
The Priority R-Tree: A Practically Efficient
and Worst-Case Optimal R-Tree

Lars Arge∗

Department of Computer Science

Duke University, Box 90129

Durham, NC 27708-0129

USA

large@cs.duke.edu

Mark de Berg
Department of Computer Science

TU Eindhoven, P.O.Box 513

5600 MB Eindhoven

The Netherlands

m.t.d.berg@tue.nl

Herman J. Haverkort†
Institute of Information

and Computing Sciences

Utrecht University, PO Box 80 089

3508 TB Utrecht, The Netherlands

herman@cs.uu.nl

Ke Yi∗
Department of Computer Science

Duke University, Box 90129

Durham, NC 27708-0129, USA

yike@cs.duke.edu

ABSTRACT
We present the Priority R-tree, or PR-tree, which is the first
R-tree variant that always answers a window query using
O((N/B)1−1/d + T/B) I/Os, where N is the number of d-
dimensional (hyper-) rectangles stored in the R-tree, B is
the disk block size, and T is the output size. This is provably
asymptotically optimal and significantly better than other R-
tree variants, where a query may visit all N/B leaves in
the tree even when T = 0. We also present an extensive
experimental study of the practical performance of the PR-
tree using both real-life and synthetic data. This study shows
that the PR-tree performs similar to the best known R-tree
variants on real-life and relatively nicely distributed data, but
outperforms them significantly on more extreme data.

1. INTRODUCTION
Spatial data naturally arise in numerous applications, in-

cluding geographical information systems, computer-aided
design, computer vision and robotics. Therefore spatial
database systems designed to store, manage, and manipulate
spatial data have received considerable attention over the
years. Since these databases often involve massive datasets,
disk based index structures for spatial data have been re-
searched extensively—see e.g. the survey by Gaede and Gün-

∗Supported in part by the National Science Foundation
through RI grant EIA–9972879, CAREER grant CCR–
9984099, ITR grant EIA–0112849, and U.S.–Germany Co-
operative Research Program grant INT–0129182.
†Supported by the Netherlands’ Organization for Scientific
Research (NWO).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004 June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . . $5.00.

ther [11]. Especially the R-tree [13] and its numerous vari-
ants (see e.g. the recent survey by Manolopoulos et al. [19])
have emerged as practically efficient indexing methods. In
this paper we present the Priority R-tree, or PR-tree, which
is the first R-tree variant that is not only practically efficient
but also provably asymptotically optimal.

1.1 Background and previous results
Since objects stored in a spatial database can be rather

complex they are often approximated by simpler objects,
and spatial indexes are then built on these approximations.
The most commonly used approximation is the minimal
bounding box: the smallest axis-parallel (hyper-) rectangle
that contains the object. The R-tree, originally proposed by
Guttman [13], is an index for such rectangles. It is a height-
balanced multi-way tree similar to a B-tree [5, 9], where
each node (except for the root) has degree Θ(B). Each leaf
contains Θ(B) data rectangles (each possibly with a pointer
to the original data) and all leaves are on the same level of
the tree; each internal node v contains pointers to its Θ(B)
children, as well as for each child a minimal bounding box
covering all rectangles in the leaves of the subtree rooted in
that child. If B is the number of rectangles that fits in a
disk block, an R-tree on N rectangles occupies Θ(N/B) disk
blocks and has height Θ(logB N). Many types of queries
can be answered efficiently using an R-tree, including the
common query called a window query: Given a query rect-
angle Q, retrieve all rectangles that intersect Q. To answer
such a query we simply start at the root of the R-tree and
recursively visit all nodes with minimal bounding boxes in-
tersecting Q; when encountering a leaf l we report all data
rectangles in l intersecting Q.

Guttman gave several algorithms for updating an R-tree
in O(logB N) I/Os using B-tree-like algorithms [13]. Since
there is no unique R-tree for a given dataset, and because
the window query performance intuitively depends on the
amount of overlap between minimal bounding boxes in the
nodes of the tree, it is natural to try to minimize bounding
box overlap during updates. This has led to the development
of many heuristic update algorithms; see for example [6, 16,

23] or refer to the surveys in [11, 19]. Several specialized
algorithms for bulk-loading an R-tree have also been devel-
oped [7, 10, 12, 15, 18, 22]. Most of these algorithms use
O(N

B
logM/B

N
B

) I/Os (the number of I/Os needed to sort
N elements), where M is the number of rectangles that fits
in main memory, which is much less than the O(N logB N)
I/Os needed to build the index by repeated insertion. Fur-
thermore, they typically produce R-trees with better space
utilization and query performance than R-trees built using
repeated insertion. For example, while experimental results
have shown that the average space utilization of dynamically
maintained R-trees is between 50% and 70% [6], most bulk-
loading algorithms are capable of obtaining over 95% space
utilization. After bulk-loading an R-tree it can of course
be updated using the standard R-tree updating algorithms.
However, in that case its query efficiency and space utiliza-
tion may degenerate over time.

One common class of R-tree bulk-loading algorithms work
by sorting the rectangles according to some global one-di-
mensional criterion, placing them in the leaves in that order,
and then building the rest of the index bottom-up level-by-
level [10, 15, 18]. In two dimensions, the so-called packed
Hilbert R-tree of Kamel and Faloutsos [15], which sorts the
rectangles according to the Hilbert values of their centers,
has been shown to be especially query-efficient in practice.
The Hilbert value of a point p is the length of the frac-
tal Hilbert space-filling curve from the origin to p. The
Hilbert curve is very good at clustering spatially close rect-
angles together, leading to a good index. A variant of the
packed Hilbert R-tree, which also takes the extent of the
rectangles into account (rather than just the center), is the
four-dimensional Hilbert R-tree [15]; in this structure each
rectangle ((xmin, ymin), (xmax, ymax)) is first mapped to the
four-dimensional point (xmin, ymin, xmax, ymax) and then the
rectangles are sorted by the positions of these points on the
four-dimensional Hilbert curve. Experimentally the four-
dimensional Hilbert R-tree has been shown to behave slightly
worse than the packed Hilbert R-tree for nicely distributed
realistic data [15]. However, intuitively, it is less vulnerable
to more extreme datasets because it also takes the extent of
the input rectangles into account.

Algorithms that bulk-load R-trees in a top-down manner
have also been developed. These algorithms work by recur-
sively trying to find a good partition of the data [7, 12].
The so-called Top-down Greedy Split (TGS) algorithm of
Garćıa, López and Leutenegger [12] has been shown to re-
sult in especially query-efficient R-trees (TGS R-trees). To
build the root of (a subtree of) an R-tree on a given set of
rectangles, this algorithm repeatedly partitions the rectan-
gles into two sets, until they are divided into B subsets of
(approximately) equal size. Each subset’s bounding box is
stored in the root, and subtrees are constructed recursively
on each of the subsets. Each of the binary partitions takes a
set of rectangles and splits it into two subsets based on one
of several one-dimensional orderings; in two dimensions, the
orderings considered are those by xmin, ymin, xmax and ymax.
For each such ordering, the algorithm calculates, for each of
O(B) possible partitioning possibilities, the sum of the areas
of the bounding boxes of the two subsets that would result
from the partition. Then it applies the binary partition that
minimizes that sum.1

1Garćıa et al. describe several variants of the top-down
greedy method. They found the one described here to be

While the TGS R-tree has been shown to have slightly
better query performance than other R-tree variants, the
construction algorithm uses many more I/Os since it needs
to scan all the rectangles in order to make a binary par-
tition. In fact, in the worst case the algorithm may take
O(N logB N) I/Os. However, in practice, the fact that each
partition decision is binary effectively means that the algo-
rithm uses O(N

B
log2 N) I/Os.

While much work has been done on evaluating the prac-
tical query performance of the R-tree variants mentioned
above, very little is known about their theoretical worst-case
performance. Most theoretical work on R-trees is concerned
with estimating the expected cost of queries under assump-
tions such as uniform distribution of the input and/or the
queries, or assuming that the input are points rather than
rectangles. See the recent survey by Manolopoulos et al. [19].
The first bulk-loading algorithm with a non-trivial guaran-
tee on the resulting worst-case query performance was given
only recently by Agarwal et al. [2]. In d dimensions their al-
gorithm constructs an R-tree that answers a window query
in O((N/B)1−1/d + T logB N) I/Os, where T is the num-
ber of reported rectangles. However, this still leaves a gap
to the Ω((N/B)1−1/d + T/B) lower bound on the number
of I/Os needed to answer a window query [2, 17]. If the
input consists of points rather than rectangles, then worst-
case optimal query performance can be achieved with e.g.
a kdB-tree [21] or an O-tree [17]. Unfortunately, it seems
hard to modify these structures to work for rectangles. Fi-
nally, Agarwal et al. [2], as well as Haverkort et al. [14], also
developed a number of R-trees that have good worst-case
query performance under certain conditions on the input.

1.2 Our results
In Section 2 we present a new R-tree variant, which we

call a Priority R-tree or PR-tree for short. We call our struc-
ture the Priority R-tree because our bulk-loading algorithm
utilizes so-called priority rectangles in a way similar to the
recent structure by Agarwal et al. [2]. Window queries can

be answered in O((N/B)1−1/d + T/B) I/Os on a PR-tree,
and the index is thus the first R-tree variant that answers
queries with an asymptotically optimal number of I/Os in
the worst case. To contrast this to previous R-tree bulk-
loading algorithms, we also construct a set of rectangles and
a query with zero output, such that all Θ(N/B) leaves of
a packed Hilbert R-tree, a four-dimensional Hilbert R-tree,
or a TGS R-tree need to be visited to answer the query.
We also show how to bulk-load the PR-tree efficiently, using
only O(N

B
logM/B

N
B

) I/Os. After bulk-loading, a PR-tree
can be updated in O(logB N) I/Os using the standard R-
tree updating algorithms, but without maintaining its query
efficiency. Alternatively, the external logarithmic method [4,
20] can be used to develop a structure that supports inser-
tions and deletions in O(logB

N
M

+ 1
B

(logM/B
N
B

)(log2
N
M

))

and O(logB
N
M

) I/Os amortized, respectively, while main-
taining the optimal query performance.

In Section 3 we present an extensive experimental study
of the practical performance of the PR-tree using both real-
life and synthetic data. We compare the performance of our

the most efficient in practice [12]. In order to achieve close
to 100% space utilization, the size of the subsets created is
actually rounded up to the nearest power of B (except for
one remainder set). As a result, one node on each level,
including the root, may have less than B children.

index on two-dimensional rectangles to the packed Hilbert
R-tree, the four-dimensional Hilbert R-tree, and the TGS
R-tree. Overall, our experiments show that all these R-
trees answer queries in more or less the same number of
I/Os on relatively square and uniformly distributed rect-
angles. However, on more extreme data—large rectangles,
rectangles with high aspect ratios, or non-uniformly dis-
tributed rectangles—the PR-tree (and sometimes also the
four-dimensional Hilbert R-tree) outperforms the others sig-
nificantly. On a special worst-case dataset the PR-tree out-
performs all of them by well over an order of magnitude.

2. THE PRIORITY R-TREE
In this section we describe the PR-tree. For simplicity,

we first describe a two-dimensional pseudo-PR-tree in Sec-
tion 2.1. The pseudo-PR-tree answers window queries effi-
ciently but is not a real R-tree, since it does not have all
leaves on the same level. In Section 2.2 we show how to
obtain a real two-dimensional PR-tree from the pseudo-PR-
tree, and in Section 2.3 we discuss how to extend the PR-tree
to d dimensions. Finally, in Section 2.4 we show that a query
on the packed Hilbert R-tree, the four-dimensional Hilbert
R-tree, as well as the TGS R-tree can be forced to visit all
leaves even if T = 0.

2.1 Two-dimensional pseudo-PR-trees
In this section we describe the two-dimensional pseudo-

PR-tree. Like an R-tree, a pseudo-PR-tree has the input
rectangles in the leaves and each internal node ν contains a
minimal bounding box for each of its children νc. However,
unlike an R-tree, not all the leaves are on the same level
of the tree and internal nodes only have degree six (rather
than Θ(B)).

The basic idea in the pseudo-PR-tree is (similar to the
four-dimensional Hilbert R-tree) to view an input rectan-
gle ((xmin, ymin), (xmax, ymax)) as a four-dimensional point
(xmin, ymin, xmax, ymax). The pseudo-PR-tree is then basi-
cally just a kd-tree on the N points corresponding to the N
input rectangles, except that four extra leaves are added be-
low each internal node. Intuitively, these so-called priority
leaves contain the extreme B points (rectangles) in each of
the four dimensions. Note that the four-dimensional kd-tree
can easily be mapped back to an R-tree-like structure, sim-
ply by replacing the split value in each kd-tree node ν with
the minimal bounding box of the input rectangles stored in
the subtree rooted in ν. The idea of using priority leaves
was introduced in a recent structure by Agarwal et al. [2],
they used priority leaves of size one rather than B.

In section 2.1.1 below we give a precise definition of the
pseudo-PR-tree, and in section Section 2.1.2 we show that it
can be used to answer a window query in O(

�
N/B +T/B)

I/Os. In Section 2.1.3 we describe how to construct the
structure I/O-efficiently.

2.1.1 The Structure
Let S = {R1, . . . , RN} be a set of N rectangles in the

plane and assume for simplicity that no two of the coor-
dinates defining the rectangles are equal. We define R∗

i =
(xmin(Ri), ymin(Ri), xmax(Ri), ymax(Ri)) to be the mapping
of Ri = ((xmin(Ri), ymin(Ri)), (xmax(Ri), ymax(Ri))) to a
point in four dimensions, and define S∗ to be the N points
corresponding to S.

A pseudo-PR-tree TS on S is defined recursively: If S

split on xmin

ν
xmin

p

ν
ymin

p

ν
xmax

pν
ymax

p

S<
S>

ν

νxmin

p

νymin

p

νxmax

p

νymax

p

TS<
TS>

ν

Figure 1: The construction of an internal node in a
pseudo-PR-tree.

contains less than B rectangles, TS consists of a single leaf;
otherwise, TS consists of a node ν with six children, namely
four priority leaves and two recursive pseudo-PR-trees. For
each child νc, we let ν store the minimal bounding box of
all input rectangles stored in the subtree rooted in νc. The
node ν and the priority leaves below it are constructed as fol-
lows: The first priority leaf νxmin

p contains the B rectangles
in S with minimal xmin-coordinates, the second νymin

p the
B rectangles among the remaining rectangles with minimal
ymin-coordinates, the third νxmax

p the B rectangles among
the remaining rectangles with maximal xmax-coordinates,
and finally the fourth νymax

p the B rectangles among the
remaining rectangles with maximal ymax-coordinates. Thus
the priority leaves contain the “extreme” rectangles in S,
namely the ones with leftmost left edges, bottommost bot-
tom edges, rightmost right edges, and topmost top edges.2

After constructing the priority leaves, we divide the set Sr of

2S may not contain enough rectangles to put B rectangles
in each of the four priority leaves. In that case, we may
assume that we can still put at least B/4 in each of them,
since otherwise we could just construct a single leaf.

remaining rectangles (if any) into two subsets, S< and S>,
of approximately the same size and recursively construct
pseudo-PR-trees TS< and TS> . The division is performed
using the xmin, ymin, xmax, or ymax-coordinate in a round-
robin fashion, as if we were building a four-dimensional kd-
tree on S∗

r , that is, when constructing the root of TS we
divide based on the xmin-values, the next level of recursion
based on the ymin-values, then based on the xmax-values, on
the ymax-values, on the xmin-values, and so on. Refer to Fig-
ure 1 for an example. Note that dividing according to, say,
xmin corresponds to dividing based on a vertical line ` such
that half of the rectangles in Sr have their left edge to the
left of ` and half of them have their left edge to the right of
`.

We store each node or leaf of TS in O(1) disk blocks, and
since at least four out of every six leaves contain Θ(B) rect-
angles we obtain the following (in Section 2.1.3 we discuss
how to guarantee that almost every leaf is full).

Lemma 1. A pseudo-PR-tree on a set of N rectangles in
the plane occupies O(N/B) disk blocks.

2.1.2 Query complexity
We answer a window query Q on a pseudo-PR-tree ex-

actly as on an R-tree by recursively visiting all nodes with
minimal bounding boxes intersecting Q. However, unlike for
known R-tree variants, for the pseudo-PR-tree we can prove
a non-trivial (in fact, optimal) bound on the number of I/Os
performed by this procedure.

Lemma 2. A window query on a pseudo-PR-tree on N
rectangles in the plane uses O(

�
N/B + T/B) I/Os in the

worst case.

Proof. Let TS be a pseudo-PR-tree on a set S of N rect-
angles in the plane. To prove the query bound, we bound
the number of nodes in TS that are “kd-nodes”, i.e. not pri-
ority leaves, and are visited in order to answer a query with
a rectangular range Q; the total number of leaves visited is
at most a factor of four larger.

We first note that O(T/B) is a bound on the number of
nodes ν visited where all rectangles in at least one of the
priority leaves below ν’s parent are reported. Thus we just
need to bound the number of visited kd-nodes where this is
not the case.

Let µ be the parent of a node ν such that none of the
priority leaves of µ are reported completely, that is, each
priority leaf µp of µ contains at least one rectangle not in-
tersecting Q. Each such rectangle E can be separated from
Q by a line containing one of the sides of Q—refer to Fig-
ure 2. Assume without loss of generality that this is the
vertical line x = xmin(Q) through the left edge of Q, that
is, E’s right edge lies to the left of Q’s left edge, so that
xmax(E) ≤ xmin(Q). This means that the point E∗ in four-
dimensional space corresponding to E lies to the left of the
axis-parallel hyperplane H that intersects the xmax-axis at
xmin(Q). Now recall that TS is basically a four-dimensional
kd-tree on S∗ (with priority leaves added), and thus that a
four-dimensional region R4

µ can be associated with µ. Since
the query Q visits µ, there must also be at least one rectangle
F in the subtree rooted at µ that has xmax(F) > xmin(Q),
so that F ∗ lies to the right of H. It follows that R4

µ contains
points on both sides of H and therefore H must intersect R4

µ.
Now observe that the rectangles in the priority leaf µxmax

p

cannot be separated from Q by the line x = xmin(Q) through

µ

ν

Q

x = xmin(Q)

y = xmax(Q)

E

F

µxmax

p

G

R4

µ

Q

H
:
x

m
a
x

=
x

m
in
(Q

)

H ′ : ymin = ymax(Q)

E∗

F ∗

G∗

X

xmax

ymin

y = xmax(Q)

Figure 2: The proof of Lemma 2, with µ in the plane
(upper figure), and µ in four-dimensional space
(lower figure—the xmin and ymax dimensions are not
shown). Note that X = H ∩ H ′ is a two-dimensional
hyperplane in four-dimensional space. It contains a
two-dimensional facet of the transformation of the
query range into four dimensions.

the left edge of Q: Rectangles in µxmax

p are extreme in the
positive x-direction, so if one of them lies completely to the
left of Q, then all rectangles in µ’s children—including ν—
would lie to the left of Q; in that case ν would not be visited.
Since (by definition of ν) not all rectangles in µxmax

p intersect
Q, there must be a line through one of Q’s other sides, say
the horizontal line y = ymax(Q), that separates Q from a
rectangle G in µxmax

p . Hence, the hyperplane H ′ that cuts
the ymin-axis at ymax(Q) also intersects R4

µ.
By the above arguments, at least two of the three-dimen-

sional hyperplanes defined by xmin(Q), xmax(Q), ymin(Q)
and ymax(Q) intersect the region R4

µ associated with µ when
viewing TS as a four-dimensional kd-tree. Hence, the inter-
section X of these two hyperplanes, which is a two-dimen-
sional plane in four-dimensional space, also intersects R4

µ.
With the priority leaves removed, TS becomes a four-dimen-
sional kd-tree with O(N/B) leaves; from a straightforward

generalization of the standard analysis of kd-trees we know
that any axis-parallel two-dimensional plane intersects at
most O(

�
N/B) of the regions associated with the nodes in

such a tree [2]. All that remains is to observe that Q defines
O(1) such planes, namely one for each pair of sides. Thus

O(
�

N/B) is a bound on the number of nodes ν that are
not priority leaves and are visited by the query procedure,
where not all rectangles in any of the priority leaves below
ν’s parent are reported.

2.1.3 Efficient construction algorithm
Note that it is easy to bulk-load a pseudo-PR-tree TS on

a set S of N rectangles in O(N
B

log N) I/Os by simply con-
structing one node at a time following the definition in Sec-
tion 2.1.1. We will now describe how, under the reasonable
assumption that the amount M of available main memory is
Ω(B4/3), we can bulk-load TS using O(N

B
logM/B

N
B

) I/Os.
Our algorithm is a modified version of the kd-tree con-

struction algorithm described in [1, 20]; it is easiest de-
scribed as constructing a four-dimensional kd-tree TS on the
points S∗. In the construction algorithm we first construct,
in a preprocessing step, four sorted lists Lxmin

, Lymin
, Lxmax

,
Lymax

containing the points in S∗ sorted by their xmin-,
ymin-, xmax-, and ymax-coordinate, respectively. Then we
construct Θ(log M) levels of the tree, and recursively con-
struct the rest of the tree.

To construct Θ(log M) levels of TS efficiently we proceed
as follows. We first choose a parameter z (which will be
explained below) and use the four sorted lists to find the
(kN/z)-th coordinate of the points S∗ in each dimension,
for all k ∈ {1, 2, ..., z − 1}. These coordinates define a
four-dimensional grid of size z4; we then scan S∗ and count
the number of points in each grid cell. We choose z to be
Θ(M1/4), so that we can keep these counts in main memory.

Next we build the Θ(log M) levels of TS without worrying
about the priority leaves: To construct the root ν of TS ,
we first find the slice of z3 grid cells with common xmin-
coordinate such that there is a hyperplane orthogonal to the
xmin-axis that passes through these cells and has at most half
of the points in S∗ on one side and at most half of the points
on the other side. By scanning the O(N/(Bz)) blocks from
Lxmin

that contain the O(N/z) points in these grid cells,
we can determine the exact xmin-value x to use in ν such
that the hyperplane H, defined by xmin = x, divides the
points in S∗ into two subsets with at most half of the points
each. After constructing ν, we subdivide the z3 grid cells
intersected by H, that is, we divide each of the z3 cells in two
at x and compute their counts by rescanning the O(N/(Bz))
blocks from Lxmin

that contain the O(N/z) points in these
grid cells. Then we construct a kd-tree on each side of the
hyperplane defined by x recursively (cycling through all four
possible cutting directions). Since we create O(z3) new cells
every time we create a node, we can ensure that the grid
still fits in main memory after constructing z nodes, that is,
log z = Θ(log M) levels of TS.

After constructing the Θ(log M) kd-tree levels, we con-
struct the four priority leaves for each of the z nodes. To do
so we reserve main memory space for the B points in each of
the priority leaves; we have enough main memory to hold all
priority leaves, since by the assumption that M is Ω(B4/3)
we have 4 · Θ(B) · Θ(z) = O(M). Then we fill the priority
leaves by scanning S∗ and “filtering” each point R∗

i through
the kd-tree, one by one, as follows: We start at the root of ν

of TS, and check its priority leaves νxmin
p , νymin

p , νxmax

p , and
νymax

p one by one in that order. If we encounter a non-full
leaf we simply place R∗

i there; if we encounter a full leaf νp

and R∗
i is more extreme in the relevant direction than the

least extreme point R∗
j in νp, we replace R∗

j with R∗
i and

continue the filtering process with R∗
j . After checking νymax

p

we continue to check the priority leaves of the child of ν in
TS whose region contains the point we are processing; if ν
does not have such a child (because we arrived at leaf level
in the kd-tree) we simply continue with the next point in S∗.

It is easy to see that the above process correctly constructs
the top Θ(log M) levels of the pseudo-PR-tree TS on S, ex-
cept that the kd-tree divisions are slightly different than the
ones defined in Section 2.1.1, since the points in the priority
leaves are not removed before the divisions are computed.
However, the bound of Lemma 2 still holds: The O(T/B)
term does not depend on the choice of the divisions, and
the kd-tree analysis that brought the O(

�
N/B) term only

depends on the fact that each child gets at most half of the
points of its parent.

After constructing the Θ(log M) levels and their priority
leaves, we scan through the four sorted lists Lxmin

, Lymin
,

Lxmax
, Lymax

and divide them into four sorted lists for each
of the Θ(z) leaves of the constructed kd-tree, while omit-
ting the points already stored in priority leaves. These lists
contain O(N/z) points each; after writing the constructed
kd-tree and priority leaves to disk we use them to construct
the rest of TS recursively.

Note that once the number of points in a recursive call
gets smaller than M , we can simply construct the rest of
the tree in internal memory one node at a time. This way
we can make slightly unbalanced divisions, so that we have a
multiple of B points on one side of each dividing hyperplane.
Thus we can guarantee that we get at most one non-full leaf
per subtree of size Θ(M), and obtain almost 100% space uti-
lization. To avoid having an underfull leaf that may violate
assumptions made by update algorithms, we may make the
priority leaves under its parent slightly smaller so that all
leaves contain Θ(B) rectangles. This also implies that the
bound of Lemma 1 still holds.

Lemma 3. A pseudo-PR-tree can be bulk-loaded with N
rectangles in the plane in O(N

B
logM/B

N
B

) I/Os.

Proof. The initial construction of the sorted lists takes
O(N

B
logM/B

N
B

) I/Os. To construct Θ(log M) levels of TS

we use O(N/B) I/Os to construct the initial grid, as well
as O(N/(Bz)) to construct each of the z nodes for a total
of O(N/B) I/Os. Constructing the priority leaves by filter-
ing also takes O(N/B) I/Os, and so does the distribution
of the remaining points in S∗ to the recursive calls. Thus
each recursive step takes O(N/B) I/Os in total. The lemma
follows since there are O(log N

B
/ log M) = O(logM

N
B

) levels
of recursion.

2.2 Two-dimensional PR-tree
In this section we describe how to obtain a PR-tree (with

degree Θ(B) and all leaves on the same level) from a pseudo-
PR-tree (with degree six and leaves on all levels), while

maintaining the O(
�

N/B+T/B) I/O window query bound.
The PR-tree is built in stages bottom-up: In stage 0 we

construct the leaves V0 of the tree from the set S0 = S of N
input rectangles; in stage i ≥ 1 we construct the nodes Vi

on level i of the tree from a set Si of O(N/Bi) rectangles,

consisting of the minimal bounding boxes of all nodes in Vi−1

(on level i−1). Stage i consists of constructing a pseudo-PR-
tree TSi

on Si; Vi then simply consists of the (priority as well
as normal) leaves of TSi

; the internal nodes are discarded.3

The bottom-up construction ends when the set Si is small
enough so that the rectangles in Si and the pointers to the
corresponding subtrees fit into one block, which is then the
root of the PR-tree.

Theorem 1. A PR-tree on a set S of N rectangles in the
plane can be bulk-loaded in O(N

B
logM/B

N
B

) I/Os, such that

a window query can be answered in O(
�

N/B +T/B) I/Os.

Proof. By Lemma 3, stage i of the PR-tree bulk-loading
algorithm uses O((|Si|/B) logM/B(|Si|/B)) I/Os, which is

O((N/Bi+1) logM/B
N
B

). Thus the complete PR-tree is con-
structed in

O(logB N)�
i=0

O � N

Bi+1
logM/B

N

B � = O � N

B
logM/B

N

B � I/Os.

To analyze the number of I/Os used to answer a window
query Q, we will analyze the number of nodes visited on
each level of the tree. Let Ti (i ≤ 0) be the number of nodes
visited on level i. Since the nodes on level 0 (the leaves)
correspond to the leaves of a pseudo-PR-tree on the N input
rectangles S, it follows from Lemma 2 that T0 = O(

�
N/B+

T/B); in particular, for big enough N and B, there exists a

constant c such that T0 ≤ c
�

N/B + c(T/B). There must
be Ti−1 rectangles in nodes of level i ≥ 1 of the PR-tree that
intersect Q, since these nodes contain the bounding boxes
of nodes on level i − 1. Since nodes on level i correspond
to the leaves of a pseudo-PR-tree on the N/Bi rectangles in
Si, it follows from Lemma 2 that for big enough N and B,
we have Ti ≤ (c/

√
Bi)

�
N/B + c(Ti−1/B). Summing over

all O(logB N) levels and solving the recurrence reveals that

O(
�

N/B + T/B) nodes are visited in total.

2.3 Multi-dimensional PR-tree
In this section we briefly sketch how our PR-tree gener-

alizes to dimensions greater than two. We focus on how to
generalize pseudo-PR-trees, since a d-dimensional PR-tree
can be obtained using d-dimensional pseudo-PR-trees in ex-
actly the same way as in the two-dimensional case; that
the d-dimensional PR-tree has the same asymptotic perfor-
mance as the d-dimensional pseudo-PR-tree is also proved
exactly as in the two-dimensional case.

Recall that a two-dimensional pseudo-PR-tree is basically
a four-dimensional kd-tree, where four priority leaves con-
taining extreme rectangles in each of the four directions have
been added below each internal node. Similarly, a d-dimen-
sional pseudo-PR-tree is basically a 2d-dimensional kd-tree,
where each node has 2d priority leaves with extreme rect-
angles in each of the 2d standard directions. For constant

3There is a subtle difference between the pseudo-PR-tree
algorithm used in stage 0 and the algorithm used in stages
i > 0. In stage 0, we construct leaves with input rectangles.
In stages i > 0, we construct nodes with pointers to chil-
dren and bounding boxes of their subtrees. The number of
children that fits in a node might differ by a constant fac-
tor from the number B of rectangles that fits in a leaf, so
the number of children might be Θ(B) rather than B. For
our analysis the difference does not matter and is therefore
ignored for simplicity.

d, the structure can be constructed in O(N
B

logM/B
N
B

) I/Os
using the same grid method as in the two-dimensional case
(Section 2.1.3); the only difference is that in order to fit the
2d-dimensional grid in main memory we have to decrease z
(the number of nodes produced in one recursive stage) to

Θ(M1/2d).
To analyze the number of I/Os used to answer a window

query on a d-dimensional pseudo-PR-tree, we analyze the
number of visited internal nodes as in the two-dimensional
case (Section 2.1.2); the total number of visited nodes is
at most a factor 2d higher, since at most 2d priority leaves
can be visited per internal node visited. As in the two-
dimensional case, O(T/B) is a bound on the number of
nodes ν visited where all rectangles in at least one of the
priority leaves below ν’s parent are reported. The number
of nodes ν visited such that each priority leaf of ν’s parent
contains at least one rectangle not intersecting the query
can then be bounded using an argument similar to the one
used in two dimensions; it is equal to the number of regions
associated with the nodes in a 2d-dimensional kd-tree with
O(N/B) leaves that intersect the (2d − 2)-dimensional in-
tersection of two orthogonal hyperplanes. It follows from a
straightforward generalization of the standard kd-tree anal-
ysis that this is O((N/B)1−1/d) [2].

Theorem 2. A PR-tree on a set of N hyperrectangles in
d dimensions can be bulk-loaded in O(N

B
logM/B

N
B

) I/Os,

such that a window query can be answered in O((N/B)1−1/d+
T/B) I/Os.

2.4 Lower bound for heuristic R-trees
The PR-tree is the first R-tree variant that always answers

a window query worst-case optimally. In fact, most other R-
tree variants can be forced to visit Θ(N/B) nodes to answer
a query even when no rectangles are reported (T = 0). In
this section we show how this is the case for the packed
Hilbert R-tree, the four-dimensional Hilbert R-tree, and the
TGS R-tree.

Theorem 3. There exist a set of rectangles S and a win-
dow query Q that does not intersect any rectangles in S, such
that all Θ(N/B) nodes are visited when Q is answered using
a packed Hilbert R-tree, a four-dimensional Hilbert R-tree,
or a TGS R-tree on S.

Proof. We will construct a set of points S such that all
leaves in a packed Hilbert R-tree, a four-dimensional Hilbert
R-tree, and a TGS R-tree on S are visited when answering
a line query that does not touch any point. The theorem
follows since points and lines are all special rectangles.

For convenience we assume that B ≥ 4, N = 2kB and
N/B = Bm, for some positive integers k and m, so that
each leaf of the R-tree contains B rectangles, and each in-
ternal node has fanout B. We construct S as a grid of N/B
columns and B rows, where each column is shifted up a little,
depending on its horizontal position (each row is in fact a
Halton-Hammersley point set; see e.g. [8]). More precisely,
S has a point pij = (xij , yij), for all i ∈ {0, ..., N/B − 1}
and j ∈ {0, ..., B − 1}, such that xij = i + 1/2, and yij =
j/B + h(i)/N . Here h(i) is the number obtained by revers-
ing, i.e. reading backwards, the k-bit binary representation
of i. An example with N = 64, B = 4 is shown in Figure 3.

Now, let us examine the structure of each of the three
R-tree variants on this dataset.

Figure 3: Worst-case example

i
′

1
= k · 2t i

′

2
= (k + 1)2t − 1column i1 i2

σ = 1

2tB

≥ 1 − σ

< 1 1

Figure 4: TGS partitioning the worst-case example.
A vertical division creates two bounding boxes with
a total area of less than i2 − i1 − 1. A horizontal di-
vision creates two bounding boxes with a total area
of more than (i2 − i1)(1 − 2σ) > i2 − i1 − 1.

Two- and four-dimensional packed Hilbert R-tree:
the Hilbert curve visits the columns in our grid of points
one by one; when it visits a column, it visits all points in
that column before proceeding to another column (we omit
the details of the proof from this abstract). Therefore, the
packed Hilbert R-tree makes a leaf for every column, and a
horizontal line can be chosen to intersect all these columns
while not touching any point.

TGS R-tree: The TGS algorithm will partition S into
B subsets of equal size and partition each subset recursively.
The partitioning is implemented by choosing a partitioning
line that separates the set into two subsets (whose sizes are
multiples of N/B), and then applying binary partitions to
the subsets recursively until we have partitioned the set into
N subsets of size N/B. Observe that on all levels in this
recursion, the partitioning line will leave at least a fraction
1/B of the input on each side of the line. Below we prove
that TGS will always partition by vertical lines; it follows
that TGS will eventually put each column in a leaf. Then a
line query can intersect all leaves but report nothing.

Suppose TGS is about to partition the subset S(i1, i2) of
S that consists of columns i1 to i2 inclusive, with i2 > i1,
i.e. S(i1, i2) = {pij |i ∈ {i1, ..., i2}, j ∈ {0, ..., B − 1}}. When
the greedy split algorithm gets to divide such a set into two,
it can look for a vertical partitioning line or for a horizontal
partitioning line. Intuitively, TGS favors partitioning lines
that create a big gap between the bounding boxes of the
points on each side of the line. As we will show below, we
have constructed S such that the area of the gap created by
a horizontal partitioning line is always roughly the same, as
is the area of the gap created by a vertical line, with the
latter always being bigger.

Partitioning with a vertical line would always leave a gap
of roughly a square that fits between two columns—see Fig-
ure 4. More precisely, it would partition the set S(i1, i2) into
two sets S(i1, c−1) and S(c, i2), for some c ∈ {i1 +1, ..., i2}.
The bounding boxes of these two sets would each have height
less than 1, and their total width would be (c − 1 − i1) +
(i2 − c), so their total area Av would be less than i2 − i1 −1.

The width of a gap around a horizontal partitioning line
depends on the number of columns in S(i1, i2). However,

the more columns are involved the bigger the density of the
points in those columns when projected on the y-axis, and
the lower the gap that can be created—see Figure 4 for an
illustration. As a result, partitioning with a horizontal line
can lead to gaps that are wide and low, or relatively high
but not so wide; in any case, the area of the gap will be
roughly the same. More precisely, when we partition this
set by a horizontal line, the total area Ah of the resulting
bounding boxes must be at least i2 − i1 − 4/B (we omit the
details from this abstract).

Recall that Av is less than i2 − i1 − 1. Since B ≥ 4,
we can conclude that Ah > Av, and that partitioning with
a vertical line will always result in a smaller total area of
bounding boxes than with a horizontal line. As a result,
TGS will always cut vertically between the columns.

3. EXPERIMENTS
In this section we describe the results of our experimental

study of the performance of the PR-tree. We compared
the PR-tree to several other bulk-loading methods known to
generate query-efficient R-trees: The packed Hilbert R-tree
(denoted H in the rest of this section), the four-dimensional
Hilbert R-tree (denoted H4), and the TGS R-tree (denoted
TGS). Among these, TGS has been reported to have the
best query performance, but it also takes many I/Os to bulk-
load. In contrast, H is simple to bulk-load, but it has worse
query performance because it does not take the extent of the
input rectangles into account. H4 has been reported to be
inferior to H [15], but since it takes the extent into account
(like TGS) it should intuitively be less vulnerable to extreme
datasets.

3.1 Experimental setup
We implemented the four bulk-loading algorithms in C++

using TPIE [3]. TPIE is a library that provides support for
implementing I/O-efficient algorithms and data structures.
In our implementation we used 36 bytes to represent each
input rectangle; 8 bytes for each coordinate and 4 bytes to be
able to hold a pointer to the original object. Each bounding
box in the internal nodes also used 36 bytes; 8 bytes for each
coordinate and 4 bytes for a pointer to the disk block storing
the root of the corresponding subtree. The disk block size
was chosen to be 4KB, resulting in a maximum fanout of
113. This is similar to earlier experimental studies, which
typically use block sizes ranging from 1KB to 4KB or fix the
fan-out to a number close to 100.

As experimental platform we used a dedicated Dell Pow-
erEdge 2400 workstation with one Pentium III/500MHz pro-
cessor running FreeBSD 4.3. A local 36GB SCSI disk (IBM
Ultrastar 36LZX) was used to store all necessary files: the
input data, the R-trees, as well as temporary files. We re-
stricted the main memory to 128MB and further restricted
the amount of memory available to TPIE to 64MB; the rest
was reserved to operating system daemons.

3.2 Datasets
We used both real-life and synthetic data in our experi-

ments.

3.2.1 Real-life data
As the real-life data we used the tiger/Line data [24]

of geographical features in the United States. This data is

the standard benchmark data used in spatial databases. It
is distributed on six CD-ROMs and we chose to experiment
with the road line segments from two of the CD-ROMs: Disk
one containing data for sixteen eastern US states and disk
six containing data from five western US states; we use East-
ern and Western to refer to these two datasets, respectively.
To obtain datasets of varying sizes we divided the Eastern
dataset into five regions of roughly equal size, and then put
an increasing number of regions together to obtain datasets
of increasing sizes. The largest set is just the whole Eastern
dataset. For each dataset we used the bounding boxes of the
line segments as our input rectangles. As a result, the East-
ern dataset had 16.7 million rectangles, for a total size of
574MB, and the Western data set had 12 million rectangles,
for a total size of 411MB. Note that the biggest dataset is
much larger than those used in previous works (which only
used up to 100,000 rectangles) [15, 12]. Note also that our
tiger data is relatively nicely distributed; it consist of rel-
atively small rectangles (long roads are divided into short
segments) that are somewhat (but not too badly) clustered
around urban areas.

3.2.2 Synthetic data
To investigate how the different R-trees perform on more

extreme datasets than the tiger data, we generated a num-
ber of synthetic datasets. Each of these synthetic datasets
consisted of 10 million rectangles (or 360MB) in the unit
square.

• size(max side): We designed the first class of syn-
thetic datasets to investigate how well the R-trees han-
dle rectangles of different sizes. In the size(max side)
dataset the rectangle centers were uniformly distribu-
ted and the lengths of their sides uniformly and inde-
pendently distributed between 0 and max side. When
generating the datasets, we discarded rectangles that
were not completely inside the unit square (but made
sure each dataset had 10 million rectangles). A portion
of the dataset size(0.001) is shown in Figure 5.

Figure 5: Synthetic dataset SIZE(0.001)

• aspect(a): The second class of synthetic datasets was
designed to investigate how the R-trees handle rect-
angles with different aspect ratios. The areas of the
rectangles in all the datasets were fixed to 10−6, a
reasonably small size. In the aspect(a) dataset the
rectangle centers were uniformly distributed but their

aspect ratios were fixed to a and the longest sides cho-
sen to be vertical or horizontal with equal probability.
We also made sure that all rectangles fell completely
inside the unit square. A portion of the dataset as-

pect(10) is shown in Figure 6. Note that if the input
rectangles are bounding boxes of line segments that
are almost horizontal or vertical, one will indeed get
rectangles with very high aspect ratio—even infinite in
the case of horizontal or vertical segments.

Figure 6: Synthetic dataset ASPECT(10)

• skewed(c): In many real-life multidimensional data-
sets different dimensions often have different distri-
butions, some of which may be highly skewed com-
pared to the others. We designed the third class of
datasets to investigate how this affects R-tree perfor-
mance. skewed(c) consists of uniformly distributed
points that have been “squeezed” in the y-dimension,
that is, each point (x, y) is replaced with (x, yc). An
example of skewed(5) is shown in Figure 7.

Figure 7: Synthetic dataset SKEWED(5)

• cluster: Our final dataset was designed to illustrate
the worst-case behavior of the H, H4 and TGS R-
trees. It is similar to the worst-case example discussed
in Section 2. It consists of 10 000 clusters with cen-
ters equally spaced on a horizontal line. Each clus-
ter consists of 1000 points uniformly distributed in a
0.000 01× 0.000 01 square surrounding its center. Fig-
ure 8 shows a part of the cluster dataset.

Figure 8: Synthetic dataset CLUSTER

Hilbert (H/H4)

PR-tree (PR)

Greedy (TGS)

451 s

1 495 s

4 421 s

Hilbert (H/H4)

PR-tree (PR)

Greedy (TGS)

1.2 mln

3.1 mln

14.7 mln

583 s

2 138 s

6 530 s

1.7 mln

4.4 mln

21.1 mln

Western data Eastern data

Figure 9: Bulk-loading performance on TIGER
data: I/O (upper figure) and time (lower figure).

3.3 Experimental results
Below we discuss the results of our bulk-loading and query

experiments with the four R-tree variants.

3.3.1 Bulk-loading performance
We bulk-loaded each of the R-trees with each of the real-

life tiger datasets, as well as with the synthetic datasets
for various parameter values. In all experiments and for
all R-trees we achieved a space utilization above 99%.4 We
measured the time spent and counted the number of 4KB
blocks read or written when bulk-loading the trees. Note
that all algorithms we tested read and write blocks almost
exclusively by sequential I/O of large parts of the data; as
a result, I/O is much faster than if blocks were read and
written in random order.

Figure 9 shows the results of our experiments using the
Eastern and Western datasets. Both experiments yield the
same result: The H and H4 algorithms use the same number
of I/Os, and roughly 2.5 times fewer I/Os than PR. This is
not surprising since even though the three algorithms have
the same O(N

B
logM/B

N
B

) I/O bounds, the PR algorithm is
much more complicated than the H and H4 algorithms. The
TGS algorithm uses roughly 4.5 times more I/Os than PR,
which is also not surprising given that the algorithm makes
binary partitions so that the number of levels of recursion
is effectively O(log2 N). In terms of time, the H and H4
algorithms are still more than 3 times faster than the PR
algorithm, but the TGS algorithm is only roughly 3 times
slower than PR. This shows that H, H4 and PR are all more
CPU-intensive than TGS.

Figure 10 shows the results of our experiments with the
five Eastern datasets. These experiments show that the H,
H4 and PR algorithms scale relatively linearly with dataset
size; this is a result of the dlogM/B

N
B
e factor in the bulk-

loading bound being the same for all datasets. The cost of
the TGS algorithm seems to grow in an only slightly super-
linear way with the size of the data set. This is a result of
the dlog2 Ne factor in the bulk-loading bound being almost

4When R-trees are bulk-loaded to subsequently be updated
dynamically, near 100% space utilization is often not desir-
able [10]. However, since we are mainly interested in the
query performance of the R-tree constructed with the dif-
ferent bulk-loading methods, and since the methods could
be modified in the same way to produce non-full leaves, we
only considered the near 100% utilization case.

Hilbert (H/H4)

PR-tree (PR)

Greedy (TGS)

2.1 mln 5.7 mln 9.2 mln 12.7 mln 16.7 mln rectangles

1.8

6.2

11.0

15.2

21.1

0.6
1.5

2.4
3.3

4.4

0.2 0.6
0.9 1.3 1.7

million blocks read or written

Figure 10: Bulk-loading performances on Eastern
datasets (I/Os)

the same for all data sets.
In our experiments with the synthetic data we found that

the performance of the H, H4 and PR bulk-loading algo-
rithms was practically the same for all the datasets, that is,
unaffected by the data distribution. This is not surprising,
since the performance should only depend on the dataset
size (and all the synthetic datasets have the same size). The
PR algorithm performance varied slightly, which can be ex-
plained by the small effect the data distribution can have on
the grid method used in the bulk-loading algorithm (sub-
trees may have slightly different sizes due to the removal
of priority boxes). On average, the H and H4 algorithms
spent 381 seconds and 1.0 million I/Os on each of the syn-
thetic datasets, while the PR algorithm spent 1289 seconds
and 2.6 million I/Os. On the other hand, as expected, the
performance of the TGS algorithm varied significantly over
the synthetic datasets we tried; the binary partitions made
by the algorithm depend heavily on the input data distribu-
tion. The TGS algorithm was between 4.6 and 16.4 times
slower than the PR algorithm in terms of I/O, and between
2.8 and 10.9 times slower in terms of time. Due to lack of
space, we only show the performance of the TGS algorithm
on the size(max side) and aspect(a) datasets in Figure 11.
The point datasets, skewed(c) and cluster, were all built
in between 3 471 and 4 456 seconds.

3.3.2 Query performance
After bulk-loading the four R-tree variants we experi-

mented with their query performance; in each of our exper-
iments we performed 100 randomly generated queries and
computing their average performance (a more exact descrip-
tion of the queries is given below). Following previous ex-
perimental studies, we utilized a cache (or “buffer”) to store
internal R-tree nodes during queries. In fact, in all our ex-
periments we cached all internal nodes since they never oc-
cupied more than 6MB. This means that when reporting
the number of I/Os needed to answer a query, we are in
effect reporting the number of leaves visited in order to an-
swer the query.5 For several reasons, and following previous

5Experiments with the cache disabled showed that in our
experiments the cache actually had relatively little effect on

3 726 3 929
4 552

5 837

8 952

12 111

14 024

4 613

13 196

12 738 14 034

8 283

0.2 0.5 1 2 5 10 20% 101 102 103 104 105

SIZE(max side) ASPECT(a)

Figure 11: Bulk-loading time in seconds of Top-
down Greedy Split on synthetic data sets of 10 mil-
lion rectangles each.

Greedy (TGS)

PR-tree (PR)

Hilbert 2D (H)

Hilbert 4D (H4)

100%

110%

120%

123

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00% of total area

463 777 1231 1647 2403 2814 3928B rectangles output

Figure 12: Query performance for queries with
squares of varying size on the Western TIGER data.
The performance is given as the number of blocks
read divided by the output size T/B.

experimental studies [6, 12, 15, 16], we did not collect tim-
ing data. Two main reasons for this are (1) that I/O is a
much more robust measure of performance, since the query
time is easily affected by operating system caching and by
disk block layout; and (2) that we are interested in heavy
load scenarios where not much cache memory is available or
where caches are ineffective, that is, where I/O dominates
the query time.

TIGER data: We first performed query experiments us-
ing the Eastern and Western datasets. The results are sum-
marized in Figure 12, 13, and 14. In Figure 12 and 13 we
show the results of experiments with square window queries
with areas that range from 0.25% to 2% of the area of
the bounding box of all input rectangles. We used smaller
queries than previous experimental studies (for example, the
maximum query in [15] occupies 25% of the area) because
our datasets are much larger than the datasets used in previ-
ous experiments—without reducing the query size the out-

the window query performance.

Greedy (TGS)

PR-tree (PR)

Hilbert 2D (H)

Hilbert 4D (H4)

100%

110%

120%

350

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00% of total area

685 1208 1814 1959 2676 3460 4386B rectangles output

Figure 13: Query performance for queries with
squares of varying size on the Eastern TIGER data.
The performance is given as the number of blocks
read divided by the output size T/B.

Greedy (TGS)

PR-tree (PR)

Hilbert 2D (H)

Hilbert 4D (H4)

100%

110%

120%

154

2.08 5.67 9.16 12.66 16.72 mln rectangles input

574 809 1265 1814 B rectangles output

TGS

H

PR

H4

Figure 14: Query performance for queries with
squares of area 0.01 on Eastern TIGER data sets
of varying size. The performance is given as the
number of blocks read divided by the output size
T/B.

put would be unrealistically large and the reporting cost
would thus dominate the overall query performance. In Fig-
ure 14 we show the results of experiments on the five Eastern
datasets of various sizes with a fixed query size of 1%. The
results show that all four R-tree variants perform remark-
ably well on the tiger data; their performance is within
10% of each other and they all answer queries in close to
T/B, the minimum number of necessary I/Os. Their rel-
ative performance generally agrees with earlier results [15,
12], that is, TGS performs better than H, which in turn is
better than H4. PR consistently performs slightly better
than both H and H4 but slightly worse than TGS.

Synthetic data. Next we performed experiments with
our synthetic datasets, designed to investigate how the dif-
ferent R-trees perform on more extreme datasets than the
tiger data. For each of the datasets size, aspect and
skewed we performed experiments where we varied the pa-
rameter to obtain data ranging from fairly normal to rather
extreme. Below we summarize our results.

The left side of Figure 15 shows the results of our ex-

0.2 0.5 1 2 5 10 20% 101 1 3 5 7 9102 103 104 105

SIZE(max side) ASPECT(a) SKEWED(c)

100%

150%

200%

902 935 986 1090 1433 2147 3879 913 986 1195 1836 3864 886 887 892 904 968B rectangles
output

TGS

PR

H

H4

TGS

PR

H

H4

TGS

PR

H

H4

340%

H

TGS

H

Figure 15: Query performance for queries with squares of area 0.01 on synthetic data sets. The performance
is given as the number of blocks read divided by the output size T/B.

periments with the dataset size(max side) when varying
max side from 0.002 to 0.2, that is, from relatively small
to relatively large rectangles. As queries we used squares
with area 0.01. Our results show that for relatively small
input rectangles, like the tiger data, all the R-tree variants
perform very close to the minimum number of necessary
I/Os. However, as the input rectangles get larger, PR and
H4 clearly outperform H and TGS. H performs the worst,
which is not surprising since it does not take the extent
of the input rectangles into account. TGS performs sig-
nificantly better than H but still worse than PR and H4.
Intuitively, PR and H4 can handle large rectangles better,
because they rigorously divide rectangles into groups of rect-
angles that are similar in all four coordinates. This may en-
able these algorithms to group likely answers, namely large
rectangles, together so that they can be retrieved with few
I/Os. It also enables these algorithms to group small rect-
angles nicely, while TGS, which strives to minimize the total
area of bounding boxes, may be indifferent to the distribu-
tion of the small rectangles in the presence of large rectan-
gles.

The middle of Figure 15 shows the results of our exper-
iments with the dataset aspect(a), when we vary a from
10 to 105, that is, when we go from rectangles (of constant
area) with small to large aspect ratio. As query we again
used squares with area 0.01. The results are very similar
to the results of the size dataset experiments, except that
as the aspect ratio increases, PR and H4 become signifi-
cantly better than TGS and especially H. Unlike with the
size dataset, PR performs as well as H4 and they both per-
form close to the minimum number of necessary I/Os to
answer a query. Thus this set of experiments re-emphasizes
that both the PR-tree and H4-tree are able to adopt to vary-

ing extent very well.
The right side of Figure 15 shows the result of our experi-

ments with the dataset skewed(c), when we vary c from 1 to
9, that is, when we go from a uniformly distributed point set
to a very skewed point set. As query we used squares with
area 0.01 that are skewed in the same way as the dataset
(that is, where the corner (x, y) is transformed to (x, yc)) so
that the output size remains roughly the same. As expected,
the PR performance is unaffected by the transformations,
since our bulk-loading algorithm is based only on the rela-
tive order of coordinates: x-coordinates are only compared
to x-coordinates, and y-coordinates are only compared to
y-coordinates; there is no interaction between them. On the
other hand, the query performance of the three other R-trees
degenerates quickly as the point set gets more skewed.

As a final experiment, we queried the cluster dataset
with long skinny horizontal queries (of area 1×10−7) through
the 10 000 clusters; the y-coordinate of the leftmost bot-
tom corner was chosen randomly such that the query passed
through all clusters. The results are shown in Table 1. As
anticipated, the query performance of H, H4 and TGS is very
bad; the cluster dataset was constructed to illustrate the
worst-case behavior of the structures. Even though a query
only returns around 0.3% of the input points on average, the

tree: H H4 PR TGS

I/Os: 32 920 83 389 1 060 22 158

% of the R-tree visited: 37% 94% 1.2% 25%

Table 1: Query performances on synthetic dataset
CLUSTER.

query algorithm visits 37%, 94% and 25% of the leaves in
H, H4 and TGS, respectively. In comparison, only 1.2% of
the leaves are visited in PR. Thus the PR-tree outperforms
the other indexes by well over an order of magnitude.

3.4 Conclusions of the experiments
The main conclusion of our experimental study is that

the PR-tree is not only theoretically efficient but also practi-
cally efficient. Our bulk-loading algorithm is slower than the
packed Hilbert and four-dimensional Hilbert bulk-loading al-
gorithms but much faster than the TGS R-tree bulk-loading
algorithm. Furthermore, unlike for the TGS R-tree, the per-
formance of our bulk-loading algorithm does not depend on
the data distribution. The query performance of all four
R-trees is excellent on nicely distributed data, including the
real-life tiger data. On extreme data however, the PR-tree
is much more robust than the other R-trees (even though the
four-dimensional Hilbert R-tree is also relatively robust).

4. CONCLUDING REMARKS
In this paper we presented the PR-tree, which is the first

R-tree variant that can answer any window query in the opti-
mal O(

�
N/B+T/B) I/Os. We also performed an extensive

experimental study, which showed that the PR-tree is not
only optimal in theory, but that it also performs excellent
in practice: for normal data, it is quite competitive to the
best known heuristics for bulk-loading R-trees, namely the
packed Hilbert-R-tree [15] and the TGS R-tree [12], while
for data with extreme shapes or distributions, it outperforms
them significantly.

The PR-tree can be updated using any known update
heuristic for R-trees, but then its performance cannot be
guaranteed theoretically anymore and its practical perfor-
mance might suffer as well. Alternatively, we can use the dy-
namic version of the PR-tree using the logarithmic method,
which has the same theoretical worst-case query performance
and can be updated efficiently. In the future we wish to ex-
periment to see what happens to the performance when we
apply heuristic update algorithms and when we use the the-
oretically superior logarithmic method.

5. REFERENCES
[1] P. K. Agarwal, L. Arge, O. Procopiuc, and J. S. Vitter. A

framework for index bulk loading and dynamization. In
Proc. International Colloquium on Automata, Languages,
and Programming, pages 115–127, 2001.

[2] P. K. Agarwal, M. de Berg, J. Gudmundsson, M. Hammar,
and H. J. Haverkort. Box-trees and R-trees with
near-optimal query time. Discrete and Computational
Geometry, 28(3):291–312, 2002.

[3] L. Arge, O. Procopiuc, and J. S. Vitter. Implementing
I/O-efficient data structures using TPIE. In Proc.
European Symposium on Algorithms, pages 88–100, 2002.

[4] L. Arge and J. Vahrenhold. I/O-efficient dynamic planar
point location. International Journal of Computational
Geometry & Applications, 2003. To appear.

[5] R. Bayer and E. McCreight. Organization and maintenance
of large ordered indexes. Acta Informatica, 1:173–189,
1972.

[6] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The R*-tree: An efficient and robust access method for
points and rectangles. In Proc. SIGMOD International
Conference on Management of Data, pages 322–331, 1990.

[7] S. Berchtold, C. Böhm, and H.-P. Kriegel. Improving the
query performance of high-dimensional index structures by

bulk load operations. In Proc. Conference on Extending
Database Technology, LNCS 1377, pages 216–230, 1998.

[8] B. Chazelle. The Discrepancy Method: Randomness and
Complexity. Cambridge University Press, New York, 2001.

[9] D. Comer. The ubiquitous B-tree. ACM Computing
Surveys, 11(2):121–137, 1979.

[10] D. J. DeWitt, N. Kabra, J. Luo, J. M. Patel, and J.-B. Yu.
Client-server paradise. In Proc. International Conference
on Very Large Databases, pages 558–569, 1994.

[11] V. Gaede and O. Günther. Multidimensional access
methods. ACM Computing Surveys, 30(2):170–231, 1998.

[12] Y. J. Garćıa, M. A. López, and S. T. Leutenegger. A greedy
algorithm for bulk loading R-trees. In Proc. 6th ACM
Symposium on Advances in GIS, pages 163–164, 1998.

[13] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In Proc. SIGMOD International
Conference on Management of Data, pages 47–57, 1984.

[14] H. J. Haverkort, M. de Berg, and J. Gudmundsson.
Box-trees for collision checking in industrial installations.
In Proc. ACM Symposium on Computational Geometry,
pages 53–62, 2002.

[15] I. Kamel and C. Faloutsos. On packing R-trees. In Proc.
International Conference on Information and Knowledge
Management, pages 490–499, 1993.

[16] I. Kamel and C. Faloutsos. Hilbert R-tree: An improved
R-tree using fractals. In Proc. International Conference on
Very Large Databases, pages 500–509, 1994.

[17] K. V. R. Kanth and A. K. Singh. Optimal dynamic range
searching in non-replicating index structures. In Proc.
International Conference on Database Theory, LNCS
1540, pages 257–276, 1999.

[18] S. T. Leutenegger, M. A. López, and J. Edgington. STR: A
simple and efficient algorithm for R-tree packing. In Proc.
IEEE International Conference on Data Engineering,
pages 497–506, 1996.

[19] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and
Y. Theodoridis. R-trees have grown everywhere. Technical
Report available at http://www.rtreeportal.org/, 2003

[20] O. Procopiuc, P. K. Agarwal, L. Arge, and J. S. Vitter.
Bkd-tree: A dynamic scalable kd-tree. In Proc.
International Symposium on Spatial and Temporal
Databases, 2003.

[21] J. Robinson. The K-D-B tree: A search structure for large
multidimensional dynamic indexes. In Proc. SIGMOD
International Conference on Management of Data, pages
10–18, 1981.

[22] N. Roussopoulos and D. Leifker. Direct spatial search on
pictorial databases using packed R-trees. In Proc.
SIGMOD International Conference on Management of
Data, pages 17–31, 1985.

[23] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree:
A dynamic index for multi-dimensional objects. In Proc.
International Conference on Very Large Databases, pages
507–518, 1987.

[24] TIGER/LineTM Files, 1997 Technical Documentation.
Washington, DC, September 1998.
http://www.census.gov/geo/tiger/TIGER97D.pdf.

