics** Songs **Music Index** Results S1 S2 S3 ... Query 'blues' S1 S3 sad blues Go `sad' S64 'male' `fast'

1. Human Survey

CAL500 [SIGIR 07]

- 174 tags
- 55 undergrads, 120 hours
- 500 songs annotated by 3+ people

2. Social Tagging

3. Mining Web Documents [Knees 07]

4. Content-based AutoTagging [SIGIR 07]

Learn a probabilistic model that captures a relationship between **audio content** and **tags**.

4. Content-Based AutoTagging

Supervised Multi-class Labeling model [SIGIR 07]

- One Gaussian Mixture Model (GMM) per tag
- Mixture Hierarchies EM Algorithm

Notes:

- Developed for image annotation [Carneiro 06]
- Scalable and Parallelizable
- Top system on 2008 MIREX Autotagging Task

Comparing Data Sources

Groundtruth

• **CAL500** - {72 tags} x {500 songs} binary labels

Approaches

- 1. Social Tags Last.fm
- 2. Web Autotags Site-specific relevance scoring
- 3. Audio Autotags SML model w/ MFCCs

Comparing Data Sources

For each 3 approach:

For each 72 tag:

- 1. Rank songs
- 2. Calculate Area under the ROC curve (AUC)
 - 0.5 random ranking (Bad)
 - 1.0 perfect ranking (Good)

Calculate mean AUC

Constructing a Music Index

Approach	AUC	Best for # Tags
Social Tags	0.623	9
Text Mining Web Documents	0.625	12
Content-Based Autotagging	0.731	51
Single Source Oracle	0.756	

Combining Data Sources

Combining Data Sources

Approaches

- 1. Calibrated Score Averaging [Zadrozny 02]
- 2. RankBoost [Freund 03]
- 3. Kernel Combination SVM- [Lanckriet 04]

1. Calibrated Score Averaging

1. Calibrated Score Averaging

Autotag Score

Web Document Score

Social Tag Score

2. RankBoost [Freund 03]

- Greedy iterative algorithm:
 - pick weak ranker & assigns weight based on loss function
- Strong ranker is a weighted voted by weak rankers

2. RankBoost

Weak Ranker = (Source, Threshold, Weight)

AutoTags			
id	Score	Label	
8	0.82	1 ′	W ₃
2	0.77	0	, 0
13	0.76	1	
7	0.69	1	W ₁
3	0.68	0	10

Web Docs			
id	Score	Label	
7	19	1	
14	18	0	
9	16	1	
11	16	0	
21	15	1 /	W ₄
		•	, 0

Social Tags			
id	Score	Label	
13	100	1	
4	95	1	W ₂
17	95	0	W ₂
11	89	0	
8	82	1	

2. RankBoost

Strong Ranker: f(s)

Test Song
$$\mathbf{s} = [\mathbf{s}_{\text{audio}}, \mathbf{s}_{\text{web}}, \mathbf{s}_{\text{social}}]$$

$$f(s) = w_1 I(s_{audio} > t_1) + w_2 I(s_{social} > t_2) + ...$$

3. Kernel Combo SVM

- 1. Compute **kernel matrix** for each data source.
 - 3 Song X Song similarity matrices

$$W_1 \begin{bmatrix} K_{audio} \end{bmatrix} + W_2 \begin{bmatrix} K_{web} \end{bmatrix} + W_3 \begin{bmatrix} K_{social} \end{bmatrix} = \begin{bmatrix} K_{combo} \end{bmatrix}$$

- Learn an optimal linear combination of the kernel matrices using convex optimization
 - Produces single kernel matrix for SVM
- 3. Rank songs based on score from SVM
 - positive distance from separating hyperplane.

Summary

Approach	AUC
Single Source Oracle	0.756
Kernel Combination	0.756
RankBoost	0.760
Calibrated Score Averaging	0.763

Summary

Data Sources provide complementary information

- Sparse Social Context
- Dense Audio Content

Calibrated Score Averaging & RankBoost work well

 Good performance, easy to implement, easy to tune, quick to train & evaluate

Research Challenges

1. Combine Music Information Sources

Games, Social Networks, Popularity Info

2. Improving Autotagging

Discriminative Approaches [Mandel 08, Eck 07]

3. Personalization

- Demographic Groups
- Psychographic Groups
- Individual Preference
- Emotional states of Individual

What's on tap

1. Big new data set

- 10,000 songs
- Acoustic, Genre, Social Tags

2. Herd-it Game [HCOMP 09]

- http://apps.facebook.com/herd-it
- Analyzing Game Data

3. New Everything

- Autotagging Approaches
- Content-Context Approach
- User Interfaces

"Talking about music is like dancing about architecture ...

it's a really stupid thing to want to do"

- Elvis Costello and others

Douglas Turnbull

Swarthmore College

turnbull@cs.swarthmore.edu

References

Social Context-Audio Content [Tech, SIGIR 09, ISMIR 08]
Autotagging [IEEE TASLP 08, SIGIR 07]

Related:

Music Annotation Games [HCOMP 09, ISMIR 07a]
Query-by-Semantic-Similarity [ICASSP 07, MIREX 07]
Tag Vocabulary Selection with Sparse CCA [ISMIR 07b]
Supervised Music Boundary Detection [ISMIR 07c]
Collaborative Filtering & Tag Propagation [Tech]