Goal: Learn *inflection* ↔ *root* mappings for world's languages with and without direct supervision

Definition: A supervised learning algorithm uses training data from generalized rules can be formed.

Inflection	Root	Part of Speech	Inflection	Root	Part of Speech	
	Ε	nglish	Turkish			
swims	swim	3S Present Indicative	sandınız	sanmak	2P Past Def.Ind.Pos.Int.	
swimming	swim	Gerund	sanaydınız	sanmak	2P Past Nar.Sub.Pos.Sta.	
swam	swim	1S Past Indicative	sanmayaydınız	sanmak	2P Past Nar.Sub.Neg.Sta.	
swum	swim	Participle	sanmalıydınız	sanmak	2P Past Nar.Nec.Pos.Sta.	
	F	rench	sanmalıymışsınız	sanmak	2P Past Dub.Nec.Pos.Sta.	
abrège	abréger	1S Present Indicative	sanmalıymışsınız	sanmak	2P Past Dub.Nec.Pos.Sta.	
abrègent	abréger	3P Present Indicative	sanmamalıymışsınız	sanmak	2P Past Dub.Nec.Neg.Sta.	
abrégerai	abréger	1S Future Indicative		Tagalo)g	
conçu	concevoir	1P Future Anterior Indicative	gugupitin	gupit	Indicative OF Cont.	
crois	croire	1S Present Indicative	pagugupitin	gupit	Causative A ₂ F Cont ₁	
croyaient	croire	3P Imperfect Indicative	paggugupitin	gupit	Causative A ₂ F Cont ₂	
		Irish	papaggupitin	gupit	Causative A_2F Inf.	
thóg	tóg	1S Past Indicative	papaggugupitin	gupit	Causative A ₂ F Cont ₃	
thógadh	tóg	2P Imperfect Indicative		Swahi	lli	
thógaidís	tóg	3P Imperfect Indicative	ninaagua	agua	1S Present Indicative	
adhairim	adhair	1S Present Indicative	unaagua	agua	2S Present Indicative	
d'adhairfeá	adhair	2S Conditional	niliagua	agua	1S Past Indicative	
	Ι	Dutch	uliagua	agua	2S Past Indicative	
bood	bieden	3S Past Indicative	nitaagua	agua	1S Future	
gebiedt	bieden	2S Present Indicative	utaagua	agua	2S Future	
geboden	bieden	1S Past Perfect Indicative		Arabi	ic	
verbood	verbieden	3S Past Indicative	katab	ktb	Active "write"	
verbiedt	verbieden	2S Present Indicative	kattab	ktb	Active "cause to write"	
aangeboden	aanbieden	1S Past Perfect Indicative	ktutib	ktb	Passive "write"	

Inflectional morphological phenomenon*

	prefixation:	geuza	\rightarrow	mli geuza	(Swahili)
affixation	suffixation:	adhair	\rightarrow	adhair im	(Irish)
	circumfixation:	mischen	\rightarrow	gemischt	(German)
	infixation:	palit	\rightarrow	p um alit	(Tagalog)
point-of-		placer	\rightarrow	pla ç a	(French)
affixation	elision:	close	\rightarrow	closing	(English)
stem	gemination:	stir	\rightarrow	stirred	(English)
changes	voicing:	zwerft	\rightarrow	zwerven	(Dutch)
vowel harmony		abartmak	\rightarrow	ab a rtm a s a nız	(Turkish)
		addetmek	\rightarrow	addetmeseniz	(Turkish)
internal		afbryde	\rightarrow	afbrød	(Danish)
vowel		skr i ke	\rightarrow	skr ei k	(Norwegian)
shift		sleep	\rightarrow	sl e pt	(English)
	agglutination:	ev	\rightarrow	evde	(Turkish)
	agglutination:		\rightarrow	evde ki	
agglutination	agglutination:		\rightarrow	evdeki ler	
	reduplication:	gu pit	\rightarrow	gugu pit	(Tagalog)
and	agglutination:		\rightarrow	i gugupit	
	agglutination:		\rightarrow	i pa gugupit	
	agglutination:		\rightarrow	ip in agugupit	
reduplication					
	reduplication:	rumah	\rightarrow	rumah rumah	(Malay)
	reduplication:	ibu	\rightarrow	ibu ibu	
root and		ktb	\rightarrow	kateb	(Arabic)
pattern		ktb	\rightarrow	k a tt a b	
highly		fi	\rightarrow	erai	(Romanian)
irregular		jānā	\rightarrow	gayā	(Hindi)
forms		eiga	\rightarrow	áttum	(Icelandic)

*from a computational linguistist's P.O.V. & using orthography instead of phonology

Task Definition

	Morphological Analysis	Morphological Generation
Input	inflection	root, part of speech
	burned	burn, VBD
Output	root, (optional) part of speech	inflection
	burn, VBD [Past Indicative]	burnt
	burn, VBN [Past Participle]	burned

- Notice that both morphological analysis and morphological generation can often generate multiple correct answers.
- When the part-of-speech is omitted in morphological analysis, the task is often referred to as morphological stemming.

3

Major applications of computational morphology

- Information retrieval
 - dimensionality reduction

- Machine translation
 - translation lexicon access, dimensionality reduction for contextual features, fine grained part of speech

4

• Other applications: parsing, word sense disambiguation, text generation, part of speech tagging

Major applications of computational morphology

- Information retrieval
 - \circ dimensionality reduction
- Machine translation
 - translation lexicon access, dimensionality reduction for contextual features, fine grained part of speech

5

• Other applications: parsing, word sense disambiguation, text generation, part of speech tagging

Alignment Paradigm

- Prior approaches have focused (almost) exclusively on learning string transductions.
- This makes learning irregular morphology, and pairs such as the following, difficult:

- How can we learn that the past tense of *sing* isn't *singed*?
- Possible answer: a large amount of information for inflection-root mappings is available outside the string:

6

Context similarity					
sing	songs				
sang	songs				
singe	hair				
singes	hair				

Distributional similarity

sing	1204
sang	1427
singe	2
singes	9

Alignment Paradigm

- Treat morphological analysis as an inflection-root mapping problem.
- Use multiple similarity measures and find a consensus answer.
 - Positionally weighted contextual similarity
 - Distributional similarity (frequency)
 - Weighted Levenshtein similarity (string-edit distance)
 - Bilingual projection

7

Resource Assumptions

• Noisy wordlists of inflection and root candidates for the language:

• Canonical suffixes of the language (optional):

Part of Speech	VB	VBD	VBZ	VBG	VBN
		+ed			+en
Canonical	$+\epsilon$	$+\epsilon$	+s	+ing	+ed
Suffixes					$+\epsilon$

8

• Lots of plain text

Approach

• Treat analysis as probabilistic alignment over large wordlists.

9

• Use these alignments to train string transduction models

Iterative Bootstrapping of Similarity Models

http://www.cs.swarthmore.edu/ richardw/emergence/emergence.html 10

Distributional Similarity Models

Favor inflection/root alignments with "good match" of frequencies

- How to quantify "good match"?
- How to penalize divergence?

Distributional Similarity Models

0.3 0.25 -juegan/jugar (-0.4) 0.2 0.15 0.1 juegan/juzgar (2.3) juegan/juntar (3.9) juegan/jogar(4.8) 0.05 0 -2 -8 -4 0 2 -6 4 6 log(VPI3P/VINF) E[log(VP13P/VINF)] = -1.21

Distributional Similarity Models (Spanish)

Approximating Full Empirical Ratio Distributions

- Tense distribution of verb inflections not correlated with their regularity or stem changing properties
- Estimate initial empirical distributions from most confidently alignable pairs (often regular inflections) from other models

Multiple Ratio Estimators of Robustness

• Any one individual inflection ratio can vary widely due to poor alignment or idiosyncratic tense usage

15

Reducing Frequency Model Dimensionality

• Use hidden variable of Estimated Lemma Frequency (LF) to capture and smooth multiple pairwise indicators

- Decreases pairwise model dimensionality $(T^2 \rightarrow T)$
- Improves robustness and coverage (all important for highly inflected languages)

Context Similarity

Measure cosine similarity between aggregate, position-weighted context vectors

	hands	head	baby	violently	himself	deer	away
shook	128	103	21	17	-	-	1
shake	151	98	8	12	-	-	-
shoot	-	-	-	-	56	8	1
shoo	-	-	-	-	-	-	6

- Pool of basic regular expressions to locate potential salient positions.
- Regex choice and relative weighting optimized empirically on strongest alignments from other models.

Context similarity distributions for correctly and incorrectly aligned inflection-root pairs (French)

18

Context model sensitivity to window position

	Left			Center			Right
Language	60	51	42	33	24	15	06
S-V-0							
Portuguese	12.05%	21.38%	27.55%	26.58%	29.01%	29.01%	32.87%
Estonian	31.87%	41.43%	44.01%	42.20%	44.28%	44.70%	32.21%
Free / S-V-O							
Russian	19.91%	41.08%	47.35%	40.91%	47.90%	47.39%	47.35%
Verb Second (V2)							
German	9.97%	11.34%	13.09%	14.78%	13.78%	13.34%	9.96%
S-O-V							
Turkish	52.66%	49.06%	48.15%	44.40%	47.03%	45.41%	25.28%
Basque	25.88%	21.35%	21.91%	19.75%	21.66%	19.81%	6.44%

- Bag of 6 words surrounding target word
 - \circ 6...0: word₁ word₂ word₃ word₄ word₅ word₆ target
 - \circ 3...3: word₁ word₂ word₃ target word₄ word₅ word₆
 - \circ 0...6: target word₁ word₂ word₃ word₄ word₅ word₆

	Left	Center	Right
Language	60	33	06
S-V-O			
Spanish	6.37%	20.31%	29.38%
Portuguese	12.05%	26.58%	32.87%
French	9.08%	38.40%	45.60%
Italian	3.69%	9.99%	14.98%
Romanian	10.42%	18.71%	20.86%
English	13.25%	21.98%	25.67%
Danish	7.21%	24.61%	34.59%
Swedish	2.09%	10.36%	18.69%
Icelandic	10.93%	23.43%	29.98%
Estonian	31.87%	42.20%	32.21%
Finnish	5.40%	12.09%	12.15%
Tagalog	10.10%	15.08%	17.08%
Swahili	8.63%	8.68%	11.02%
Free / S-V-O			
Czech	3.30%	11.05%	11.02%
Polish	8.16%	18.91%	20.87%
Russian	19.91%	40.91%	47.35%
Verb Second (V2)			
German	9.97%	14.78%	9.96%
Dutch	11.78%	16.32%	15.50%
S-O-V			
Turkish	52.66%	44.40%	25.28%
Basque	25.88%	19.75%	6.44%

Context model sensitivity to corpus size

Weighted Levenshtein Similarity

- Measure of string edit distance
- Transition cost matrix weighted by relative rarity of letter change in current paired data

	a	0	ue	m	n	•••
a	0	δ_1	δ_2	δ_4	δ_4	•••
0	δ_1	0	δ_2	δ_4	δ_4	•••
ue	δ_2	δ_2	0	δ_4	δ_4	•••
m	δ_4	δ_4	δ_4	0	δ_3	•••
n	δ_4	δ_4	δ_4	δ_3	0	•••
•••	•••	•••	•••	•••	•••	•••

- Initially set to 4 basic parameters for V-V, V⁺-V⁺, C-C, C-V⁺ in current paired data
- Cost matrix re-estimated on subsequent alignments

Levenshtein similarity distributions for correctly and incorrectly aligned inflection-root pairs (English)

	Prefix Penalty		No	Suffix Penalty			
Language	1	0.5	0.25	Penalty	0.25	0.5	1.0
Spanish	94.13%	93.88%	93.36%	91.62%	63.38%	69.64%	76.08%
Portuguese	96.26%	96.01%	95.38%	93.74%	71.79%	76.24%	80.89%
Catalan	92.01%	91.37%	90.51%	88.02%	71.84%	74.96%	79.17%
Occitan	92.64%	92.40%	91.98%	88.63%	67.28%	71.21%	75.14%
French	93.44%	92.80%	91.78%	88.09%	69.17%	72.05%	76.45%
Italian	95.26%	94.86%	94.37%	91.79%	71.58%	75.70%	80.74%
Romanian	91.14%	90.48%	89.34%	82.67%	46.08%	51.93%	58.64%
Latin	85.35%	84.67%	82.89%	70.60%	21.66%	26.47%	34.02%
English	93.36%	92.38%	89.82%	84.80%	46.96%	54.28%	61.76%
Danish	94.77%	93.31%	92.69%	90.94%	70.44%	76.80%	81.00%
Norwegian	94.47%	93.81%	93.14%	91.40%	72.42%	78.51%	82.96%
Swedish	90.24%	88.93%	87.15%	82.74%	42.88%	51.00%	59.83%
Icelandic	91.33%	90.95%	90.30%	88.65%	62.38%	67.55%	74.11%
Hindi	96.88%	96.48%	96.88%	96.48%	87.50%	87.50%	88.67%
Sanskrit	78.34%	77.39%	75.75%	67.43%	29.68%	34.41%	41.58%
Estonian	81.86%	81.20%	80.70%	78.52%	62.59%	65.71%	69.17%
Tamil	89.61%	87.60%	87.27%	83.42%	62.31%	69.01%	74.54%
Finnish	74.86%	73.57%	71.88%	62.88%	27.35%	32.43%	39.52%
Turkish	95.03%	94.69%	94.09%	89.63%	48.85%	55.83%	64.61%
Uzbek	84.67%	84.43%	83.89%	81.02%	51.19%	55.21%	60.40%
Basque	80.74%	79.85%	78.69%	73.91%	38.45%	44.21%	49.47%
Czech	76.49%	76.40%	76.42%	78.26%	67.13%	70.13%	72.79%
Polish	93.22%	93.02%	92.78%	91.71%	68.54%	73.57%	78.83%
Russian	84.73%	83.41%	82.12%	80.87%	66.33%	69.59%	72.96%
German	91.58%	91.53%	91.39%	91.44%	82.02%	84.04%	86.34%
Dutch	80.49%	80.11%	80.22%	78.08%	69.56%	71.59%	73.79%
Irish	92.89%	92.89%	92.21%	87.75%	48.71%	54.16%	62.18%
Welsh	85.99%	84.81%	83.52%	76.50%	35.41%	42.08%	50.69%
Tagalog	20.27%	23.80%	28.35%	61.03%	72.24%	72.32%	71.40%
Swahili	29.83%	34.94%	41.69%	68.38%	79.95%	79.35%	78.31%
Klingon	24.84%	27.34%	30.46%	98.74%	99.55%	99.17%	99.08%

Using Alignment Models to Bootstrap String Transduction Models

- Combine alignment models to get training data
- Models each have different dynamic ranges
 - \circ Levenshtein Similarity: [0,inf) \Rightarrow lower score is better
 - \circ Context Similarity: [0,1] \Rightarrow higher score is better

• Frequency Similarity (-inf,inf)

• Bidirectional averaged relative rankings

$$\begin{split} sim(root_i, inf_j) = \\ \lambda_F(\operatorname{rank}_{fs}(root_i|inf_j) + \operatorname{rank}_{fs}(inf_j|root_i)) + \\ \lambda_C(\operatorname{rank}_{cs}(root_i|inf_j) + \operatorname{rank}_{cs}(inf_j|root_i)) + \\ \lambda_L(\operatorname{rank}_{ls}(root_i|inf_j) + \operatorname{rank}_{ls}(inf_j|root_i)) + \\ \lambda_M(\operatorname{rank}_{ms}(root_i|inf_j) + \operatorname{rank}_{ms}(inf_j|root_i)) \end{split}$$

• Favors mutual affinity

Choosing λ 's for Model Combination

$$\begin{split} sim(root_i, inf_j) = \\ \lambda_F(\operatorname{rank}_{fs}(root_i|inf_j) + \operatorname{rank}_{fs}(inf_j|root_i)) + \\ \lambda_C(\operatorname{rank}_{cs}(root_i|inf_j) + \operatorname{rank}_{cs}(inf_j|root_i)) + \\ \lambda_L(\operatorname{rank}_{ls}(root_i|inf_j) + \operatorname{rank}_{ls}(inf_j|root_i)) + \\ \lambda_M(\operatorname{rank}_{ms}(root_i|inf_j) + \operatorname{rank}_{ms}(inf_j|root_i)) \end{split}$$

- Initially, Levenshtein model will produce the cleanest training data for bootstrapping \Rightarrow set $\lambda_L >> \lambda_C$ and λ_F
- The output of the string transduction model can then be used to refine the alignment models
- As context and frequency models are refined, λ_C and λ_F are increased relative to λ_L

Comparison of Models (English)

Combination	# of	All	Highly		Semi-
of Similarity	Iter-	Words	Irregular	Regular	Regular
Models	ations	(3888)	(128)	(1877)	(1883)
FS (Frequency Sim)	(Iter 1)	9.8	18.6	8.8	10.1
LS (Levenshtein Sim)	(Iter 1)	31.3	19.6	20.0	34.4
CS (Context Sim)	(Iter 1)	28.0	32.8	30.0	25.8
CS+FS	(Iter 1)	32.5	64.8	32.0	30.7
CS+FS+LS	(Iter 1)	71.6	76.5	71.1	71.9
CS+FS+LS+MS	(Iter 1)	96.5	74.0	97.3	97.4
CS+FS+LS+MS	(Convg)	99.2	80.4	99.9	99.7
Mooney&Califf		82.5	5.0	100.0	84.0

• Frequency and Context similarity models assume that words must start with the same initial letter at first iteration. This is not an unreasonable assumption for suffixal languages.

Performance on Irregular Verb Sample

	True	CS+	FS+LS-	+MS	CS+FS+LS	CS+FS	LS only
Word	Root	(Convg)	Score	(Itr 1)	(Itr 1)	(Itr 1)	(Itr 1)
got	get	go	1.30	go	go	go	gut
took	take	take	1.50	take	take	take	toot
became	become	become	2.35	become	become	become	become
clung	cling	cling	2.55	cling	cling	cling	cling
swore	swear	swear	2.80	swear	swear	swear	store
came	come	come	3.55	come	come	come	come
flung	fling	fling	4.60	fling	fling	fling	fling
strove	strive	strive	5.85	strive	strive	straddle	strive
swept	sweep	sweep	6.20	sweep	sweep	sweep	swap
woke	wake	wake	6.95	wake	wake	wind	wake
bore	bear	bear	7.75	bear	bar	bear	bare
lent	lend	lend	9.25	lend	lend	lend	lend
struck	strike	strike	11.60	strike	strike	strike	strut
bit	bite	bite	13.60	bite	bite	betray	bet
dove	dive	dive	17.25	dive	dive	dash	dive
caught	catch	catch	18.35	catch	cut	catch	cough
dealt	deal	deal	21.45	deal	deal	disagree	deal

Multilingual Projection

- Historically, large NLP investment in tools for English and a handful of other languages (French, Japanese)
- Use existing morphological analyzers to bootstrap training data for morphological analyzer for a second language
- Word align bilingual corpus (EGYPT, Y. Al-Onaizan et al. 1999):

Morphological Analysis via Translingual Bridges: Leverage investment in existing analyzers

General Alignment Model via Multiple Bridge Lemmas

Examples of Induced Morphological Analyses

Induced Morphological Analyses for CZECH

Inflection	Root	POST Analysis	TopBridge
bral	brát	át→a +l	marry
brala	brát	át→a +la	accept
brali	brát	át→a +li	marry
byl	být	ýt→y +l	be
byli	být	ýt→y +li	be
bylo	být	ýt→y +lo	be
chovala	chovat	$t \rightarrow \epsilon + la$	behave
chová	chovat	$at \rightarrow \epsilon + \acute{a}$	behave
chováme	chovat	$at \rightarrow \epsilon + ame$	behave
chodila	chodit	$t \rightarrow \epsilon + la$	walk
chodí	chodit	$it \rightarrow \epsilon + i$	walk
choďte	chodit	dit→ďt +e	swim
chránila	chránit	$t \rightarrow \epsilon + la$	protect
chrání	chránit	$it \rightarrow \epsilon + i$	protect
couval	couvat	$t \rightarrow \epsilon + l$	back
chcete	chtít	tít→c +ete	want
chceš	chtít	tít→c +eš	want
chci	chtít	tít→c +i	want
chtějí	chtít	ít→ěj +í	want
chtěli	chtít	ít→ě +li	want
chtělo	chtít	ít→ě +lo	want

Induced Morphological Analyses for FRENCH

Inflaction	Deet	DOST Analysis	TonDridge
Innection	ROOL	POST Analysis	торынаде
abrège	abréger	éger→èg +e	shorten
abrègent	abréger	éger→èg +ent	shorten
abrégerai	abréger	$er \rightarrow \epsilon + erai$	curtail
achète	acheter	eter→èt +e	buy
achètent	acheter	eter→èt +ent	buy
achètera	acheter	eter→èt +era	buy
adviendrait	advenir	enir→iendr +ait	happen
advient	advenir	enir→ien +t	happen
aliène	aliéner	éner→èn +e	alienate
aliènent	aliéner	éner→èn +ent	alienate
conçu	concevoir	cevoir→ç +u	conceive
crois	croire	$re \rightarrow \epsilon + s$	believe
croyaient	croire	ire→y +aient	believe

Induced Morphological Analyses for SPANISH

Inflection	Root	POST Analysis	TopBridge
aborreció	aborrecer	$er \rightarrow \epsilon + i \acute{0}$	hate
aborrecía	aborrecer	$er \rightarrow \epsilon + ia$	hate
aborrezco	aborrecer	cer→zc +o	hate
abrace	abrazar	zar→c +e	embrace
abrazado	abrazar	$ar \rightarrow \epsilon + ado$	embrace
adquiere	adquirir	rir→er +e	get
anden	andar	$ar \rightarrow \epsilon + en$	walk
anduvo	andar	ar→uv +o	walk
buscáis	buscar	$ar \rightarrow \epsilon + ais$	seek
busque	buscar	car→qu +e	seek
busqué	buscar	car→qu +é	seek

Use projected pairs as training for supervised models

	Precision		Coverage	
Model	Тур	Tok	Тур	Tok

FRENCH Verbal Morphology Induction

French Hansards (12M words):

		-		
MProj only	.992	.999	.779	.994
MProj+POST	.998	.999	.988	.999
MProj+POST+BKM	.994	.999	1.00	1.00
French Hansards (1.2N	A word	ds):		
MProj only	.985	.998	.327	.976
MProj+POST	.995	.999	.958	.998
MProj+POST+BKM	.979	.998	1.00	1.00
French Hansards (120)	K wor	ds):		
MProj only	.962	.931	.095	.901
MProj+POST	.984	.993	.916	.994
MProj+POST+BKM	.932	.989	1.00	1.00
French Bible (300K w	ords)	via En	glish E	Bible:
MProj only	1.00	1.00	.052	.747
MProj+POST	.991	.998	.918	.992
MProj+POST+BKM	.954	.994	1.00	1.00

Use projected pairs as training for supervised models (continued)

CZECH Verbal Morphology Induction

Czech Reader's Digest (500K words):

MProj only	.915	.993	.152	.805
MProj+POST	.916	.917	.893	.975
MProj+POST+BKM	.878	.913	1.00	1.00

SPANISH Verbal Morphology Induction

Spanish Bible (300K words) via English Bible:

MProj only	.973	.935	.264	.351
MProj+POST	.988	.998	.971	.967
MProj+POST+BKM	.966	.985	1.00	1.00

Spanish Bible (300K words) via French Bible:

MProj only	.980	.935	.722	.765
MProj+POST	.983	.974	.986	.993
MProj+POST+BKM	.974	.968	1.00	1.00

Lemmatization Induction via Multiple Bible Versions

• Bible is easily alignable, available in <u>many</u> languages

.954 accuracy (by type) .994 accuracy (by token)

single French Bible on full *modern French* test set

• Augment bridge potential using multiple English versions

 \Rightarrow .954 \rightarrow .964 with *no* additional French resources

Lemmatization Induction via Multiple Languages

- Using bitext in multiple languages adds bridging pathways
- Use newly lemmatized Bible in French to improve Spanish analysis

Use projected pairs as training for supervised models (continued)

	Preci	ision	Coverage	
Model	Тур	Tok	Тур	Tok

FRENCH Verbal Morphology Induction

French Bible (300K words) via 3 English Bibles:

MProj only	.928	.975	.100	.820
MProj+POST	.981	.991	.931	.990
MProj+POST+BKM	.964	.991	1.00	1.00

SPANISH Verbal Morphology Induction

Spanish Bible (300K words) via 3 English Bibles:					
MProj only	.964	.948	.468	.551	
MProj+POST	.990	.998	.978	.987	
MProj+POST	.976	.987	1.00	1.00	

Performance of Lemmatization Induction by Corpus Size

