
The Skip Quadtree: A Simple Dynamic
Data Structure for Multidimensional Data

David Eppstein Michael T. Goodrich † Jonathan Z. Sun †

Department of Computer Science
Donald Bren School of Information and Computer Sciences

University of California, Irvine
Irvine, CA 92697-3425, USA

{eppstein,goodrich,zhengsun}(at)ics.uci.edu

ABSTRACT
We present a new multi-dimensional data structure, which we call
the skip quadtree (for point data in R2) or the skip octree (for point
data in Rd , with constant d > 2). Our data structure combines
the best features of two well-known data structures, in that it has
the well-defined “box”-shaped regions of region quadtrees and the
logarithmic-height search and update hierarchical structure of skip
lists. Indeed, the bottom level of our structure is exactly a region
quadtree (or octree for higher dimensional data). We describe effi-
cient algorithms for inserting and deleting points in a skip quadtree,
as well as fast methods for performing point location, approximate
range, and approximate nearest neighbor queries.

Categories and Subject Descriptors
E.1 [Data]: Data Structures; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems—
geometrical problems and computations; H.3.3 [Information Sys-
tems]: Information Storage and Retrieval—information search and
retrieval

General Terms
Algorithms, Theory

Keywords
Skip quadtree, quadtree, octree, dynamic data structure, point loca-
tion, range, nearest neighbor, approximation algorithm.

1. INTRODUCTION
Data structures for multidimensional point data are of signif-

icant interest in the computational geometry, computer graphics,
and scientific data visualization literatures. They allow point data
to be stored and searched efficiently, for example to perform range
queries to count or report (possibly approximately) the points that

†Supported by NSF Grants CCR-0225642, CCR-0311720, CCR-
0312760, and DUE-0231467.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’05, June 6–8, 2005, Pisa, Italy.
Copyright 2005 ACM 1-58113-991-8/05/0006 ...$5.00.

are contained in a given query region. We are interested in this
paper in data structures for multidimensional point sets that are dy-
namic, in that they allow for fast point insertion and deletion, as
well as efficient, in that they use linear space and allow for fast
query times.

1.1 Related Previous Work
Linear-space multidimensional data structures typically are de-

fined by hierarchical subdivisions of space, which give rise to tree-
based search structures. That is, a hierarchy is defined by associ-
ating with each node v in a tree T a region R(v) in Rd such that
the children of v are associated with subregions of R(v) defined by
some kind of “cutting” action on R(v). Examples include:

• quadtrees [32]: regions are defined by squares in the plane,
which are subdivided into four equal-sized squares for any
regions containing more than a single point. (These are also
called PR quadtrees, and we always refer to this variant of
quadtrees in this paper.) So each internal node in the under-
lying tree has four children and regions have optimal aspect
ratios (which is useful for many types of queries). Unfortu-
nately, the tree can have arbitrary depth, independent even
of the number of input points. Even so, point insertion and
deletion is fairly simple.

• octrees [22, 32]: regions are defined by hypercubes in Rd ,
which are subdivided into 2d equal-sized hypercubes for any
regions containing more than a single point. So each in-
ternal node in the underlying tree has 2d children and, like
quadtrees, regions have optimal aspect ratios and point inser-
tion/deletion is simple, but the tree can have arbitrary depth.

• k-d trees [10]: regions are defined by hyperrectangles in Rd ,
which are subdivided into two hyperrectangles using an axis-
perpendicular cutting hyperplane through the median point,
for any regions containing more than two points. So the un-
derlying tree can be made a balanced binary tree with �logn�
depth for a static set of points. Unfortunately, the regions can
have arbitrarily large aspect ratios, which can adversely af-
fect the efficiencies of some queries. Although some variants
were proposed to help, such as by cutting along the longest
side instead of along each axis recursively [15], they only
improve the aspect ratios experimentally or statistically. In
addition, maintaining an efficient k-d tree subject to point in-
sertions and removal is non-trivial.

• compressed quad/octrees [2, 11–13]: regions are defined in
the same way as in a quadtree or octree (depending on the
dimensionality), but paths in the tree consisting of nodes with
only one non-empty child are compressed to single edges.

296

This compression allows regions to still be hypercubes (with
optimal aspect ratio), but it changes the subdivision process
from a four-way cut to a reduction to at most four disjoint
hypercubes inside the region. It also forces the height of the
(compressed) quad/octree to be at most O(n). This height
bound is still not very efficient, of course.

• balanced box decomposition (BBD) trees [6–8]: regions are
defined by hypercubes with smaller hypercubes subtracted
away, so that the height of the decomposition tree is O(logn).
These regions have good aspect ratios, that is, they are “fat”
[20,21], but they are not convex, which limits some of the ap-
plications of this structure. In addition, making this structure
dynamic appears non-trivial.

• balanced aspect-ratio (BAR) trees [17, 19]: regions are de-
fined by convex polytopes of bounded aspect ratio, which
are subdivided by hyperplanes perpendicular to one of a set
of 2d “spread-out” vectors so that the height of the decom-
position tree is O(logn). This structure has the advantage of
having convex regions and logarithmic depth, but the regions
are no longer hyperrectangles (or even hyperrectangles with
hyperrectangular “holes”). In addition, making this structure
dynamic appears non-trivial.

This summary is, of course, not a complete review of existing work
on space partitioning data structures for multidimensional point
sets. The reader interested in further study of these topics is encour-
aged to read the books by de Berg et al. [14] and Samet [34,35,38],
as well as the book chapters by Asano et al. [9], Samet [36,37,39],
Lee [24], Aluru [1], Naylor [29], Nievergelt and Widmayer [31],
Leutenegger and Lopez [25], Duncan and Goodrich [18], and Arya
and Mount [5].

1.2 Our Results
In this paper we present a dynamic data structure for multidi-

mensional data, which we call the skip quadtree (for point data in
R2) or the skip octree (for point data in Rd , for fixed d > 2). For the
sake of simplicity, however, we will often use the term “quadtree”
to refer to both the two- and multi-dimensional structures. This
structure provides a hierarchical view of a quadtree in a fashion
reminiscent of the way the skip-list data structure [27,33] provides
a hierarchical view of a linked list. Our approach differs fundamen-
tally from previous techniques for applying skip-list hierarchies to
multidimensional point data [26,30] or interval data [23], however,
in that the bottom-level structure in our hierarchy is not a list—
it is a tree. Indeed, the bottom-level structure in our hierarchy is
just a compressed quadtree [1, 2, 11–13]. Thus, any operation that
can be performed with a quadtree can be performed with a skip
quadtree. More interestingly, however, we show that point location,
approximate range, and approximate nearest neighbor queries can
be performed in a skip quadtree in O(logn), O(ε1−d + logn), and
O(ε1−d(logn+ logε−1)) time, respectively, for any constant ε > 0.
We also show that point insertion and deletion can be performed
in O(logn) time. We describe both randomized and deterministic
versions of our data structure, with the above time bounds being ex-
pected bounds as well as bounds with high probability (w.h.p.) for
the randomized version and worst-case bounds for the deterministic
version.

Due to the balanced aspect ratio of their cells, quadtrees have
many geometric applications including range searching, proximity
problems, construction of well separated pair decompositions, and
quality triangulation. However, due to their potentially high depth,
maintaining quadtrees directly can be expensive. Our skip quadtree
data structure provides the benefits of quadtrees together with fast

update and query times even in the presence of deep tree branches,
and is, to our knowledge, the first balanced aspect ratio subdivision
with such efficient update and query times. We believe that this
data structure will be useful for many of the same applications as
quadtrees. In this paper we demonstrate the skip quadtree’s benefits
for three simple types of queries: point location within the quadtree
itself, approximate range counting, and approximate nearest neigh-
bor searching.

2. PRELIMINARIES
In this section we discuss some preliminary conventions we use

in this paper.

2.1 Notational Conventions
Throughout this paper we use Q for a quadtree and p, q, or r for

squares or quadrants of squares associated with the nodes of Q. We
use S with |S| = n for a set of data points in Rd upon which the
quadtree is built, and x, y, z for the points in S. We use u or v to
denote a point location in Rd and p(u) for the smallest square in
Q that covers the location, regardless if u is in the underlying point
set S for Q or not. Constant d is reserved for the dimensionality
of our search space, Rd , and we assume throughout that d ≥ 2 is a
constant. In d-dimensional space we still use the term “square” to
refer to a d-dimensional cube and we use “quadrant” for any of the
1/2d partitions of a square r into squares having the center of r as
a corner and sharing part of r’s boundary. A square r is identified
by its center c(r) and its half side length s(r).

2.2 The Computational Model
As is standard practice in computational geometry algorithms

dealing with quadtrees and octrees (e.g., see [12]), we assume in
this paper that certain operations on points in Rd can be done in
constant time. In real applications, these operations are typically
performed using hardware operations that have running times sim-
ilar to operations used to compute linear intersections and perform
point/line comparisons. Specifically, in arithmetic terms, the com-
putations needed to perform point location in a quadtree, as well as
update, range query, or nearest neighbor query operations, involve
finding the most significant binary digit at which two coordinates
of two points differ. This can be done in O(1) machine instructions
if we have a most-significant-bit instruction, or by using floating-
point or extended-precision normalization. If the coordinates are
not in binary fixed or floating point, such operations may also in-
volve computing integer floor and ceiling functions.

2.3 The Compressed Quadtree
As the bottom-level structure in a skip quadtree is a compressed

quadtree [1, 2, 11–13], let us briefly review this structure.
The compressed quadtree is defined in terms of an underlying

(standard) quadtree for the same point set; hence, we define the
compressed quadtree by identifying which squares from the stan-
dard quadtree should also be included in the compressed quadtree.
Without loss of generality, we can assume that the center of the root
square (containing the entire point set of interest) is the origin and
the half side length for any square in the quadtree is a power of 2. A
point x is contained in a square p iff −s(p) ≤ xi − c(p)i < s(p) for
each dimension i ∈ [1, · · · ,d]. According to whether xi −c(p)i < 0
or ≥ 0 for all dimensions we also know in which quadrant of p that
x is contained.

Define an interesting square of a (standard) quadtree to be one
that is either the root of the quadtree or that has two or more non-
empty quadrants. Then it is clear that any quadtree square p con-
taining two or more points contains a unique largest interesting
square q (which is either p itself or a descendent square of p in

297

the standard quadtree). In particular, if q is the largest interesting
square for p, then q is the lowest common ancestor (LCA) in the
quadtree of the points contained in p. We compress the (standard)
quadtree to explicitly store only the interesting squares, by splicing
out the non-interesting squares and deleting their empty children
from the original quadtree. That is, for each interesting square p,
we store 2d bi-directed pointers one for each d-dimensional quad-
rant of p. If the quadrant contains two or more points, the pointer
goes to the largest interesting square inside that quadrant; if the
quadrant contains one point, the pointer goes to that point; and if
the quadrant is empty, the pointer is NULL. We call this structure a
compressed quadtree [1, 2, 11–13]. (See Fig. 1.)

Figure 1: A quadtree containing 3 points (left) and its com-
pressed quadtree (right). Below them are the pointer represen-
tations, where a square or an interesting square is represented
by a square, a point by a solid circle and an empty quadrant by
a hollow circle. The 4 children of each square are ordered from
left to right according to the I, II, III, IV quadrants.

A compressed d-dimensional quadtree Q for n points has size
O(n), but its worst-case height is O(n), which is inefficient yet nev-
ertheless improves the arbitrarily-bad worst-case height of a stan-
dard quadtree. These bounds follow immediately from the fact that
there are O(n) interesting squares, each of which has size O(2d).

With respect to the arithmetic operations needed when dealing
with compressed quadtrees, we assume that we can do the follow-
ing operations in O(1) time:

• Given a point location u and a square p, decide if p covers u
and if yes, which quadrant of p covers u.

• Given a quadrant of a square p containing two points x and
y, find the largest interesting square inside this quadrant.

• Given a quadrant of p containing an interesting square r and
a point x
∈ r, find the largest interesting square inside this
quadrant intersecting both r and x.

A standard point location search in a compressed quadtree Q is
to locate the smallest quadtree square covering a query location
u. Such a search starts from the quadtree root and follows the
parent-child pointers, and returns the required interesting square
p(u). Note that p(u) is either a leaf node of Q or an internal node
with none of its child nodes covering the location of u. If the quad-
rant of p(u) covering the location of u stores exactly one point that

matches u, then we find u in the underlying data set S. If a point
other than u or a smaller interesting square instead of a point is
stored in that quadrant, then u is not in S. The search proceeds in a
top-down fashion from the root, taking O(1) time per step; hence,
the search time is O(n).

Inserting a new point x starts by locating the interesting square
p(x) covering the location of x. Inserting x into an empty quadrant
of p(x) only takes O(1) pointer changes. If the quadrant of p(x)
that x is inserted into already contains a point y or an interesting
square r, then we insert to Q a new interesting square q ⊂ p that
contains both x and y (or r) but separates x and y (or r) into different
quadrants of q. This can be done in O(1) time. So the insertion time
is O(1), given p(x).

Deleting x may cause its covering interesting square p(x) to be
no longer interesting. If this happens, we splice p(x) out and delete
its empty children from Q. Note that the parent node of p(x) is still
interesting, since deleting x doesn’t change the number of nonempty
quadrants of the parent of p(x). Therefore, by splicing out at most
one node (with O(1) pointer changes), the compressed quadtree
is updated correctly. So a deletion also takes O(1) time, given
p(x). The following theorem is implied in related previous works,
e.g., [1, 2, 11–13].

THEOREM 1. Point-location search, as well as point insertion
and deletion, in a compressed d-dimensional quadtree of n points
can be done in O(n) time.

Thus, the worst-case time for querying a compressed quadtree
is no better than that of brute-force searching of an unordered set
of points. Still, like a standard quadtree, a compressed quadtree
is unique given a set of n points and a (root) bounding box, and
this uniqueness allows for constant-time update operations if we
have already identified the interesting square involved in the up-
date. Therefore, if we could find a faster way to query a compressed
quadtree while still allowing for fast updates, we could construct an
efficient dynamic multidimensional data structure.

3. THE RANDOMIZED SKIP QUADTREE
In this section, we describe and analyze the randomized skip

quadtree data structure, which provides a hierarchical view of a
compressed quadtree so as to allow for logarithmic time (in ex-
pectation and w.h.p.) querying and updating, while keeping the
expected space bound linear.

3.1 Randomized Skip Quadtree Definition
The randomized skip quadtree is defined by a sequence of com-

pressed quadtrees that are respectively defined on a sequence of
subsets of the input set S. In particular, we maintain a sequence of
subsets of the input points S, such that S0 = S, and, for i > 0, Si is
sampled from Si−1 by keeping each point with probability 1/2. (So,
with high probability, S2logn = /0.) For each Si, we form a (unique)
compressed quadtree Qi for the points in Si. We therefore view the
Qi’s as forming a sequence of levels in the skip quadtree, such that
S0 is the bottom level (with its compressed quadtree defined for the
entire set S) and Stop being the top level, defined as the lowest level
with an empty underlying set of points.

Note that if a square p is an interesting square in Qi, then it is
also an interesting square in the lower level Qi−1. Indeed, this co-
herence property between levels in the skip quadtree is what facili-
tates fast searching. For each interesting square p in a compressed
quadtree Qi, we add two pointers in addition to the parent-child
pointers described in Section 2.3: one to the same square p in Qi−1
and another to the same square p in Qi+1 if p exists in Qi+1, or
NULL otherwise. The sequence of Qi’s and Si’s, together with
these auxiliary pointers define the skip quadtree. (See Fig. 2.)

298

Q2Q1Q0

x

Q2Q0 Q1

Figure 2: A randomized skip quadtree consists of Q0, Q1
and Q2. (Identical interesting squares in two adjacent com-
pressed quadtrees are linked by a double-head arrow between
the square centers.)

3.2 Search, Insertion, and Deletion in a Ran-
domized Skip Quadtree

To find the smallest square in Q0 covering the location of a query
point u, we start with the root square pl,start in Ql . (l is the largest
value for which Sl is nonempty and l is O(logn) w.h.p.) Then we
search u in Ql as described in Section 2.3, following the parent-
child pointers until we stop at the smallest interesting square pl,end
in Ql that covers the location of u. After we stop searching in each
Qi we go to the copy of pi,end in Qi−1 and let pi−1,start = pi,end to
continue searching in Qi−1. (See the searching path of x in Fig. 2.)

LEMMA 2. For any point location u, the expected number of
searching steps within any individual level Qi is constant. The total
number of searching steps through all levels is O(logn) in expecta-
tion and w.h.p.

PROOF. Our analysis directs to the worst combined choice of Qi
and u. Suppose the searching path of u in Qi from the root of Qi
is p0, p1, · · · , pm. Consider the probability Pr(j) of Event(j) such
that pm− j is the last one in p0, p1, · · · , pm which is also interest-
ing in Qi+1. (Note that Event(j) and Event(j′) are excluding for
any j
= j′.) Then j is the number of searching steps that will be
performed in Qi.

Consider an example that each pm− j , j = 0, · · · ,m, has exactly
two non-empty quadrants, and the non-empty quadrant of pm− j
hanging off the path p0, p1, · · · , pm contains exactly one point xm− j .
And the lowest square pm is a leaf of Qi containing two points xm
and xm+1. (See Fig. 3.) Event(j) happens iff xm− j is selected to
Si+1, and exactly one point among the j+1 points xm− j+1, · · · ,xm+1
is also selected. The expected value of j is then

E(j) = ∑m
j=1 jPr(j) = ∑m

j=1 j · 1
2 · j+1

2 j+1 = 1
4 (∑m

j=1
j2

2 j +∑m
j=1

j
2 j)

≈ 1
4 (6.0+2.0) = 2.0.

(1)
(See Appendix A for the computation of the progressions.) We also
argue that the above analysis gives the biggest possible E(j). (See
Appendix B.) Therefore for the worst choice of Qi and u, the ex-
pectation of j is no more than 2. This adds up to the expectation
of O(logn) for the total number of searching steps through all lev-
els, since the expected number of non-empty subsets is O(logn) as
each Si contains half of the points in the lower level Si−1. For a
high probability analysis, we still consider the above example and

backtrack the searching path of u through all levels. In each Qi we
flip a coin for each point xm+1,xm, · · · to decide if it is selected into
Si+1. The selection of any two points leads to the promotion of a
square to Qi+1 (i.e., at this square the searching path stops in Qi+1
and jumps to Qi). So it becomes the problem of how many coin
flips is needed to get 2c log n heads (promotions) for a constant c.
We can get O(logn) w.h.p. by applying a Chernoff bound. (See
Appendix C.)

p2

x4x3

p0

p3

p1x0

x1Qi

x2

Figure 3: The example structure of Qi for computing E(j). Say
j = 2 for example. Sqare p1 = pm− j is the lowest square on this
path which is still interesting in Qi+1 iff x1 and exactly one point
among {x2,x3,x4} are selected to Si+1.

To insert a point x into the structure, we perform the above point
location search which finds pi,end within all the Qi’s, flip coins to
find out which Si’s x belongs to, then for each Si containing x, insert
x into pi,end in Qi as described in Section 2.3. Note that by flipping
coins we may create one or more new non-empty subsets Sl+1, · · ·
which contains only the point x, and we shall consequently create
the new compressed quadtrees Ql+1, · · · containing only x and add
them into our skip data structure. Deleting a point x is similar. We
do a search to find pi,end in all Qi’s. Then for each Qi that contains
x, delete x from pi,end in Qi as described in Section 2.3, and remove
Qi from our data structure if Qi becomes empty.

THEOREM 3. Searching a point location and inserting or delet-
ing any point in a randomized d-dimensional skip quadtree of n
points takes O(logn) time in expectation and w.h.p.

PROOF. The searching time is shown in Lemma 2. For any point
to be inserted or deleted, let X be the number of non-empty subsets
other than S0 that contains this point. E(X) is then the expected
number of heads in a sequence of coin flips before seeing the first
tail, which is ∑∞

i=1
i

2i+1 = 1. (See Appendix A.) X can also be
bounded to O(logn) w.h.p. by applying a Chernoff bound. (See
Appendix C.) Therefore the time of searching dominates that of
insertion and deletion.

In addition, note that the expected space usage for a randomized
skip quadtree is O(n), since the expected size of the compressed
quadtrees in the levels of the skip quadtree forms a geometrically
decreasing sum that is O(n).

4. THE DETERMINISTIC SKIP QUADTREE
In the deterministic version of the skip quadtree data structure,

we again maintain a sequence of subsets Si of the input points S
with S0 = S and build a compressed quadtree Qi for each Si. How-
ever, in the deterministic case, we make each Qi an ordered tree
and sample Si from Si−1 in a different way. We can order the
2d quadrants of each d-dimensional square (e.g., by the I, II, III,
IV quadrants in R2 as in Fig. 1 or by the lexical order of the d-
dimensional coordinates in d dimensional space), and accordingly
call the compressed quadtree obeying such order an ordered com-
pressed quadtree. We build an ordered compressed quadtree Q0 for

299

S0 = S and let L0 = L be the ordered list of S0 in Q0 from left to
right. Next we make a skip list L for L with Li being the i-th level
of the skip list. Let Si be the subset of S that corresponds to the i-th
level Li of L . Then we build an ordered compressed quadtree Qi
for each Si. Let xi be the copy of x at level i in L and pi(x) be the
smallest interesting square in Qi that contains x. Then, in addition
to the pointers in Section 3, we put a bi-directed pointer between xi
and pi(x) for each x ∈ S. (See Fig. 4.)

Q0 Q1

x1

x0

L1

L0

Figure 4: A deterministic skip quadtree guided by a determin-
istic 1-2-3 skip list.

LEMMA 4. The order of Si in Qi is Li.

PROOF. Noting that an interesting square in Qi is also an inter-
esting square in Qi−1, the lowest common ancestor of two points x
and y in Qi is also a common ancestor of them in Qi−1. Therefore
the order of Si in Qi is a subsequence of the order of Si−1 in Qi−1.
Given that the order of S0 in Q0 is L0, the order of Si in Qi is Li by
induction.

The skip list L is implemented as a deterministic 1-2-3 skip list
in [28], which maintains the property that between any two adjacent
columns of height i there are 1, 2 or 3 columns of height i−1. (See
Fig. 4.) Searching in a 1-2-3 skip list takes (worst case) O(logn)
time since there are O(logn) levels. Insertion and deletion can be
done by a search plus O(1) promotions or demotions at each level
along the searching path [28].

Lemma 4 provides that the order of points in each Qi is consis-
tent with L0. However, in order to guide the skip quadtree by the
skip list L , we need not the list L0 but a total order because search
in a skip list requests doing comparisons of keys. We binarize Q0
by adding d − 1 levels of dummy nodes, one level per dimension,
between each interesting square and its 2d children. Then we in-
dependently maintain a total order (the in-order of the binary Q0)
for the set of interesting squares, dummy nodes and points in Q0.
The order is maintained as in [16] which supports the following
operations: 1) insert x before or after some y; 2) delete x; and 3)
compare the order of two arbitrary x and y. All operations can be
done in worst case O(1) time. These operations give a total order
out from a linked list, which suffices the search in L . Because of
the binarization of Q0 and the inclusion of all internal nodes of the
binarized Q0 in our total order, when we insert a point x into Q0, we
get a y (parent of x in the binary tree) before or after the insertion
point of x, so that we can accordingly insert x into our total order.

4.1 Search, Insertion, and Deletion in a Deter-
ministic Skip Quadtree

Searching for a point location in a deterministic skip quadtree
structure is as in a randomized skip quadtree. However the running
time in the deterministic version is as following.

LEMMA 5. The number of searching steps to locate a point
within any individual Qi is constant in a deterministic skip quadtree.

PROOF. Suppose the searching sequence (of interesting squares)
in Qi is p0, p1, · · · , pm with p0 = pi,start and pm = pi,end . Since
each interesting square has at least two non-empty quadrants, there
are at least m + 1 non-empty quadrants hanging off the tree path
from p1 to pm. The points contained in these quadrants form a
consecutive segment in Li, with furthermore the points contained in
each individual quadrant being consecutive. Since p1, · · · , pm are
not interesting in Qi+1, at most one among these ≥m+1 quadrants
is still non-empty in Qi+1, otherwise the LCA of the two non-empty
quadrants in Qi will be interesting in Qi+1. Therefore based on the
1-2-3 property of L , there are at most 7 such non-empty quadrants
hanging off the path p1, · · · , pm so that m ≤ 6.

To insert or delete a point y into or from S, we first search the
quadtree structure to locate y in each Qi. Then we insert or delete y
in the binary Q0 and update our total order. Then we insert or delete
y in the skip list L , referring to the total order. After promoting or
demoting any point x from Li to Li+1 or Li−1 during the skip list
insertion or deletion, we do accordingly an insertion of x in Qi+1
or a deletion of x in Qi. (See Fig. 5.)

Q2Q0 Q1

L1

L2

L0

y zx

Figure 5: The insertion of x into the deterministic skip quadtree
in Fig 4. Inserting x causes the promotions of y and z in L , and
consequently the insertion of y into Q1 and the creation of a new
compressed quadtree Q2 for z.

To delete x from Qi we go from xi to the smallest interesting
square pi(x) containing x in Qi following the pointers. Then the
deletion given pi(x) is as described in Section 2.3. To insert x into
Qi+1 we go from xi to pi(x) in Qi, then traverse upwards in Qi
until we find the lowest ancestor q of x which is also interesting
in Qi+1. (This is the reversed process of searching x in Qi with
q = pi,start = pi+1,end so it takes at most 6 steps by Lemma 5.) Then
we go to the same square q in Qi+1 and insert x. The insertion of x
in Qi+1 given q is as described in Section 2.3. Also, as in Section 3
we may create new Qi or remove empty Qi during this procedure.

THEOREM 6. Search, insertion and deletion in a deterministic
d-dimensional skip quadtree of n points take worst case O(logn)
time.

Likewise, the space complexity of a deterministic skip quadtree
is O(n).

300

5. APPROXIMATE RANGE QUERIES
In this section, we describe how to use a skip quadtree to per-

form approximate range queries, which are directed at counting or
reporting the points in S that belong to a query region. A region
R is k-fat if for any hyper-ball smaller than R and centered at a
point location u ∈ R, at least 1/k volume of the ball is covered by
R. We’ll show that a skip quadtree data structure can answer an
approximate range query with a convex or non-convex k-fat region
in O(logn + ε1−d) or O(logn + ε−d) time, which are optimal and
match the best previous results.

For simplicity of expression, we assume that the query region is a
hyper-sphere (Euclidian ball) throughout this section, however ex-
tend the results to any k-fat region at the end of the section. Recall
that we use x,y for points in the data set and u,v for arbitrary points
(locations) in Rd . A (1 + ε)-approximate range query with error
ε > 0 is a triple (v,r,ε) that counts all points x with dist(v,x) ≤ r
but also some arbitrary points y with r < dist(v,y) ≤ (1+ ε)r. That
is, the query region R is a (hyper-) sphere with center v and radius r,
and the permissible error range A is a (hyper-) annulus of thickness
εr surrounding R.

5.1 General Idea
Suppose we have a space partition tree T where each tree node

is associated with a region in Rd . Given a query (v,r,ε) with region
R and annulus A, we call a node p ∈ T an in, out, or stabbing node
if the Rd region associated with p is contained in R∪ A, has no
intersection with R, or intersects both R and R∪A, respectively.
(See Fig. 6.) In order to answer the query, we only need to examine
(expand) each stabbing node since for an in node or out node we
can simply include or exclude it. That is, the query can be answered
by searching all stabbing nodes. A straightforward solution takes
O(|B|DT) time, with B being the set of stabbing nodes and DT the
depth of T . Previously studied space partition trees, such as BBD
trees [4,6–8] and BAR trees [17,19], have an upper-bound on |B| of
O(ε1−d) and DT of O(logn), which is optimal [7]. A more elegant
analysis in [7] improved the running time to O(logn+ ε1−d).

We consider the bottom level in the skip structure, Q0, as our
space partition tree T . At the first glance the depth of Q0 is O(n)
and the number of stabbing squares (nodes) can also be O(n) since
we can have all nodes in a tree path being nested stabbing squares.
However we observe that for a set of nested stabbing squares that
cover the same area of R∪A, we only need to examine the smallest
one in answering the approximate range query. Given R and A,
define a critical square p ∈ Q0 as a stabbing node of Qi whose
child nodes are either not stabbing, or still stabbing but cover less
volume of R than p does. (See Fig. 6.) Indeed, searching the set C
of critical squares instead of the set B of stabbing squares suffices
answering an approximate range query. Next we’ll fulfill the query
algorithm by bounding the number of critical squares in Q0 and
providing an efficient algorithm for searching these squares via the
skip structure.

5.2 Packing Lemmas
The ratio of the unit volume of A, (εr)d , to the lower bound of

volume of A that is covered by any stabbing node is called the pack-
ing function ρ of T , a function of n that is often used to bound
the size of B. A constant ρ immediately results in the optimal
|B|= O(ε1−d) for convex k-fat regions, in which case the total vol-
ume of A is O(εrd). BBD trees and BAR trees provide a constant
ρ by using delicately designed regions for tree nodes. However,
for a compressed quadtree with box-shaped regions, ρ is obviously
a constant which depends only on the dimensionality and metric
of space. The following packing lemma bounds the size of C to
O(ε1−d).

 p4

 p3

 p2

 p5

 p1

 p

 q

 r

A

R

Figure 6: Squares p, q, and r are in, out and stabbing, respec-
tively. Squares p1, · · · , p4 (sizes are not drawn to scale) show a
sequence of nested stabbing squares, where only p3 and p4 are
critical.

LEMMA 7. There is a constant c depending on the dimension-
ality and metric of space such that the number of critical squares
in Q0 of side length at least s is c(s/r)1−d .

PROOF. Consider the inclusion tree T (C) consisting of the criti-
cal squares of side length at least s. (That is, square p is an ancestor
of square q in T (C) iff p ⊇ q). We call a critical square a branching
node if it has at least two children in T (C), or a non-branching node
otherwise. A non-branching node either is a leaf of T (C), or covers
more volume of R than its only child node in T (C) does, by the
definition of critical squares. Two quadtree squares cover different
areas (not necessarily disjoint) of R only if they have different in-
tersections with the surface of R (the inner face of A), so they must
also cover different areas of A. Therefore for each non-branching
node p ∈ T (C), there is a unique area of A covered by p but not by
any other non-branching nodes of T (C). The volume of this area is
(sd−1 · εr)/c for some constant c determined by the dimensionality
and metric of space, since each critical square is a hypercube of
side length 2is for some i. Thus the total number of non-branching
nodes in T (C) is c(s/r)1−d , since the total volume of A is O(εrd).
Therefore |C| = |T(C)| is also c(s/r)1−d .

We also need the following packing lemma for disjoint stabbing
squares (an analogy of Lemma 3 in [7]).

LEMMA 8. There is a constant c depending on the dimension-
ality and metric of space such that the number of disjoint stabbing
squares with side length at least s is c(s/r)1−d .

PROOF. Immediately follow the constant ρ of Q0.

5.3 Searching for the Critical Squares
A stabbing square has all its ancestor squares stabbing and a non-

stabbing square has all its descendant squares non-stabbing. There-
fore the stabbing squares form a pruned tree Q′

0 of Q0. The critical
squares further partition the pruned tree Q′

0 into equi-stabbing paths
such that the squares in the same path cover the same area of R∪A,
with the tail (the lowest and smallest square) of the path being a
critical square. Here we provide an operation that, given any stab-
bing square p ∈ Q0, find the critical square q ∈ Q0 that covers the
same area of R∪A as p does, i.e., the tail of the equi-stabbing path
in Q′

0 that p belongs to.

LEMMA 9. Given R, A, and a compressed quadtree Q0 with n
points, let p ∈ Q0 be a stabbing square and q ∈ Q0 be the critical
square that covers the same area of R∪A as p does. Then we can
search from p to q in O(logn) time.

301

PROOF. This searching operation is similar to the point location
search in Section 3.2 which looks for the smallest square that covers
a query location. The major difference is the local comparison rules
used by the two searches. In point location search, we start from the
root of Ql , the highest level in the skip structure. At each square
q ∈ Qi we either go to a child square in Qi that covers the query
location, if such a child square exists, or jump to the next level q ∈
Qi−1. In the critical square search, assuming that p is not critical
in Q0, we promote to Qj where Q j is the highest level in which p
is not a critical square, then start the search from p ∈ Qj . At each
square q ∈ Qi we either go to a child square in Qi that covers the
same area of R∪A as p does, if such a child square exists, or jump
to the next level q ∈ Qi−1. 1

By the same argument as the ones in Lemma 2 and Lemma 5, the
number of searching steps performed at each level Qi is constant.
Therefore the total searching time through all levels is O(logn)
since there are O(logn) levels in the skip structure. For the random-
ized skip quadtrees this time bound is not only the expected running
time but also happens w.h.p. (as shown in Lemma 2). For the de-
terministic skip quadtrees this is the worst case running time.

We conclude with following theorem, and extend the result to
more general query regions next without a proof. The extension
needs only preliminary geometric knowledge.

THEOREM 10. We can answer any (1 + ε)-approximate range
query (v,r,ε) in O(logn+ ε1−d) time.

PROOF. We start from the root of Q0 and search through Q0 to
find out all critical squares in Q0 by using the algorithm in Lemma 9.
For each critical square we look for its child squares in Q0, include
or exclude a child square into the range counting if it is an in square
or out square. The query is answered when such search is done.

We follow the analytical method of Theorem 1 in [7] to calculate
the searching time. For the big critical squares of side length at least
r, there are only constant number of such squares by Lemma 7, and
searching each of them takes O(logn) time by Lemma 9. For the
small critical squares of side length less than r, the searching time
for all of them won’t exceed the total number of stabbing squares
of side length less than r, which is counted to be O(ε1−d) by using
Lemma 8. (See proof of Theorem 1 in [7] for details of this count-
ing.) Again, the result is not only the expected running time but
also happens w.h.p. for randomized skip quadtrees, and the worst
case running time for deterministic skip quadtrees.

COROLLARY 11. We can answer a (1 + ε)-approximate range
query with convex or non-convex k-fat region in Minkowski space
in O(logn+ ε1−d) or O(logn+ ε−d) time, respectively.

6. APPROXIMATE NN QUERIES
Let the query point (a location) be v and the nearest neighbor

(NN) of v in the data set S be x with dist(v,x) = minz∈S dist(v,z).
The (1 + ε)-approximate NN query returns a data point y ∈ S with
dist(v,y) ≤ (1 + ε)dist(v,x). Together, v and dist(v,x) give a range
R (for example, a hyper-sphere for Euclidian distance) which con-
tains no data points, and ε further gives an annulus A. We call them
the NN range and the NN annulus, respectively. Therefore one can
use the same heuristic for approximate range queries to solve ap-
proximate NN queries. The major difference here is that the radius
dist(v,x) of R is unknown. This problem of handling range queries
with an unknown range can be solved by using a priority queue

1With the computational model in Section 2.2, the area of R∪A
covered by a stabbing square can be determined and compared with
that of another stabbing square in constant time.

to expand squares in order by their distance from v. (See Arya et
al. [3, 7, 8].) We’ll show that this priority queue technique allows
skip quadtrees to perform approximate NN queries efficiently.

6.1 Frame of Algorithm
We maintain a minimum priority queue P containing some in-

teresting squares of the compressed quadtree Q0. The priority of a
square p is the distance of p (i.e. from the nearest corner or face)
to v. We consider each delete-min of P as a round. Here we denote
by MIN(P) the square with minimum priority in P and min(P) the
priority of MIN(P). In each round we delete p = MIN(P) from P,
however we are not simply splitting p and inserting the children of
p in Q0 back into P. Instead, we search downward Q0 from p via
the skip structure to a descendant of p, say q, and then insert some
subsquares of p hanging off the searching path back into P. If a
data point instead of a smaller interesting square is found during
the search, we consider this point as being visited. And for all vis-
ited points we maintain an NN candidate y, that is, the one closest
to v. We maintain the following property throughout the algorithm.

• Any point location u∈ S that is not covered by any squares in
P is at least (1 + ε) times further to v than the NN candidate
y. I.e., ∀ u
∈ P, dist(v,u) ≥ (1+ ε)dist(v,y).

The algorithm stops at any of the following two conditions, or
until P becomes empty.

1. If the NN candidate y is close enough to v such that dist(v,y)≤
(1+ ε)min(P), then output y;

2. If p = MIN(P) is small enough such that dist′(v, p) ≤ (1 +
ε)dist(v, p), which means that p is an in square with respect
to R and A, then output an arbitrary data point in p. Here
dist ′(v, p) and dist(v, p) respectively denote the distance to v
from a furthest corner or face of q, and that from the nearest
corner or face of q.

The above property and halting conditions imply that the output
is a qualified approximate NN. (See Arya et al. [8] for details.) Now
we are left with only two questions: How deep shall we search
down from p? And which subsquares of p should be inserted back
into P? We give the details next.

6.2 Smallest Equidistant Squares
The interesting squares of Q0 are partitioned into equivalence

classes of equidistant squares according to their distance to v. Each
such class forms an equidistant subtree of Q0. For the simplicity
of algorithm, we further partition the subtree into equidistant paths
by disconnecting at each branching node of the subtree. That is,
the tail (smallest square) of each equidistant path is either closer
to v than any of its child squares, or has at least two child squares
that are equidistant to v with itself. In each round of the above
algorithm we search from p down to the tail of the equidistant path
that p belongs to.

We now provide the searching operation that, given any p ∈ Q0,
finds the tail of the equidistant path p belongs to. This is similar
to the point location search in Section 3.2 and the critical square
search in Section 9, except using another local comparison rule.
Here we are given a square p and start from p at the highest level
in the skip structure that contains p. At each level Qi and square
q ∈ Qi, we first check if q ∈ Q0 has two or more child squares
equidistant with p. If so we stop and return q. Otherwise we either
go to a child square of q in Qi that is equidistant to p, if such a child
square exists, or jump to the next level q ∈ Qi−1. The correctness
and running time follow that for the point location search. 2

2The distance of a square to the query point is also computable in
constant time with the computational model in Section 2.2.

302

6.3 Stabbing Squares on an Equidistant Path
We now discuss which subsquares hanging off the path between

p and q in Q0 could possibly be stabbing squares (with respect to
the NN range and NN annulus). Let’s first consider the case that v
is closest to a corner of p so that the squares between p and q on
the equidistant path go directly towards that corner. (See Fig 7(a)
for an illustration in 2D Euclidian space.)

 p3

 p2

 q q

 p1

 p2

 p3

 p1

(a) (b)

Figure 7: The lowest squares on an equidistant path which are
possibly stabbing squares. Circles show the maximum possible
R∪A (not drawn to scale). Although p1 is impossible to be stab-
bing in (a), it is possible in (b) since it is the lowest ancestor of
q that goes to the right.

LEMMA 12. There is a constant c depending on the dimension-
ality and metric of space such that, for any ancestor square q′ of
q that is more than log(c/ε) steps above q in Q0, if a child of q′
hanging off the path between q′ and q is a stabbing square, then q
is an in square.

PROOF. Let s(q) be the side length of q. Then a constant c′ can
be determined by the dimensionality and metric of space such that
for any point location u outside q, dist′(u,q)−dist(u,q) ≤ c′s(q).
(In fact, c′s(q) is the diameter of q. For example, c′ =

√
2 for 2D

Euclidian space.) Let q′′ be the child of q′ that is also an ancestor of
q. Since a parent square at least doubles the side length of a child
square and q′′ is at least log(c/ε) steps above q, the side length
s(q′′) is at least cs(q)/ε. Therefore the distance from any sibling
of q′′ to v is at least cs(q)/ε. If any sibling of q′′ is a stabbing
square, then the radius r(R) of the NN range R is at least cs(q)/ε.
Let c = (1+ ε)c′. Then we have

dist ′(v,q) ≥ r(R) ≥ cs(q)
ε = (1+ε)c′s(q)

ε
≥ (1+ε)(dist ′(v,q)−dist(v,q))

ε .

This gives dist′(v,q) ≤ (1 + ε)dist(v,q), meaning that q is an in
square.

According to Lemma 12, q and its lowest log(c/ε) ancestors are
the only possibly stabbing squares on the equidistant path. There-
fore we only need to expand these squares and insert back to P the
child squares of them that hang off the equidistant path of p. Be-
cause other subsquares of p are either not stabbing squares, or q
will become an in square, in either case dropping those subsquares
doesn’t violate the property mentioned in the query algorithm.

Lemma 12 is for a path that goes directly to a corner. However
as shown in Fig. 7(b), if the path has bends, then in addition to the
log(c/ε) lowest ancestors of q, we should also consider for each
of the 2d directions the lowest ancestor of q that goes towards that
direction, regardless if this ancestor is within log(c/ε) steps above

q or not. The total number of possibly stabbing squares is then 2d +
log(c/ε) = O(logε−1). Finding these squares from q can be done in
O(1) time per square if we associate additional 2d pointers to each
square in Q0 pointing to its closest ancestors for each direction.
These pointers can also be updated in O(1) time during an insertion
or deletion of a point. We conclude with

THEOREM 13. We can answer a (1+ε)-approximate NN query
in O(ε1−d(logn + log ε−1)) time for any distance metric that gen-
erates convex equidistant regions (such as Minkowski distance).

PROOF. The correctness follows the above mentioned property
and halting conditions of the algorithm, and the fact that the sub-
squares we drop during each round don’t violate the property.

Now we bound the running time of a query. In each round we
perform one delete-min from the priority queue P, one search for
the smallest equidistant square, and O(log(1/ε)) insertions to P.
We’ve already shown that the search of smallest equidistant square
takes O(logn) time. Delete-min from P can be done in O(logn)
time and insertion to P in O(1) time with standard priority queue
implementations. Therefore each round takes O(logn + logε−1)
time. It remains to count the number of rounds. Each round ends up
with a smallest equidistant square which is either a critical square or
an in square. The number of critical squares is bounded to O(ε1−d)
by Lemma 7 since the side length of a critical square is at least cεr
for some constant c. The number of in squares can be bounded to
the same upper bound by similar argument to the one in the proof of
Lemma 7, or more straightforwardly (if we don’t care the constant
factor of 2d), to 2d times of the number of critical squares since
the parent of each in square is a critical square. Therefore the total
number of rounds performed before halting is O(ε1−d).

7. CONCLUSION
We’ve presented a dynamic data structure, the skip quadtree (or

skip octree), for multidimensional data. In addition to providing
efficient operations of inserting and deleting a point in O(logn)
time, we demonstrate the power of this data structure for efficiently
answering the following three types of geometric queries: point lo-
cation search in O(logn) time, (1+ ε)-approximate range counting
in O(ε1−d + logn) time, and (1 + ε)-approximate nearest neigh-
bor searching in O(ε1−d(logn+ log ε−1)) time. These query times
match the best previous results (e.g., in [7, 8, 17, 19]) achieved on
the static data structures such as BBD trees and BAR trees. 3

Not only is the skip quadtree a fully dynamic data structure, it
is also significantly simpler to implement than the static BBD trees
and BAR trees. We’ve provided both randomized and determinis-
tic versions of skip quadtrees, with the above time bounds being
expected bounds as well as bounds with high probability for the
randomized version and worst-case bounds for the deterministic
version. Furthermore, both versions of skip quadtrees take linear
space.

Acknowledgements
The authors would like to thank David M. Mount, Hanan Samet,
Ke Yi, and two anonymous referees for their valuable comments.

3For approximate NN queries, the best previous result is
O(ε−d logn) time in [8]. However, we think this bound could be
characterized as O(ε1−d logn) if restricted to Minkowski distance,
considering the fact that Minkowski distance generates convex
equidistant regions. Under a reasonable assumption of ε−1 = O(nc)
for some constant c, skip quadtrees also match this bound in an-
swering such queries.

303

8. REFERENCES
[1] S. Aluru. Quadtrees and octrees. In D. P. Mehta and S. Sahni,

editors, Handbook of Data Structures and Applications,
pages 19–1–19–26. Chapman & Hall/CRC, 2005.

[2] S. Aluru and F. E. Sevilgen. Dynamic compressed
hyperoctrees with application to the N-body problem. In
Proc. 19th Conf. Found. Softw. Tech. Theoret. Comput. Sci.,
volume 1738 of Lecture Notes Comput. Sci., pages 21–33.
Springer-Verlag, 1999.

[3] S. Arya, T. Malamatos, and D. Mount. Space-efficient
approximate Voronoi diagrams. In Proc. 34th Annual ACM
Sympos. Theory Comput., pages 721–730, 2002.

[4] S. Arya, T. Malamatos, and D. M. Mount. Space-time
tradeoff for approximate spherical range counting. In 16th
ACM-SIAM Annual Symposium on Discrete Algorithms,
(SODA05), pages 535–544, 2005.

[5] S. Arya and D. Mount. Computational geometry: Proximity
and location. In D. P. Mehta and S. Sahni, editors, Handbook
of Data Structures and Applications, pages 63–1–63–22.
Chapman & Hall/CRC, 2005.

[6] S. Arya and D. M. Mount. Approximate nearest neighbor
queries in fixed dimensions. In Proc. 4th ACM-SIAM
Sympos. Discrete Algorithms, pages 271–280, 1993.

[7] S. Arya and D. M. Mount. Approximate range searching.
Comput. Geom. Theory Appl., 17:135–152, 2000.

[8] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Wu. An optimal algorithm for approximate nearest
neighbor searching in fixed dimensions. J. ACM,
45:891–923, 1998.

[9] T. Asano, M. Edahiro, H. Imai, M. Iri, and K. Murota.
Practical use of bucketing techniques in computational
geometry. In G. T. Toussaint, editor, Computational
Geometry, pages 153–195. North-Holland, Amsterdam,
Netherlands, 1985.

[10] J. L. Bentley. Multidimensional binary search trees used for
associative searching. Commun. ACM, 18(9):509–517, Sept.
1975.

[11] M. Bern. Approximate closest-point queries in high
dimensions. Inform. Process. Lett., 45:95–99, 1993.

[12] M. Bern, D. Eppstein, and S.-H. Teng. Parallel construction
of quadtrees and quality triangulations. In Proc. 3rd
Workshop Algorithms Data Struct., volume 709 of Lecture
Notes Comput. Sci., pages 188–199. Springer-Verlag, 1993.

[13] K. L. Clarkson. Fast algorithms for the all nearest neighbors
problem. In Proc. 24th Annu. IEEE Sympos. Found. Comput.
Sci., pages 226–232, 1983.

[14] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms and
Applications. Springer-Verlag, Berlin, Germany, 2nd edition,
2000.

[15] L. Devroye, J. Jabbour, and C. Zamora-Cura. Squarish ık-ıd
trees. SIAM J. Comput., 30(5):1678–1700, 2000.

[16] P. F. Dietz and D. D. Sleator. Two algorithms for maintaining
order in a list. In Proc. 9th ACM STOC, pages 365–372,
1987.

[17] C. A. Duncan. Balanced Aspect Ratio Trees. Ph.D. thesis,
Department of Computer Science, Johns Hopkins University,
Baltimore, Maryland, 1999.

[18] C. A. Duncan and M. T. Goodrich. Approximate geometric
query structures. In D. P. Mehta and S. Sahni, editors,
Handbook of Data Structures and Applications, pages
26–1–26–17. Chapman & Hall/CRC, 2005.

[19] C. A. Duncan, M. T. Goodrich, and S. Kobourov. Balanced

aspect ratio trees: combining the advantages of k-d trees and
octrees. J. Algorithms, 38:303–333, 2001.

[20] A. Efrat, M. J. Katz, F. Nielsen, and M. Sharir. Dynamic data
structures for fat objects and their applications. Comput.
Geom. Theory Appl., 15:215–227, 2000.

[21] A. Efrat, G. Rote, and M. Sharir. On the union of fat wedges
and separating a collection of segments by a line. Comput.
Geom. Theory Appl., 3:277–288, 1993.

[22] K. Fujimura, H. Toriya, K. Tamaguchi, and T. L. Kunii.
Octree algorithms for solid modeling. In Proc. Intergraphics
’83, volume B2-1, pages 1–15, 1983.

[23] E. N. Hanson and T. Johnson. The interval skip list: A data
structure for finding all intervals that overlap a point. In
Workshop on Algorithms and Data Structures (WADS), pages
153–164, 1991.

[24] D. T. Lee. Interval, segment, range, and priority search trees.
In D. P. Mehta and S. Sahni, editors, Handbook of Data
Structures and Applications, pages 18–1–18–21. Chapman &
Hall/CRC, 2005.

[25] S. Leutenegger and M. A. Lopez. R-trees. In D. P. Mehta and
S. Sahni, editors, Handbook of Data Structures and
Applications, pages 21–1–21–23. Chapman & Hall/CRC,
2005.

[26] M. A. Lopez and B. G. Nickerson. Analysis of half-space
range search using the k-d search skip list. In 14th Canadian
Conference on Computational Geometry, pages 58–62, 2002.

[27] J. I. Munro, T. Papadakis, and R. Sedgewick. Deterministic
skip lists. In Proc. Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 367–375, 1992.

[28] J. I. Munro, T. Papadakis, and R. Sedgewick. Deterministic
skip lists. In Proceedings of the third annual ACM-SIAM
symposium on Discrete algorithms (SODA), pages 367 –
375, 1992.

[29] B. F. Naylor. Binary space partitioning trees. In D. P. Mehta
and S. Sahni, editors, Handbook of Data Structures and
Applications, pages 20–1–20–19. Chapman & Hall/CRC,
2005.

[30] B. G. Nickerson. Skip list data structures for
multidimensional data. Technical Report CS-TR-3262, 1994.

[31] J. Nievergelt and P. Widmayer. Spatial data structures:
Concepts and design choices. In J.-R. Sack and J. Urrutia,
editors, Handbook of Computational Geometry, pages
725–764. Elsevier Science Publishers B.V. North-Holland,
Amsterdam, 2000.

[32] J. A. Orenstein. Multidimensional tries used for associative
searching. Inform. Process. Lett., 13:150–157, 1982.

[33] W. Pugh. Skip lists: a probabilistic alternative to balanced
trees. Commun. ACM, 33(6):668–676, 1990.

[34] H. Samet. Applications of Spatial Data Structures:
Computer Graphics, Image Processing, and GIS.
Addison-Wesley, Reading, MA, 1990.

[35] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, Reading, MA, 1990.

[36] H. Samet. Spatial data structures. In W. Kim, editor, Modern
Database Systems, The Object Model, Interoperability and
Beyond, pages 361–385. ACM Press and Addison-Wesley,
1995.

[37] H. Samet. Multidimensional data structures. In M. J. Atallah,
editor, Algorithms and Theory of Computation Handbook,
pages 18–1–18–28. CRC Press, 1999.

[38] H. Samet. Foundations of Multidimensional and Metric Data
Structures. Morgan-Kaufmann, San Francisco, CA, 2005.

304

[39] H. Samet. Multidimensional spatial data structures. In D. P.
Mehta and S. Sahni, editors, Handbook of Data Structures
and Applications, pages 16–1–16–29. Chapman &
Hall/CRC, 2005.

APPENDIX

A.
Here we give an approximation of the progressions in (1) in the

proof of Lemma 2. If f (x) ≥ 0 is a monotone decreasing function
for x ≥ i, then the progression of f (x) can be approximated by its
integral as following:

i−1

∑
x=1

f (x)+
∫ ∞

x=i
f (x)dx ≤

∞

∑
x=1

f (x) ≤
i

∑
x=1

f (x)+
∫ ∞

x=i
f (x)dx.

By setting sufficiently big i (bigger i gives better accuracy) and
calculating the following integrals

∫ ∞

x=i

x2

2x dx =
1

2x ln3 2
[(ln2 · x)2 +2ln2 · x +2] |x=i

and

∫ ∞

x=i

x
2x dx =

1

2x ln2 2
(ln2 · x +1) |x=i,

we can bound the two progressions in (1) as follows.

∞

∑
x=1

x2

2x ≤ 6.005, taking i = 14;

∞

∑
x=1

x
2x ≤ 2.005, taking i = 10.

B.
Here we show, for the proof of Lemma 2, that the estimation of

E(j) = 2 for the local structure of Qi with p0, p1, · · · , pm each hav-
ing two non-empty quadrants and each non-empty quadrant hang-
ing off the path containing one point is the worst possible. Assume
that the adversary is given one more point to add to the structure
and he wants to use this point efficiently to increase E(j) the most.
There are two ways to increase Pr(j) for a certain j as following.

One is to add a point to the non-empty quadrant of pm− j hang-
ing off the path, which increases the probability of this quadrant
being non-empty in Si+1. The other is to add one more non-empty
quadrant to pm− j , which makes the case that none of the points
in pm− j+1 is selected also contribute to Pr(j). The former way is

more efficient and it increases Pr(j) from 1
2 · j+1

2 j+1 to 3
4 · j+1

2 j+1 , a 0.5
time increase to jPr(j). However, either way of adding a point to
pm− j will inevitably decrease Pr(j′) for all j′ ≥ j +1. In proof of
Lemma 2 and Appendix A we bound ∑∞

x= j+1 xPr(x) as

∑∞
x= j+1 xPr(x) ≤ 1

4 (
∫ ∞

x= j+1
x2

2x d(x)+
∫ ∞

x= j+1
x
2x d(x))

∼ 1
4 · j2

2 j ln2 ∼ jPr(j)
ln2 = 1.44 jPr(j).

Adding one point to pm− j decreases Pr(j′) for any j′ ≥ j +1 from
1
2 · j′+1

2 j′+1 to 1
2 · j′+2

2 j′+2 so that it decreases the above bound from ∼
1.44 jPr(j) to ∼ 0.72 jPr(j). Therefore the over all decrease of
E(j) is more than enough to kill the increase. It’s also clear that
adding more points will be less efficient than adding the first one
for the adversary.

Notice that this argument directs to the bound E(j) ≤ 2 but not
to the structure itself. For a finite path of squares (so the bound is
not tight), one can always add one point to the quadrant hanging
off the highest square to increase E(j) a little, that is, from 2−δ to
2−δ′ for some δ > δ′ > 0.

C.
Here we use Chernoff bounds to do the high probability analyses

in proofs of Lemma 2 and Theorem 3. For Lemma 2, let X be the
number of coin flips in order to get 2c logn heads. We already know
that E(X) = c′ logn for some constant c and we set δ ≥ 2e − 1.
Therefore

Pr[X > (1+δ)c′ logn]
< [eδ

(1+δ)(1+δ)]c
′ logn < [eδ

(2e)(1+δ)]c
′ logn < (1

21+δ)c′ logn = 1
n(1+δ)c′ .

This shows that X = O(logn) w.h.p.
Similarly, for Theorem 3, let X be the number of heads in a

sequence of coin flips before seeing the first tail. We know that
E(X) = 1 and we set δ = c log n−1 ≥ 2e−1. Therefore

Pr[X > 1+δ = c log n]
< eδ

(1+δ)(1+δ) < eδ

(2e)(1+δ) < 1
21+δ = 1

2c logn = 1
nc .

This shows that X = O(logn) w.h.p.

305

