Simple Stack Frame Examples

CS21 at Swarthmore College



Basic Example

def f(x,y):
X +t=y
print x
return x

def main():
n=4
out = f(n,2)
print out

main()
At the beginning of the program, main is called. We create

a new stack frame. Since main has no parameters, the stack
frame is empty.

2/1



Basic Example

def f(x,y):
X +t=y
print x
return x

def main():
n=4 main:7
out = f(n,2)
print out

main()

At the beginning of the program, main is called. We create
a new stack frame. Since main has no parameters, the stack
frame is empty.

2/1



Basic Example

def f(x,y):
X +t=y
print x
return x

def main():
n=4 main:7
out = f(n,2)
print out

main()

When line 7 of main is executed, the variable n is set to the
value 4. We signify this by drawing a box in the stack frame
and labeling it with the variable name. We put the contents
of the variable in the box.

2/1



Basic Example

def f(x,y):
X +t=y
print x
return x

def main():
n=4 main:8
out = £f(n,2)
print out

main()

When line 7 of main is executed, the variable n is set to the
value 4. We signify this by drawing a box in the stack frame
and labeling it with the variable name. We put the contents
of the variable in the box.

2/1



Basic Example

def f(x,y):
X +t=y
print x
return x

def main():
n=4 main:8
out = f(n,2)
print out

main()

When line 8 is executed, we will call £. To do so, we must
first determine the value of each of its arguments. In this
case, the first parameter is n, whose value is currently 4. The
second parameter is just 2.

2/1



Basic Example

def f(x,y):
X +t=y
print x
return x

def main():

n=4 . main:8
out = £f(n,2) n

print out

main()

Once we've established the value of the arguments on line 8
(4 and 2, respectively), the £ function is called. We create
a new stack frame. Since f has two parameters, we create
variables for them in the stack frame. They contain the values
of their corresponding arguments.

2/1



Basic Example

def f(x,y): £:9

X +=y
print x X
return x y

def main():

n=4 . main:8
out = f(n,2) n

print out

main()

Once we've established the value of the arguments on line 8
(4 and 2, respectively), the £ function is called. We create
a new stack frame. Since f has two parameters, we create
variables for them in the stack frame. They contain the values
of their corresponding arguments.

2/1



Basic Example

def f(x,y): £:9

X +=y
print x X
return x y

def main():

n=4 . main:8
out = f(n,2) n

print out

main()

Note that the stack frame for main is keeping track of where
we were in that function. When we are done with £, we will
return to that line.

2/1



Basic Example

def f(x,y): £:9

X +=y
print x X
return x y

def main():
n=4 main:8
out = f(n,2)
print out

B
[#]

main()

When we run line 2 in £, we will update the variable x by
adding the contents of the variable y to it. We change the
stack diagram accordingly.

2/1



Basic Example

def f(x,y): £:3

X +=y
print x X []
return x y

def main():
n=4 main:8
out = f(n,2)
print out

B
[#]

main()

When we run line 2 in £, we will update the variable x by
adding the contents of the variable y to it. We change the
stack diagram accordingly.

2/1



Line 3 will print the contents of the x variable: in this case,
6.

def f(x,y):
X +=y
print x
return x

def main():
n=4
out = f(n,2)
print out

main()

Basic Example

]

X

y

main:8

(o] [=]

B
[#]

2/1



Line 3 will print the contents of the x variable: in this case,
6.

def f(x,y):
X +=y
print x
return X

def main():
n=4
out = f(n,2)
print out

main()

Basic Example

]

X

y

main:8

(o] [=]

B
[#]

2/1



Basic Example

def f(x,y): £:4

X +t=y
print x

s
return x y

def main():

n=4 . main:8
out = f(n,2) n

print out

main()

Line 4 will return the value of x to the place where £ was
called. As a result, the variable out in main is given the
value 6.

2/1



Basic Example

def f(x,y):
X +t=y
print x
return x

def main():

n=4 . main:8
out = £f(n,2) n

print out

main()

Line 4 will return the value of x to the place where £ was
called. As a result, the variable out in main is given the
value 6.

2/1



Basic Example

def f(x,y):
X +t=y
print x
return x

def main():

n=4 . main:9
out = f(n,2) n

print out
out |[6]

main()

Line 4 will return the value of x to the place where £ was
called. As a result, the variable out in main is given the
value 6.

2/1



def f(x,y):
X +t=y
print x
return x

def main():
n=4
out = f(n,2)
print out

main()

Line 9 prints the contents of the out variable (here, 6). After
it runs, the main function is complete and the program is

finished.

Basic Example

main:9
n
out |[6]

2/1



Basic Example

def f(x,y):
X +t=y
print x
return x

def main():
n=4
out = f(n,2)
print out

main()
Line 9 prints the contents of the out variable (here, 6). After

it runs, the main function is complete and the program is
finished.

2/1



Lists Example

def add_twice(lst,x):
1st.append (x)
1st.append(x)

def main():
data = [1]
add_twice(data,?2)
print data
add_twice(data,3)
print data

main()

As before, main is called at the start of this program. We create
a new stack frame for it.

3/1



Lists Example

def add_twice(lst,x):
1st.append (x)
1st.append(x)

def main():
data = [1]

add_twice(data,?2) Afiigiéj
print data
add_twice(data,3)
print data
main()

As before, main is called at the start of this program. We create
a new stack frame for it.

3/1



Lists Example

def add_twice(lst,x):
1st.append (x)
1st.append(x)

def main():
data = [1]

add_twice(data,?2) Afiigiéj
print data
add_twice(data,3)
print data
main()

Line 6 of main creates a new list containing just the value 1. A
reference to that list is stored in the data variable. We represent
the list by using a rounded box; we represent the reference as an
arrow.

3/1



Lists Example

def add_twice(lst,x):

1st.append (x)
1st.append(x)

def main():
data = [1]
add_twice(data,2)
print data
add_twice(data,3)
print data

main()

list

Line 6 of main creates a new list containing just the value 1. A
reference to that list is stored in the data variable. We represent
the list by using a rounded box; we represent the reference as an

arrow.

3/1



Lists Example

def add_twice(lst,x):

1st.append (x)
1st.append(x)

def main():
data = [1]
add_twice(data,2)
print data
add_twice(data,3)
print data

main()

Line 7 of main is a function call.

list

Just as before, we create a

new stack frame and copy each argument into its corresponding
parameter. Here, we copy the value 2 into the variable x and we
copy the reference from data into the variable 1st.

3/1



Lists Example

def add_twice(lst,x): £:0
1st.append (%)

1st.append(x) 1st [E%

def main():
data = [1]

add_twice(data,2) main:7 list
print data data @

add_twice(data,3)
print data

main()

Line 7 of main is a function call. Just as before, we create a
new stack frame and copy each argument into its corresponding
parameter. Here, we copy the value 2 into the variable x and we
copy the reference from data into the variable 1st.

3/1



Lists Example

def add_twice(lst,x): £:0
1st.append (%)

1st.append(x) 1st [E%

def main():
data = [1]

add_twice(data,2) main:7 list
print data data @

add_twice(data,3)
print data

main()

Line 2 of add_twice appends a copy of the value in x to the
end of the list. Here, that value is 2. We change the list object
in our diagram to reflect this.

3/1



Lists Example

def add_twice(lst,x): £:3
1st.append(x)

1st.append (x) 1st [E%

def main():

data = [1]
add_twice(data,2) main:7 list
print data data 12
add_twice(data,3) @
print data

main()

Line 2 of add_twice appends a copy of the value in x to the
end of the list. Here, that value is 2. We change the list object
in our diagram to reflect this.

3/1



Lists Example

def add_twice(lst,x): £:3
1st.append(x)

1st.append (x) 1st [E%

def main():

data = [1]
add_twice(data,2) main:7 list
print data data 12
add_twice(data,3) @
print data

main()

Of course, line 3 does the same thing; this adds another 2 to our
list. Note that this function doesn't return anything; it just adds
to the list

3/1



Lists Example

def add_twice(lst,x):
1st.append (x)
1st.append(x)

def main():
data = [1]
add_twice(data,?2)
print data
add_twice(data,3)
print data

main()

Of course, line 3 does the same thing; this adds another 2 to our
list. Note that this function doesn't return anything; it just adds

to the list

3/1



Lists Example

def add_twice(lst,x):
1st.append (x)
1st.append(x)

def main():
data = [1]
add_twice(data,?2)
print data
add_twice(data,3)
print data

main()

Once we're finished with the add_twice function, we destroy its

stack frame and return to executing main.

3/1



Lists Example

def add_twice(lst,x):
1st.append (x)
1st.append(x)

def main():

data = [1]
add_twice(data,?2) Afiigiﬁj
print data data [5}7
add_twice(data,3)
print data

main()

Line 8 of main prints the contents of the list to which data
refers. Because of the call to add_twice, this list changed. So
main prints “[1,2,2]".

3/1



Lists Example

def add_twice(lst,x):
1st.append (x)
1st.append(x)

def main():
data = [1]

add_twice(data,?2) AEEEEL?J
print data data [E}*
add_twice(data,3)
print data

main()

Line 9 of main calls add_twice again. Just as last time, we copy
the arguments into their respective parameters. This time, x is
set to 3; 1st is still set to the same reference as data.

3/1



Lists Example

def add_twice(lst,x): £:0
1st.append (%)

1st.append (x) 1st [E%

def main():
data = [1]

add_twice(data,?2) Afiigigj
print data data [E}*
add_twice(data,3)
print data

main()

Line 9 of main calls add_twice again. Just as last time, we copy
the arguments into their respective parameters. This time, x is
set to 3; 1st is still set to the same reference as data.

3/1



Lists Example

def add_twice(lst,x): £:0
1st.append (%)

1st.append (x) 1st [E%

def main():
data = [1]

add_twice(data,?2) Afiigigj
print data data [E}*
add_twice(data,3)
print data

main()

Once again, add_twice adds the value contained in x to the list
referenced by 1st; it does this twice.

3/1



Lists Example

def add_twice(lst,x): £:3
1st.append(x)

1st.append (x) 1st [E%

def main():
data = [1]
add_twice(data,?2)
print data
add_twice(data,3)
print data

main()

Once again, add_twice adds the value contained in x to the list
referenced by 1st; it does this twice.

3/1



Lists Example

def add_twice(lst,x): £,

1st.append(x)
1st.append(x) 1st [E}

def main():
data = [1]
add_twice(data,?2)
print data
add_twice(data,3)
print data

main()

Once again, add_twice adds the value contained in x to the list
referenced by 1st; it does this twice.

3/1



Lists Example

def add_twice(lst,x):

1st.append (x)
1st.append(x)

def main():
data = [1]
add_twice(data,?2)
print data
add_twice(data,3)
print data

main()

We finish add_twice, discarding its stack frame. We return to
main, where line 10 prints the contents of the list. Because it
has been changed again, we print [1,2,2,3,3] this time.

3/1



Lists Example

def add_twice(lst,x):
1st.append (x)
1st.append(x)

def main():
data = [1]

add_twice(data,?2)
print data
add_twice(data,3)

print data
main()

With that, the program is finished.

3/1



Lists Example

def add_twice(lst,x):
1st.append (x)
1st.append(x)

def main():
data = [1]
add_twice(data,?2)
print data
add_twice(data,3)
print data

main()

With that, the program is finished.

3/1



