
Computer Science Department
CPSC 097

Class of 2008
Senior Conference on

Computational Geometry

Proceedings of the Conference

Order copies of this proceedings from:

Computer Science Department
Swarthmore College
500 College Avenue
Swarthmore, PA 19081
USA
Tel: +1-610-328-8272
Fax: +1-610-328-8606
adanner@cs.swarthmore.edu

ii

Introduction

About CPSC 097: Senior Conference

This course provides honors and course majors an opportunity to delve more deeply into a particular
topic in computer science, synthesizing material from previous courses. Topics have included advanced
algorithms, networking, evolutionary computation, complexity, encryption and compression, and
parallel processing. CPSC 097 is the usual method used to satisfy the comprehensive requirement for a
computer science major.

During the 2007-2008 academic year, the Senior Conference was led by Andrew Danner in the area of
Computational Geometry.

Computer Science Department

Charles Kelemen, Edward Hicks Magill Professor and Chair
Lisa Meeden, Associate Professor
Tia Newhall, Associate Professor
Richard Wicentowski, Assistant Professor
Andrew Danner, Visiting Assistant Professor

Program Committee Members

Allison Barlow
Alex Benn
George Dahl
Scott Dalane
Kit La Touche
Andrew Frampton
David German
Michael Gorbach
Chris Harman
Mike Johns
Jeff Kaufman
Drew Perkins
David Rosen
Lucas Sanders
Megan Schuster
Bryce Wiedenbeck
Mary Wootters

Conference Website

http://www.cs.swarthmore.edu/˜adanner/cs97/s08/

iii

Conference Program

Thursday 24 April 2008

9:55–10:10 Seamless Intersection Between Triangle Meshes
David Rosen

10:14–10:29 Approximate K Nearest Neighbors in High Dimensions
George Dahl and Mary Wooters

10:33–10:48 The Road Not Taken: Creating a Path-Finding Tool Using Consumer-Grade GPS
Equipment
Allison Barlow and Lucas Sanders

10:52–11:07 Drawing Isoglosses Algorithmically
Kit La Touche and Bryce Wiedenbeck

Tuesday 29 April 2008

9:55–10:10 The Largest Empty Circle Problem
Megan Schuster

10:14–10:29 Unbiased Congressional Districts
Alex Benn and David German

Thursday 1 May 2008

9:55–10:10 Optimal Double Coverage in the Art Gallery
Scott Dalane and Andrew Frampton

10:14–10:29 Voronoi Natural Neighbors Interpolation
Chris Harman and Mike Johns

10:33–10:48 Bridge Detection by Road Detection
Jeff Kaufman

10:52–11:07 Image Stained Glass using Voronoi Diagrams
Michael Gorbach

iv

Table of Contents

Seamless Intersection Between Triangle Meshes
David Rosen . 1

Approximate K Nearest Neighbors in High Dimensions
George Dahl and Mary Wooters . 9

The Road Not Taken: Creating a Path-Finding Tool Using Consumer-Grade GPS Equipment
Allison Barlow and Lucas Sanders . 18

Drawing Isoglosses Algorithmically
Kit La Touche and Bryce Wiedenbeck . 22

The Largest Empty Circle Problem
Megan Schuster . 28

Unbiased Congressional Districts
Alex Benn and David German . 38

Optimal Double Coverage in the Art Gallery
Scott Dalane and Andrew Frampton . 45

Voronoi Natural Neighbors Interpolation
Chris Harman and Mike Johns . 49

Bridge Detection by Road Detection
Jeff Kaufman . 54

Image Stained Glass using Voronoi Diagrams
Michael Gorbach . 59

v

Appeared in: Proceedings of the Class of 2008 Senior Conference, pages 1–8,
Computer Science Department, Swarthmore College

Seamless Intersection Between Triangle Meshes

David Rosen
drosen2@swarthmore.edu

Abstract

We present an algorithm that provides
artistic control of the rendering of in-
tersections between two triangle meshes.
We detect the intersection edges using
an octree, and then seamlessly subdivide
both meshes at and around the intersection
edges to allow local geometry morphing
and creation of transition texture bands.

1 Introduction

In computer graphics there has been a lot of progress
on rendering techniques that use diffuse, height, and
normal maps to make rendered surfaces look much
more detailed than their underlying geometry. How-
ever, these techniques do nothing to break up the
linear silhouette of each polygon (Figure 1). This
is a very difficult problem to solve in general, be-
cause the silhouette of an object can change signif-
icantly every frame, so any algorithm that appropri-
ately changes the silhouette would have to be ex-
tremely fast for real-time applications. There has
been some progress in this area, but nothing that is
really practical yet (Oliveira and Policarpo, 2005).
However, this problem can be solved more easily
where two static objects intersect because the inter-
section line is independent of camera position.

There are two obvious problems with the naive
intersection. First, there is an immediate discon-
tinuity in the lighting and texturing that is unlike
what you see in such intersections in real-life (Fig-
ure 2). Second, this discontinuity occurs along per-
fectly straight lines, destroying the illusion of depth
that the texture mapping is supposed to create.

2 Seamless Intersection Algorithm

To make intersections more realistic, we must ad-
dress both of these problems. First, we need to find

Figure 1: Rocks on the beach in Crysis, with shad-
ows disabled for clarity. Despite the detailed tex-
tures, there is an unrealistically sharp line between
the big rocks and the terrain.

Figure 2: A photograph of a post intersecting the
ground.

1

the intersection between the objects and create ver-
tices at each point of intersection. We can then find
auxiliary intersections which we will discuss auxil-
iary intersections in more detail in section 2.2, and
explain more clearly why they are important. Using
our new intersection and auxiliary intersection ver-
tices, we can apply geometric deformations around
the intersections, and create texture bands to make
them look more natural. None of these steps are triv-
ial, so we will explore them one at a time.

2.1 Data Structures

First, we should look at the data structures we are
using to represent the mesh. The mesh object con-
tains an array of vertices and an array of triangles.
Each vertex object contains several vectors: a 3-part
vector storing its local coordinates, a 3-part vector
storing its surface normal, and a 2-part vector storing
its texture coordinates. Each triangle object contains
three pointers, one to each of its vertices.

2.2 Finding Intersection Segments

To find the intersection of two meshes, we could
check every triangle against every other triangle to
see if there is an intersection. However, this would
requireO(n2) comparisons, which is not acceptable
when working with detailed meshes. Fortunately,
we can do much better using what I call an inter-
section octree (Figure 3), which indexes pairs of tri-
angles that might intersect. Each node in the octree
contains the coordinates of its bounding box and two
lists of triangles (one for each mesh). We create the
root of the octree by taking the intersection of the
bounding boxes of each mesh, and adding all of the
triangles from each mesh that at least partially lie
within this shared bounding box. We then recur-
sively subdivide each node until it reaches a maxi-
mum depth or no longer contains at least one trian-
gle from each mesh. Finally, we walk through all of
the child nodes and report each pair of triangles, and
check each pair for intersection using well-known
techniques (Moller, 1997), returning the intersection
as a line segment. We have now efficiently found the
intersection between two meshes as a set of line seg-
ments (Figure 4), which will form a closed loop if
both meshes are closed.

Figure 3: The intersection octree generated by a
power transformer and a detailed sidewalk. The oc-
tree returned 70 pairs of triangles that might inter-
sect, out of 846,000 possible pairs.

2

Figure 4: The intersection segments between a
power transformer and a sidewalk.

Figure 5: Without an auxiliary intersection (left),
the deformation propagates in an uncontrolled way.
With the auxiliary intersection (right), we have pre-
cise control over the shape of the deformation.

Figure 6: Scaling a model by moving vertices along
their normals, resulting in discontinuities at sharp
edges.

2.3 Finding Auxiliary Intersections

If we would like to change the geometry around
the intersecting object, we will need to find auxil-
iary intersections to protect the environment geom-
etry from these changes(Figure 5). For example, if
a tree is intersecting the ground on a large, flat field
represented by a single triangle, then altering the in-
tersection points will alter the geometry of the en-
tire field. If we want to create a small slope in the
ground around the tree of some controlled size, say
two inches, then we can find the auxiliary points
by translating each vertex in the object out by two
inches in the direction of the surface normal. How-
ever, for meshes with sharp edges, the surface nor-
mals of overlapping vertices can point in different
directions, and moving each vertex along its surface
normal could result in a discontinuous mesh (Fig-
ure 6). We can solve this by temporarily averaging
together all normals belonging to overlapping ver-
tices (Figure 7).

3

Figure 7: Scaling a model by moving vertices along
their corrected normals. This results in some distor-
tion, but no discontinuities

This can be done inO(n log n) time using a kd-
tree (Bentley, 1975). We loop through each vertex
in the model, and check if the tree is storing a ver-
tex that has the same coordinates. If not, we add
the vertex to the tree. If so, we store a pointer to
the vertex that is already in the tree. Now for each
group of overlapping vertices, we have a represen-
tative vertex in the tree, and every other overlapping
vertex has a pointer to its representative. We find
the average normal for each representative vertex by
looping through the vertices again, adding each ver-
tex’s normal to its representative’s normal, and then
normalizing it by dividing it by its length. Finally,
we can translate each vertex by some multiple of the
normal of its representative vertex.

Figure 8 is an example of typical auxiliary inter-
sections that we can use to isolate the effects of ma-
nipulation of intersection points. These will also be
useful later to isolate texture transition effects, so we
do not have to apply them to any unnecessarily large
triangles (so we can avoid drawing too many unnec-
essary pixels). It is essential to find and store all
of the lines of intersection, including auxiliary inter-
section, before the final retriangulation. Otherwise
we will have to find intersections with the triangles
that are already subdivided, and the algorithm will
take longer and end up with many unnecessary sub-
divisions.

2.4 Dividing Polygons Along Intersection Lines

Now that we have our intersection segments, what
do we do with them? We have to retriangulate our
mesh to include these segments as edges, and we
have to do it without any cosmetic changes. That
is, the retriangulation itself should have no visible
effect on the scene, but we can use our new ver-
tices later to change the intersection however we
like. This problem can be divided further into two
subproblems: creating the new vertices, and retrian-
gulating the mesh to include the new edges.

2.4.1 Seamlessly Adding Vertices

Suppose we have an intersection point on the edge
of a triangle. How do we incorporate it into the
mesh? We know the position component already,
but our mesh vertices contain other auxiliary infor-
mation, such as texture coordinates and surface nor-
mals. Since our vertex is on an edge, we can just

4

Figure 8: Some examples of auxiliary intersections

interpolate between the auxiliary information stored
in the two endpoint vertices based on their relative
distance from the new point. But what if our inter-
section point is not on an edge? Suddenly the prob-
lem is much more complicated. We still have to in-
terpolate between the three vertices, but it is not as
obvious what weights to assign to each vertex in the
interpolation.

The solution here is to find the position of the in-
tersection point in barycentric coordinates. That is,
find its position as a weighted sum of the positions of
the three triangle vertices. So far this sounds some-
what circular: how do we find the barycentric co-
ordinates? We know that the weighted sum of the
triangle vertices in each axis adds up to our new ver-
tex, and we know that the weights have to add up to
1. We have a system of four independent equations
and three unknowns, so we can just solve it using
linear algebra. Once we have the weights of each
triangle vertex, we can use them to interpolate all of
the auxiliary values of our new vertex.

Figure 9: The Delaunay triangulation (right) does
not necessarily preserve the lines of intersection
(left).

Figure 10: The constrained Delaunay triangulation
(right) is guaranteed to preserve the lines of inter-
section (left).

2.4.2 Retriangulation

Now that we have our seamless vertices, how do
we incorporate them into the triangulation? At first
we expected that we could just use Delaunay trian-
gulation on the set of intersection points and trian-
gle vertices, but that failed because it did not pre-
serve our lines of intersection (Figure 9). To achieve
the desired results, we had to use the constrained
Delaunay triangulation, which takes as input a set
of points as well as a set of line segments to pre-
serve(Figure 10). Implementing the constrained
Delaunay triangulation efficiently could easily be a
final project in itself, so we used the free “Triangle”
library (Shewchuk, 2002).

2.5 Geometry Morphing

To deform the geometry, we can now safely translate
any of intersection vertices that do not lie on the out-
ermost auxiliary intersection ring. After moving any
of the vertices, we have to recalculate the normals of
all of the adjacent triangles so that the lighting will
be correct for their new orientation. With one in-
tersection ring and two auxiliary intersection rings,

5

Figure 11: Translating upwards the intersection ring
and inner auxiliary intersection ring.

Figure 12: Translating upwards only the inner aux-
iliary intersection ring.

we can create a number of interesting effects. We
can raise the intersection ring and the inner auxil-
iary ring to slope the ground around the object (Fig-
ure 11), or we can only raise the inner auxiliary ring
to create a crater effect (Figure 12).

2.6 Texture Band

Our final step is to create a texture band around the
intersection. First we will have to create a new mesh
that contains a copy of all the triangles and vertices
that we will need, and then we will have to assign
texture coordinates to each vertex in the mesh. To
create the new mesh, we can make a copy of each
triangle that contains at least one of the intersection
points, and make a copy of each of its vertices. If it
fits the effect we are going for, we can now recalcu-

late the normals to smooth the lighting transition at
the intersection. Alternately, we can leave them how
they are to keep the sharp edge.

Finally we have to calculate the texture coordi-
nates. We would like to map the texture in Figure 13
to achieve the effect shown in Figure 14 and Figure
15. The vertical texture coordinate can be assigned
quite simply. Vertices on the intersection ring re-
ceive the vertical texture coordinate of 0.5, so that
it is lined up exactly with the center of the texture.
Vertices on the innermost auxiliary intersection ring
of one mesh receive the vertical texture coordinate
of 1.0, and of the other mesh, 0.0. This stretches the
texture over the intersection such that the middle of
the texture corresponds to the intersection ring, and
the top and bottom stretch out to the innermost aux-
iliary ring of each mesh.

The horizontal texture coordinates are a bit more
tricky. We have two priorities here: we would like
the texture to be mapped with uniform density, and
we would like it to wrap around seamlessly. Map-
ping it with uniform density means that it is never
stretched or compressed. That is, the difference in
texture coordinate between two connected vertices is
proportional to the physical distance between them.
To satisfy this constraint, we can start at any inter-
section point and assign it a horizontal texture coor-
dinate of 0.0, and walk around the intersection, and
assign to each point a texture coordinate equal to the
total distance walked so far.

To satisfy the second constraint (seamless texture
wrapping), we have to round up to the nearest in-
teger the total distance. That is, if the total distance
walked is 1.58 units, we have to round it to 2.0 units,
and scale all of the other texture coordinates simi-
larly. We do this because the right edge of the texture
image lines up seamlessly with the left edge of the
texture image, and the only way that these can line
up on the texture band is if the image is repeated an
integral number of times. If the texture is repeated
1.58 times, then there will be a visible seam where
the texture coordinate wraps from 1.58 back to 0.0.

Now that we have the horizontal texture coordi-
nates for the intersection points, we need horizontal
texture coordinates for the remaining points. To find
these we simply loop through all of the remaining
points and find the nearest intersection point, and
copy its horizontal texture coordinate. We can do

6

Figure 13: A simple dirt texture that can be used for
texture bands.

this in O(n) time instead ofO(n2) by only looking
at points that are connected by a triangle edge.

3 Results

This algorithm allows for artistic control of mesh
intersections, from subtle weathering effects (Fig-
ure 14) to dramatic impact deformations (Figure
12). It accomplishes this inO(n log n) time. In
this prototype implementation it takes about 0.2 sec-
onds to create the intersections for the simple power
transformers (400 triangles), and about 1.6 seconds
to create the intersections for the detailed boulder
(2500 triangles).

The intersection rings and retriangulation are ro-
bust to degenerate cases, but the deformation and
texture band creation can give unexpected results in
some cases. For example, the current deformation
algorithm will only affect vertices that are on one of
the intersection rings, so if there are other vertices
within the deformed area, there can be unexpected
indentations. Similarly, the texture bands stretch out
to the nearest vertices connected to the intersection
rings, which may not be the auxiliary intersection
rings if there are already vertices nearby.

Figure 14: A subtle dirt texture (right) around the
base of an object.

Figure 15: A large dirt texture around the base of an
object.

7

4 Discussion and Future Work

There are many applications for this kind of technol-
ogy. Two of the most significant applications are ag-
ing effects (e.g. rust accumulation around the base
of nails) or ambient occlusion (obstruction of am-
bient light when two surfaces are close together).
The algorithm takes a fraction of a second to run,
so with some optimization it will be useful for dy-
namic heightmaps, such as water surfaces, and dy-
namic environmental damage from explosions and
heavy impacts.

In the future we would like to make the deforma-
tion and texture bands more predictable in degener-
ate cases, and optimize the algorithm to run faster.
We would also like to create a user-friendly inter-
face that allows artists to easily create and test new
kinds of intersection effects.

5 Conclusion

Intersections between detailed meshes have been a
serious problem in modern 3D graphics. We have
created an algorithm that can automatically create
deformations or texture bands that can greatly im-
prove the appearance of these intersections. As far
as we know, there has been no other work addressing
this issue, so this is an important new step towards
efficiently creating realistic 3D environments.

References

Jon Louis Bentley. 1975. Multidimensional binary
search trees used for associative searching.Commun.
ACM, 18(9):509–517.

Tomas Moller. 1997. A fast triangle-triangle intersection
test.Journal of Graphics Tools, 2(2):25–30.

Manuel M. Oliveira and Fabio Policarpo. 2005. An effi-
cient representation for surface details.UFRGS Tech-
nical Report, RP-351.

Jonathan Richard Shewchuk. 2002. Delaunay refine-
ment algorithms for triangular mesh generation.Com-
putational Geometry: Theory and Applications, 22(1-
3):21–74.

8

Appeared in: Proceedings of the Class of 2008 Senior Conference, pages 9–17,
Computer Science Department, Swarthmore College

Approximate K Nearest Neighbors in High Dimensions

George Dahl

gdahl@cs.swarthmore.edu

Mary Wootters

mwootte1@cs.swarthmore.edu

Abstract

Given a set P of N points in a d-
dimensional space, along with a query point
q, it is often desirable to find k points
of P that are with high probability close
to q. This is the Approximate k-Nearest-
Neighbors problem. We present two al-
gorithms for AkNN. Both require O(N2d)
preprocessing time. The first algorithm has
a query time cost that is O(d+log N), while
the second has a query time cost that is
O(d). Both algorithms create an undirected
graph on the points of P by adding edges
to a linked list storing P in Hilbert order.
To find approximate nearest neighbors of a
query point, both algorithms perform best-
first search on this graph. The first algo-
rithm uses standard one dimensional index-
ing structures to find starting points on the
graph for this search, whereas the second al-
gorithm using random starting points. De-
spite the quadratic preprocessing time, our
algorithms have the potential to be use-
ful in machine learning applications where
the number of query points that need to
be processed is large compared to the num-
ber of points in P . The linear dependence
in d of the preprocessing and query time
costs of our algorithms allows them to re-
main effective even when dealing with high-
dimensional data.

1 The Problem

The K-Nearest Neighbors problem is the follow-
ing: given a set P of N points in a d−dimensional
space and a query point q, return the k points in P
that are closest to q.

However, solving K-Nearest-Neighbors in high
dimensions (say, more than 10) has proved compu-

tationally infeasible - most solutions are not much
better than the näıve method. Thus, we consider
the Approximate K-Nearest Neighbors prob-
lem: given a set P of N points in a d−dimensional
space, a query point q, and parameters ǫ and δ be-
tween 0 and 1, return, with probability greater than
1−δ, k points of P such that the ith point is at most
(1+ ǫ) times farther from q than the true ith nearest
neighbor of q (Arya et al., 1994).

Approximate K-Nearest Neighbors is widely
applicable, but we are motivated by its application
to supervised machine learning. Machine learning
applications are often characterized by a data set of
relatively high dimensionality, so we are interested
in solutions that scale well with d. In a typical su-
pervised learning scenario, a training set is processed
offline, and later the system must be able to quickly
answer a stream of previously unknown queries. Our
assumption is that the number of queries will be
large compared to N , which is why we are more
concerned with query time than preprocessing time.
Many supervised machine learning techniques that
could be alternatives to K-Nearest Neighbors

have quadratic or cubic (in N) training time. To this
end, our goal is to make query time as fast as possi-
ble, and accept almost any reasonable preprocessing
cost (quadratic in N or better). Since the näıve al-
gorithm has a query time complexity of O(Nd), we
demand a solution that provides query times sublin-
ear in N and linear in d.

2 Related Work

Recent solutions to K-Nearest Neighbors that we
have found tend to fall into two categories: ones that
employ locality sensitive hashing (LSH) (Andoni and
Indyk, 2008; Gionis et al., 1999) or ones that use
sophisticated tree-like structures to do spatial par-
titioning (Liu et al., 2004; Arya and Mount, 1993;
Arya et al., 1994; Beckmann et al., 1990; Berchtold et
al., 1996). LSH defines a hash function on the query

9

space which has a collision probability that increases
as the distance between two points decreases. In gen-
eral, LSH approaches scale reasonably well with d,
while the tree-based algorithms tend not to scale as
well. Most notably, Arya et al. (1994) present an al-
gorithm which, for fixed d, has a preprocessing cost
of O(N log N) and a query time of O(log N), but
is exponential in d. There are results which scale
well with d and have fast query time. In partic-
ular, Kleinberg (1997) presents an algorithm with
query time O(N + d log3 N), and preprocessing cost
quadratic in d, linear in N , and is O(1/ log(δ)) in δ.
Andoni and Indyk (2008) use LSH to achieve a query

time of O(N1/c2+o(1)d), and pre-processing cost of

O(N1+1/c2+o(1)d), where c = (1 + ǫ).

3 Algorithm 1

Our two algorithms are similar. We will describe the
first in its entirety, and then describe the changes we
make to produce the second one.

3.1 Overview

Algorithm 1 creates several auxiliary data struc-
tures to speed up query processing. The most im-
portant of these index structures is a graph, G, that
holds all the N points in P . To create G, we first cre-
ate a linked list containing all the points in P that is
sorted in the Hilbert order. Then we add edges to the
graph by linking points that are close together. The
goal is to create a connected graph (starting with
a linked list ensures connectedness) in which two
points that are close in space will be very likely to be
close on the graph. We also construct a small, con-
stant number of one-dimensional search structures,
specifically red-black trees, that order points based
on their projections onto one-dimensional subspaces
of our space. Given a query point q, the one dimen-
sional search structures are used to obtain a small
set of initial guess nodes in G. These are the nodes
corresponding to points whose projections are close
to the projection of q in the one-dimensional sub-
spaces. Starting at these guess points, our algorithm
searches G until k + m nodes have been touched, for
some constant m (assuming k + m is greater than
the number of guess points, otherwise we touch each
guess point once). The nodes are sorted by their
distance to q, and the first k are returned.

Figure 1: The first six curves in the sequence limiting
to the Hilbert curve. Picture courtesy of Wikimedia.

3.2 Preprocessing and Auxiliary Data

Structures

Algorithm 1 requires several auxialiary data struc-
tures, as mentioned above. It uses a graph G on
nodes corresponding to points in P , and several red-
black trees. In order to create G, we first compute
the Hilbert order of the points in P .

3.2.1 Snapping Points to an Integer Lattice

and Sorting by Hilbert Order

The Hilbert curve is a space-filling curve defined as
the limit of self-similar curves in a d-dimensional
space. The first few curves in the 2-dimensional
sequence are shown in Figure 1. One of the more
celebrated properties of the Hilbert curve (Jagadish,
1990) is that it preserves locality well. That is, if two
points are close in the d-dimensional space, their pre-
images on the unit interval will likely be close. Each
curve in the sequence touches every point of a d-
dimensional lattice with 2n points on each side for
some n. The Hilbert order of a set of points P on
such a lattice is the order of the preimages of the
points in the unit interval. We impose a Hilbert or-
der on our set of points P by snapping them to such
a lattice first. We compute the location in the lattice
for a point by applying the following function to it:

f(~x) = ⌈a~x⌉ +~b,

where
1

a
= min

~p,~q∈P

(

min
i≤d

|pi − qi|

)

and
bi = −min

~p∈P
⌈pi⌉,

where xi denotes the ith component of ~x. That is,
the smallest distance along any axis between any two

10

points becomes the lattice spacing. Such a poten-
tially small lattice spacing could be undesirable be-
cause computing the Hilbert order might take too
long. In practice, we have not found this to be a
problem, but if it were, a coarser lattice could be
used. Once the points are on a lattice, we compute
the Hilbert order using an algorithm developed by
Butz (1971), and explained to us by Jaffer (2008b).
Our implementation is based on the implementation
of hilbert->int in the SLIB library (Jaffer, 2008a).

3.2.2 Additional Graph Edges

The graph G begins as a linked list of the points
of P in the Hilbert order as described above. For
clarity, we will refer to nodes in G by the point
they correspond to in P . Edges are strategically
added as follows: each node p in G is linked to the
b nodes closest to p in space, for some constant b.
If p’s b nearest neighbors are already adjacent to
it (perhaps they were in the original linked list or
they themselves have already been processed), these
edges are not added again. This guarantees that each
node of G will be adjacent to its b nearest neigh-
bors. These nearest neighbors are computed using
the näıve method, i.e., simply scanning all the points
in P .

3.2.3 One-Dimensional Search Structures

In order to keep preprocessing costs low, we choose
a subset P ′ of P consisting of N2/3 points randomly
selected from P . For some constant c, suppose the
first c principal components of P ′ are {a1, . . . , ac}.
For each principal component ai, we create a red-
black tree Ti holding the elements of P ordered by
where they fall along ai.

3.3 Handling Queries

Given a query point q, we search each one-
dimensional search structure Ti for the point pi

whose projection onto ai is the closest to the pro-
jection of q onto ai. These pi are the c initial nodes
for the search of G.

The search proceeds in a best-first manner by prefer-
entially expanding nodes closer to q. If n is a node in
G, let d(n) denote the distance from n to q. Two pri-
ority queues are maintained during the search, ToEx-
pand and BestK. We initialize ToExpand to contain
the nodes pi. ToExpand is a minheap with the prior-
ity of node n being d(n). We initialize BestK to be
empty. BestK is a maxheap, such that the highest
priority node l maximizes d(l). For m + k steps, a
node n is removed from ToExpand. If d(n) > d(l) for

the node l with the highest priority in BestK, then
n is added onto BestK and l is removed (assuming
BestK contains k items). Then all of the nodes adja-
cent to n are added to ToExpand. After m+k steps,
the k nodes in BestK are returned.

3.4 Cost Analysis

In order to compute the Hilbert order, we map each
point in P to its distance from the origin along
the appropriate Hilbert curve. This computation is
O(d + log s), where s is a times the maximum co-
ordinate of p, where a is the factor from our lattice
snapping. Although we cannot control the maximum
coordinate or a, we find that in practice, at least, we
can compute the Hilbert order very quickly in hun-
dreds of dimensions. We could theoretically control
these variables by creating a coarser lattice, which
might result in an approximation of the Hilbert or-
der. We are convinced that this is not a problem.
We assume that either s is reasonable or we force it
to be so by adjusting the lattice, so this step should
take time approximately linear in Nd.

We can complete the preprocessing phase of our al-
gorithm in O(N2d) time. Once points are in a linked
list, for each point in P we add at most b additional
edges. The new edges can be computed for a given
point with a single scan of the points in P which
will require O(N) distance computations which each
take time linear in d. Therefore we can construct
the graph in O(N2d) time. Computing the principal
components of a subset of P of cardinality N2/3 can
be done in time quadratic in N since Principal Com-
ponent Analysis can be performed in time cubic in
the size of the dataset. The search trees can easily be
constructed in O(N log N) time, so our preprocess-
ing phase can be completed in O(N2d) time. The
space requirements of our auxiliary data structures
are clearly linear in N .

To evaluate a query, we need to do a constant num-
ber of searches of red-black trees on N nodes which
will have a cost logarithmic in N . We also have to
project the query point into one dimension which
adds a term proportional to d to our cost. In the
best-first search of the graph we search a constant
number of nodes and do a constant number of dis-
tance computations in d dimensions. Thus our query
time is O(d + log N).

4 Algorithm 2

Algorithm 2 is a simplification of Algorithm

1. Initial experiments suggested that the one-

11

dimensional search structures used in Algorithm 1

were not that important to performance. Since the
1D search structures added a term proportional to
log N to our query time, we designed a new algorithm
that does not use them. In Algorithm 1, the red-
black trees were used to get starting points for the
best-first search. In Algorithm 2, we simply pick c
random start points for this search. However, these
start points will almost certainly be worse guesses
than those produced by the red-black trees. Since
we only expand a small constant number of nodes
in our best-first search and since all of the edges in
G connect points that are close in space, the search
will expand many nodes that are far from the query
point. Our solution is to add some longer edges to
G. In the preprocessing phase of Algorithm 2, for
each node in G, we add an edge from that node to
one other random node (if the edge does not already
exist). On average, these edges will be much longer
than the nearest-neighbor edges.

4.1 Cost Analysis

The preprocessing phase of Algorithm 2 is identical
to the preprocessing phase of Algorithm 1, except

1. PCA is not performed.

2. Red-black trees are not constructed.

3. We add up to N random edges.

Adding the N random edges requires a single scan
of the nodes in G, therefore our preprocessing time
is still O(N2d).

The term proportional to log N in the query time of
Algorithm 1 resulted from querying the red-black
trees. Algorithm 2 does not do this, so the query
time for Algorithm 2 is O(d).

5 Experiments

Because we do not have proofs about the relation-
ships between b, c,m, ǫ, and δ, we ran extensive em-
pirical tests of our algorithms.

5.1 Datasets

We tested our algorithms on several large high di-
mensional data sets, both synthetic and real. Our
synthetic data consists of mixtures of multivariate
Gaussian distributions. Covariance matrices and
means were generated randomly to produce these
distributions. In particular, we considered unimodal,
bimodal, pentamodal, and dodecamodal synthetic

distributions. Gaussian distributions were chosen
both because they often approximate distributions
found in the wild, and because given a finite variance,
the Gaussian distribution achieves the maximum en-
tropy. We predicted that our algorithms would per-
form best on data with fewer modes, so the higher
modal1 distributions were selected to challenge our
algorithms. In the case of the synthetic data, query
points were drawn from the same distribution used
to create the data. All of the synthetic data sets were
50-dimensional and contained 3000 points.

Real-world data was obtained from the UCI Machine
Learning Repository (Asuncion and Newman, 2007).
We used the ISOLET data set, which is audio data
of spoken letters of the alphebet, and the Waveform
Database Generator dataset. The ISOLET data set
has 617 dimensions and more than 5000 points. The
waveform data set has 22 dimensions and also more
than 5000 points. In the case of the real data, the
data sets were split into two parts, one for the initial
set of points, and one from which to draw queries.

5.2 Parameters and Measurements

For each data set tested, the independent variables
were:

· b: The number of nearest neighbors each point
in P is connected to in G.

· c: The number of one-dimensional search struc-
tures created in the case of Algorithm 1, or the
number of guess points in the case of Algorithm
2.

· m: The number of nodes (beyond k) in the
graph that are expanded.

· k: The number of nearest neighbors requested.

The variables measured were:

· Percent Correct: The percent of the points re-
turned which are actually among the k nearest
neighbors.

· Excess Rank: The actual rank (that is, the j
of “jth-nearest neighbor”) of the worst point re-
turned, minus k.

· Maximum Epsilon: If the actual ith nearest
neighbor of a query point q has distance di

from q, and the ith approximate nearest neigh-
bor has distance d′i from q, then Max Epsilon=

1With more extreme modality/modacitude, as it were.

12

maxi (d′i/di − 1). Note that this is an upper
bound on the ǫ from the definition of AkNN,
if δ = 1.2

Based on preliminary experiments, the parameters b,
c, m, and k were allowed to vary in the ranges below.

· b ∈ {0, 1, . . . , 10}

· c ∈ {1, 4, 16}

· m ∈ {0, 1, 10, 30, 60, 100, 150, 200, 250} in
Algorithm 2. For Algorithm 1, we ommitted
200 and 250 because m had less of an impact.

· k ∈ {100}

We ran preliminary experiments using a variety of
values for k, but settled on k = 100. The relation-
ships between parameters are easier to determine for
larger k, since the algorithms are identifying more
neighbors, and so setting k = 100 is more enlight-
ening than looking at smaller values of k. For each
combination of parameters, 50 queries were made,
and the average value for each dependent variable
was recorded. An implementation of the näıve ex-
act kNN algorithm determined the accuracy of the
approximate nearest neighbors. We ran experiments
using the above parameters on all of our synthetic
data sets.

We tested how each parameter affected our perfor-
mance metrics (Percent Correct, Maximum Epsilon,
Excess Rank) when the other parameters were small
and fixed. We fixed two of c = 4, m = 10, b = 4,
varying the third.

On the real-world data, we picked reasonable values
for all parameters and did not vary them. The chosen
parameter values were c = 4, b = 4, m = 100, k =
100.

In the results presented below, the graphs for Ex-
cess Rank exactly followed the graphs for Maximum
Epsilon, so we omit them.

6 Results

Unsurprisingly, b is an important parameter for both
algorithms. Figure 2 shows that for Algorithm 1, if
c and m are small, b can easily pick up the slack.
For b > 4, nearly all of the nearest neighbors are
guessed correctly. As shown in Figure 3, for distribu-
tions with few modes, using a large enough b ensures

2Further note that this is not generally how the ex-
perimental ǫ is computed for AkNN.

Figure 2: Algorithm 1 on synthetic data sets with
3000 points in 50 dimensions. For b > 4, nearly 100%
of the nearest neighbors are correctly identified.

that Maximum Epsilon is close to zero. Unfortu-
nately, when we run Algorithm 1 on distributions
with more modes, Maximum Epsilon is not as close
to zero.

As can be seen in Figure 4, Algorithm 2 scales with
b in the same way as Algorithm 1 does. A high
b guarantees a good maxEpsilon for the unimodal
and bimodal cases, but the situation is worse for the
5 and 12−modal cases. This is because incorrect
neighbors were sometimes drawn from a Gaussian in
the mixture that was far away.

However, there is a difference in the Percent Correct
achieved by our two algorithms as a function of b. As
can be seen in Figure 5, while the general relationship
between Percent Correct and b on a single distribu-
tion is the same for both algorithms, the distribu-
tions that are easier for Algorithm 1 to handle are
not the distributions that are easier for Algorithm 2

to handle. While Algorithm 1 had a lower Percent
Correct on the 12-modal distribution, even for larger
b, Algorithm 2 appears to behave in the opposite
way. For Algorithm 2, Percent Correct is highest
for the 12-modal distribution for pretty much all b.
In all cases, a choice of b > 4 still guaranteed a high
Percent Correct.

Increasing m improves Percent Correct and Max Ep-
silon. However, over the ranges we tested, b has
more of an impact than m on the performance of
Algorithm 1. Figures 6 and 7 demonstrate this ef-
fect nicely. As we have come to expect for Algorithm
1, the 12-modal distribution produces the worst per-
formance. Algorithm 2 benefits even more than
Algorithm 1 from increased m. Figures 8 and 9

13

Figure 3: Algorithm 1 on synthetic data sets with
3000 points in 50 dimensions. For b > 4 and for
data sets with few modes, the points which are not
correct are not far from the points which are correct.
For data sets with many modes, this is less true.

Figure 4: Algorithm 2 on synthetic data sets with
3000 points in 50 dimensions. For b > 4 and for data
sets with few modes, the points that are not correct
are not far from the correct points. For data sets
with more modes, this is less ture.

Figure 5: Algorithm 2 on synthetic data sets with
3000 points in 50 dimensions. For b > 4, nearly
100% of the nearest neighbors are correctly identi-
fied. Surprisingly, Algorithm 2 does better on more
complicated distributions.

demonstrate that when we run Algorithm 2 with
increasing m on any of our synthetic data sets, Per-
cent Correct rapidly approaches 1 and Max Epsilon
rapidly approaches 0. The increased impact of m
of Algorithm 2 makes sense because Algorithm 2

partly depends on a more extensive search to make
up for its random starting points.

For both algorithms, over the ranges that we tested,
c had less of an impact on performance than m or b.
In particular, the Percent Correct for Algorithm 2

was almost independent of c. It should be noted that
while c represents the number of initial points for the
search in both algorithms, these points are obtained
in completely different ways. Thus, we do not gain
much insight by comparing the effects on Algorithm

1 and Algorithm 2 of varying c. At some point,
changing c would impact performance, but we are
content to find a single reasonable value for c and
focus on the other more important parameters.

Due to time constraints, we did not test Algorithm
2 on our real world data sets. However, Algorithm
1 performed admirably, especially considering the
large number of dimensions (617) in the ISOLET
data set. We have no reason to believe that
Algorithm 2 would not be as good or better than
Algorithm 1 on the real world data. Our experi-
ments on synthetic data sets suggested that m = 100,
b = 4 and c = 4 would be reasonable parameter set-
tings that should work on any task. The results of
running Algorithm 1 with these parameters on all
of our data sets are shown in Table 1. Algorithm

1 returned more than 90% of the correct k nearest

14

Figure 6: Algorithm 1 on synthetic data sets with
3000 points in 50 dimensions. As we would hope,
Percent Correct increases with m.

Figure 7: Algorithm 1 on synthetic data sets with
3000 points in 50 dimensions. m seems relatively
effective for data sets with few modes. For data sets
with many modes, this is less true.

PC ME ER
1-Modal 0.919 0.009 9.83
2-Modal 0.970 0.005 3.22
5-Modal 0.992 0.002 0.82
12-Modal 0.929 0.154 58.86
ISOLET 0.922 0.042 33.93

Wave 0.952 0.009 5.55

Table 1: Average Percent Correct (PC), Max Epsilon
(ME), and Excess Rank (ER) over 100 queries on real
world data (ISOLET and Wave) and over 50 queries
on the synthetic data

Figure 8: Algorithm 2 on synthetic data sets with
3000 points in 50 dimensions. As we would hope,
Percent Correct increases with m, and more so than
in Figure 6.

Figure 9: Algorithm 2 on synthetic data sets with
3000 points in 50 dimensions. m seems relatively
effective for data sets with any number of modes.

15

Figure 10: Both algorithms on the 12-modal syn-
thetic data sets with 3000 points in 50 dimensions,
along with a new algorithm Hobbled Algorithm 2.
This algorithm is the same as Algorithm 2, except
no random edges are added.

neighbors of the query points on each data set. As we
have come to expect, Algorithm 1 performed worse
on the 12-modal data set. The ISOLET data set was
also difficult, as presumably its intrinsic dimension-
ality was much larger that the dimensionality of the
synthetic data.

6.1 Comparison of Algorithms

While Algorithm 2 may sacrifice quality in its ini-
tial guesses when compared to Algorithm 1, it also
has a more complete graph to search. Comparing
the performance of both algorithms on our synthetic
data sets, we found that Algorithm 2 tended to out-
perform Algorithm 1 on the 12-modal set, and that
there was no discernable pattern on the other sets.
One might wonder whether or not using the one di-
mensional search structures helped Algorithm 1 at
all, or whether the additional random edges helped
Algorithm 2. Figure 10 demonstrates that the an-
swer to both questions is yes. While Algorithm

2 does slightly better than Algorithm 1, both do
much better than Hobbled Algorithm 2, which is
the same as Algorithm 2, except no random edges
are added.

7 Conclusions and Future Work

The adjustments we made to Algorithm 1 to obtain
Algorithm 2 suggest a third algorithm with O(Nd)
preprocessing time and O(d) query time that might
be interesting to try in future work. This algorithm,
tentatively called Algorithm 3, would start with the

same linked list as Algorithms 1 and 2, add b ran-
dom edges to each node, and process queries as in
Algorithm 2. Dispensing with the nearest neighbor
edges would give us the faster preprocessing time. It
would be interesting to see how accurate Algorithm

3 would be.

We have presented two algorithms which, though
O(N2d) in preprocessing cost, handle queries in
O(d + logN) and O(d) time, respectively, with ex-
perimentally good accuracy. As they are only lin-
ear in d, our algorithms scale well to the high-
dimensional problems common in machine learning.
Furthermore, our algorithms do not appear to be
overly sensitive to parameter settings - choices of,
say, m = 100, b = 4, and c = 4, seem to be suffi-
cient to get good accuracy on all the data sets we
tried. Our second, faster algorithm seems to do as
well or better than our first algorithm, and its per-
formance seems depend even less on the data distri-
bution. Since Algorithm 2 is faster and seems to be
more robust, it should be preferred in general. Ulti-
mately, our second algorithm is an attractive choice
for solving Approximate K Nearest Neighbors

in high dimensions.

References

Alexandr Andoni and Piotr Indyk. 2008. Near-
optimal hashing algorithms for approximate near-
est neighbor in high dimensions. Commun. ACM,
51(1):117–122.

Arya and Mount. 1993. Approximate nearest neigh-
bor queries in fixed dimensions. In SODA: ACM-
SIAM Symposium on Discrete Algorithms (A Con-
ference on Theoretical and Experimental Analysis of
Discrete Algorithms).

Sunil Arya, David M. Mount, Nathan S. Netanyahu,
Ruth Silverman, and Angela Wu. 1994. An op-
timal algorithm for approximate nearest neighbor
searching. In SODA ’94: Proceedings of the fifth an-
nual ACM-SIAM symposium on Discrete algorithms,
pages 573–582, Philadelphia, PA, USA.

A. Asuncion and D.J. Newman. 2007. UCI machine
learning repository.

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schnei-
der, and Bernhard Seeger. 1990. The r*-tree: an ef-
ficient and robust access method for points and rect-
angles. SIGMOD Rec., 19(2):322–331.

Stefan Berchtold, Daniel A. Keim, and Hans-Peter
Kriegel. 1996. The X-tree: An index structure
for high-dimensional data. In T. M. Vijayaraman,

16

Alejandro P. Buchmann, C. Mohan, and Nandlal L.
Sarda, editors, Proceedings of the 22nd International
Conference on Very Large Databases, pages 28–39,
San Francisco, U.S.A. Morgan Kaufmann Publish-
ers.

A. R. Butz. 1971. Alternative algorithm for hilbert’s
space-filling curve. IEEE Trans. Computers, C-
20:424–426.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani.
1999. Similarity search in high dimensions via hash-
ing. In VLDB ’99: Proceedings of the 25th Interna-
tional Conference on Very Large Data Bases, pages
518–529, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Jaffer. 2008a. The SLIB Portable SCHEME Li-
brary, available at http://swissnet.ai.mit.edu/ jaf-
fer/SLIB.html.

Aubrey Jaffer. 2008b. Personal Communication.

H. V. Jagadish. 1990. Linear clustering of objects
with multiple attributes. SIGMOD Rec., 19(2):332–
342.

Jon M. Kleinberg. 1997. Two algorithms for nearest-
neighbor search in high dimensions. In Proceedings
of the Fifth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 599–608.

T. Liu, A. Moore, A. Gray, and K. Yang. 2004. An
investigation of practical approximate nearest neigh-
bor algorithms.

17

Appeared in: Proceedings of the Class of 2008 Senior Conference, pages 18–21,
Computer Science Department, Swarthmore College

The Road Not Taken: Creating a Path-Finding Tool Using Consumer-Grade
GPS Equipment

Allison Barlow
ajb@sccs.swarthmore.edu

Lucas Sanders
lsanders@sccs.swarthmore.edu

Abstract

We automate the organization of GPS data
to create a visibility map with correctly
connected intersections. For our exam-
ple case study, we use GPS data collected
on the Swarthmore College campus. Af-
ter the data is automatically organized and
cleaned, a user is able to select points on
a visual map to search for an optimal path
between those points.

1 The Problem of Navigation

Swarthmore College, set in the beautiful Scott Ar-
boretum, has many scenic routes and winding paths
between the lovely stone buildings. This serene set-
ting is wonderful for long walks, but can be trou-
blesome in trying to navigate from one’s dorm to a
classroom when one is half-awake and running be-
hind schedule. In order to assist the poor, sleep-
deprived students of Swarthmore College, we cre-
ate an interactive map of the campus to help users
discover the appropriate paths between the various
buildings on campus. In doing so, we develop a
set of tools that can easily create similar systems for
data collected in other locations.

1.1 Previous Work

Another group worked on a GPS path-planning
project for last year’s Senior Conference (Singleton
and Woods, 2007). Because their data required quite
a bit of manual editing, their system would not eas-
ily scale to larger data sets. We also noticed that

their interface was difficult to understand immedi-
ately. Taking these challenges into account, we cre-
ate a scalable, user-friendly path planning tool.

We used a large amount of previous research
to build our tools. Most notably, Dijkstra’s algo-
rithm (Dijkstra, 1959; de Berg et al., 1997) and
the more general A* search algorithm (Hart et al.,
1968) have been developed to find appropriate paths
through our spatial graph. We also implement an
improved version of the Douglas-Peucker line sim-
plification algorithm (Hart et al., 1968).

1.2 Approaches to Path Planning

Path planning is essentially a least-cost graph
searching problem, a task for which several algorith-
mic variations have been developed. In the past, Di-
jkstra’s algorithm has been widely used for this task,
but we implement the A* search algorithm, which is
a generalization of Dijkstra’s approach that is both
complete and optimally efficient. In typical situa-
tions, A* performs slightly faster than Dijkstra’s al-
gorithm because it uses a heuristic to help decide
which search paths are most promising. This process
minimizes the size of the subgraph to be explored.

2 Implementation

This project consists of three main parts: data collec-
tion and processing, path planning, and UI develop-
ment. The first two parts center on problem solving
using computational geometry while the third pro-
vides easy access to the results.

18

2.1 Data Collection and Processing

We use self-collected GPS data for our finished map-
ping system. Swarthmore College kindly provided
their survey plans for use with this project, but due
to a lack of time, we were not able to complete an
integration of this data into our user interface. We
prioritized our work with the GPS data, even though
that data is not as precise, because we wanted our
system to be useful in creating mapping systems in
other situations where no such detailed survey plans
have been prepared.

2.1.1 GPS Data Collection

Our main dataset is GPS tracking data recorded
by walking the paths of Swarthmore’s campus
with a consumer-grade GPS receiver, the Garmin
GPSmap 60CSx. For consistency, we carried the
GPS receiver at about waist-height and walked on
the center of each footpath, recording tracks of
where we had walked and marking a waypoint each
time we encountered a path intersection. We used
GPSBabel to transfer data from the Garmin unit to
the GPX format, an XML-based file format that in-
cludes latitude, longitude, elevation, and timestamp
data. We collected GPS data for virtually all exterior
paved footpaths on the Swarthmore campus; in con-
trast to last year’s project, we did not record indoor
footpaths because of the inability to collect GPS data
indoors with inexpensive equipment and our desire
to avoid manual editing of the collected data (Sin-
gleton and Woods, 2007).

2.1.2 GPS Data Processing

Our pre-processing algorithms find clusters of
paths with geographically nearby endpoints. We as-
sume that these paths intersect at a common point, so
we reassign the endpoint coordinates of all paths in a
cluster to the arithmetic mean of the endpoint coor-
dinates in that cluster. While this approach is fairly
naive, we found that it works quite well in prac-
tice with the relatively coarse resolution captured by
consumer-grade GPS equipment.

We experimented with simplifying the data as a
final processing step, hoping to reduce the computa-
tional power needed for both the user interface dis-
play and our path-finding algorithms. We use the
Douglas-Peucker line simplification algorithm to do
so. This, however, was not particularly helpful for

this particular application in part because of the rela-
tively infrequent position sampling provided by our
equipment. Also, we constructed our search graph
on adjacent path intersections, ignoring the com-
plexity of the path segment between those intersec-
tions, which is an even more efficient simplification
for searching purposes. It is important, however, to
explore the practicability of such simplification tech-
niques for use with larger, higher-precision datasets.

At the end of these pre-processing steps, the re-
sulting data is saved as latitude, longitude, and ele-
vation tuples for each meaningful point of each path
segment. Figure 1 shows a clear difference between
our raw data and the same data after being processed
with our programs.

Figure 1: Before and after data processing cleanup
on a subset of our GPS data

Figure 2: GIS overlay of our GPS data and the sur-
vey drawings

2.1.3 CAD Survey Drawings

Thanks to the maintenance staff at Swarthmore
College, we also acquired survey-grade mapping
data for the Swarthmore campus in AutoCAD for-
mat. We convert the several layers of data from these

19

drawings to the Shapefile format and simplify the
data using the Douglas-Peucker algorithm. The fi-
nal output data uses the same simplified data format
described at the end of our GPS data pre-processing
algorithms. We had hoped to use information from
these drawings as a base layer to help orient users
to the paths as displayed in our user interface, but
ran out of time before we could complete that ef-
fort. Figure 2, however, shows an overlay of these
datasets that has been prepared with a GIS package.

2.2 Path Planning

Path planning using the A* search algorithm is fairly
straightforward. We create a graph of the connec-
tions between path intersections; each edge in the
search graph is weighted with the path distance be-
tween its endpoint vertices. Then, we apply the
search algorithm to this graph, finding the shortest
path between the two selected nodes.

A* uses a heuristic function: the sum of distance
to get to the current node plus the cost to get to the
next node. Using this function, A* chooses which
nodes to visit based on the routes that appear to be
shortest. The partial paths it has explored are stored
in a priority queue, and when its cheapest path be-
comes relatively expensive, other potentially shorter
paths are explored. When a path is found to reach
the goal with a lower heuristic value than any other
(partial) path in the queue, A* has found the shortest
path. A* is both complete and optimal, making it an
obvious choice for path finding.

We choose to implement the A* search algo-
rithm because its implementation is not significantly
more difficult than implementing Dijkstra’s algo-
rithm. Given this, the heuristic in A* provides a
slight performance improvement in typical situa-
tions.

2.3 UI Development

We provide a python program for visualizing the
paths in our search space and the optimized paths be-
tween selected points. Search endpoints are selected
simply by clicking on intersections in our search
graph, and the optimal path between those points is
then highlighted on the map. A screenshot of this in-
terface is provided in Figure 3, where the first point
selected is green, the second point selected is red,
and the shortest path between them is shown in blue.

Figure 3: Screenshot of our UI with a path selected

20

We did not have time to complete further UI de-
velopment work, although this was not the largest
focus of our project. The UI would be even more in-
tuitive, however, if the paths were overlaid on a map
that shows other landmarks, such as buildings.

3 Results & Conclusions

Our system appears to be robust and to provide ac-
curate results for a user’s queries. The interface can
be quickly and simply explained, but is not yet intu-
itive enough to be used by most individuals without
a brief explanation.

We are quite happy with the way that our system
meets the goals set out at the beginning, especially
with regards to scalability. For example, we devel-
oped our processing routines with a subset of our
collected GPS data, then were able to add the re-
mainder of our data with less than five minutes of
additional work. We are confident that our system
would scale well even to much larger datasets than
the ones used in this project, and that this represents
a good approach to developing such path-finding
systems much more quickly and cheaply than has
been previously possible.

References

M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. 1997.Computational Geometry: Al-
gorithms and Applications. Springer.

E. W. Dijkstra. 1959. A Note on Two Problems in Con-
nexion with Graphs.

P. E. Hart, N. J. Nilsson, and B. Raphael. 1968. A For-
mal Basis for the Heuristic Determination of Minimum
Cost Paths.

Matt Singleton and Bronwyn Woods. 2007. Finding
Your Inner Blaha: GPS Mapping of the Swarthmore
Campus.

21

Appeared in: Proceedings of the Class of 2008 Senior Conference, pages 22–27,
Computer Science Department, Swarthmore College

Drawing Isoglosses Algorithmically

Bryce Wiedenbeck
bryce@cs.swarthmore.edu

Kit La Touche
kit@cs.swarthmore.edu

Abstract

In this paper, we apply algorithms for
defining regions from sets of points to the
problem of drawing isoglosses, the bound-
aries between dialect regions. We discuss
the justifications for our method, and al-
ternative models that could be constructed
from this data. We evaluate the resultant
model by comparison to the traditional
method of drawing isoglosses, by hand.

1 Introduction

In the linguistic subfield of dialectology, an impor-
tant activity is the drawing of isoglosses, or bound-
aries between dialect areas. It is often difficult to pin
down the meaning of these terms, as within a region
people come and go, and bring their speech with
them, but broadly speaking, an isogloss is a bound-
ary between where people speak like this and where
people speak like that. Typically, an isogloss will
not be a sharp line, but will be an area of overlap
between speakers of one type and the other.

Unfortunately, isoglosses are typically drawn by
hand, as an approximate dividing line. This leads to
two problems: one, they should not be thought of or
represented as lines, but rather as approximate tran-
sition zones, and two, they could be better drawn,
we think, by algorithm than by eyeballing. As the
noted sociolinguist William Labov writes,

Every dialect geographer yearns for an
automatic method for drawing dialect
boundaries which would insulate this pro-
cedure from the preconceived notions of
the analyst. No satisfactory program has
yet been written. (Labov et al., 2005)

We have therefore attempted, as something like a
proof-of-concept, to redraw the isoglosses for cer-
tain dialect differences in American English. We

have taken as our data the results of the telephone
survey of speakers across the contiguous USA done
for the Atlas of North American English (Labov et
al., 2005). To this data, we have applied a number
of algorithms from the field of computational geom-
etry, and hope that the result will better represent the
boundaries between dialect regions.

One way we expect that our method will improve
on a hand-drawn line is by clearly showing areas
that are thoroughly mixed. It can be tempting, when
drawing by hand, to mark an area as primarily speak-
ing one way, and drawing your line as though that
is the case. It may well be the case, however, that
in such situations, the region is much more evenly
mixed than it appears to the eye, and should proba-
bly not be marked decidedly in either direction. We
suspect that an algorithmic approach will see these
cases more clearly.

The clearest way to test whether our method im-
proves on a hand-drawn line would be to see if this
model has greater predictive power, such that if we
were to randomly make telephone calls to people,
their proximity to our lines would be a better indica-
tor of the features of their dialect. However, doing
so is outside the scope of the project. Other changes
to our method that would make it more explicitly
a predictive model, such as predicting the value for
a point based on the inverse-distance weighted av-
erage of the n-nearest neighbors,1 while interest-
ing, would also be outside the scope of this project.
Such an approach would really be a machine learn-
ing task, and not a cartographic task.

As such, our evaluation is limited to observing
in a qualitative way the differences between our
method and the hand-drawn method. We expect
that if there is no significant difference, this will at
least provide a way of automating the creation of
a machine-readable form, assuming data points are
available. If there is a significant difference, then

1As suggested by George Dahl.

22

perhaps more investigation into the predictive pow-
ers of the two models is warranted.

2 The data

The data from the Atlas of North American En-
glish (Labov et al., 2005) is in the form of approxi-
mately 600 points, identified geographically by ZIP
code, which we then converted to latitude and lon-
gitude coordinates. At each point, there was an in-
dication of whether the speaker at that point makes
or does not make each of a set of possible linguistic
distinctions. The data is generally denser around the
north east and Great Lakes regions, but this is in part
due to greater population density in these areas. Of
course, more datapoints would always be desirable,
but these data are still useful.

A dialect area can be considered an area of over-
lap between polygons from different feature sets,
where the area of overlap consists of most of the area
of the parent polygons. Thus, it is an area where,
at least with respect to the features under consid-
eration, people speak the same way, and that way
is distinct from the surrounding area. The scale of
this can vary, of course: a city may form a distinct
dialect area within a state, if it has sufficiently dif-
ferent speech, but there may also be dialect areas
within that city, which are each more like each other
than they are like the speech outside the city, but still
differ from each other.

The specific features which we mapped were the
following: whether the speaker distinguishes A and
O, whether the speaker distinguishes û and w, and
whether the speaker distinguishes I and E before a
nasal, such as n or m.2 These are a set of easily ex-
plicable features, with the first and third being gen-
erally considered to be characteristic of large US
dialects. For each feature, following the format in
the Atlas, a speaker could make the distinction, not
make the distinction, or be unclear — that is, the
interviewer was unable to tell whether they reliably
made or did not make the distinction. In all cases,
we used the interviewer’s judgment, rather than the
speaker’s self-reporting.

The scale of our project is across the contigu-
ous USA, so many smaller-scale regional variations
don’t show up. This is dependent on a number of

2These symbols are explained in Section 7.

parameters in the algorithm, and the size and gran-
ularity of the dataset. For example the data set and
our techniques might allow us to note the speech of
western Pennsylvania and West Virginia as distinct
from the area around it, but would not create a dis-
tinct region for the dialect of San Francisco and its
countryside.

3 Methods

Our goal of identifying dialect regions based on in-
dividual phoneme information required us to first lo-
cate areas where speakers pronounced a phoneme
similarly. For most phonemic variables in the Atlas
of North American English, the speakers with sim-
ilar pronounciation are not located all in one area.
This meant that for each feature setting, we had to
first break the data points up into several regional
groupings, which we did using k-means clustering.
Once we had clustered the data for a particular fea-
ture setting we found boundaries for the resulting
regions by computing the convex hulls of the data
points in each cluster. This gave us several polygons
describing regions in which a particular feature had
the same setting, so to find dialect regions we over-
laid these polygon sets and found regions of inter-
section. Each of these three steps is described in
detail below.

3.1 Clustering

To break the data points from a data set for a par-
ticular feature setting down into smaller groups, we
used k-means, a clustering algorithm proposed by
MacQueen (1967). The algorithm starts with k cen-
troids that can be specified as input or randomly se-
lected from the data points. Each data point is then
assigned to the nearest centroid, and each centroid is
adjusted to minimize the distance to all of its points.
Then the data points are again assigned to the clos-
est centroid, and the centroids are recomputed, and
so on. The algorithm terminates when an iteration
occurs in which no data points switched centroids.
The theoretical worst-case time complexity of the
k-means algorithm is superpolynomial (Arthur and
Vassilvitskii, 2006), but in practice it runs quite
quickly.

We considered a number of alternative cluster-
ing algorithms including faster heuristic-based or

23

approximate k-means implementations. We also
considered other more adaptive clustering algo-
rithms, like growing k-means or growing neural
gas (Daszykowski et al., 2002). The main advantage
to such techniques is that they would not require the
number of clusters to be specified in advance, but
instead start with very few centroids and add more
as needed. We decided against such methods after
considering the potential applications of our work.
First, if a user of our algorithm, say a linguist creat-
ing dialect maps, is unfamiliar with the details of the
implementation, it might be easier for him to spec-
ify starting-point centroids than to tune the param-
eters that control the termination point of growing
k-means or growing neural gas. Additionally, be-
cause our data come from an atlas with hand-drawn
isoglosses, we have available to us reasonably good
starting-point centroids to use in our testing.

3.2 Convex Hulls

After forming clusters, we computed the convex hull
of each set of clustered points, using a simple convex
hull algorithm, the Jarvis March. The algorithm uses
a “gift-wrapping” technique, starting from the left-
most point in the data set, and at each subusequent
step, scanning through all the remaining points to
find the one that makes the widest angle with the pre-
vious hull boundary-segment. This runs in in O(nh)
time, because each of h loops scans all of the input
points (de Berg et al., 1997). Non output-sensitive,
O(n log n), convex hull algorithms also exist and are
useful when h is close to n, resulting in n2 complex-
ity for Jarvis, but in our application, h tends to be
quite small relative to h, so the Jarvis March per-
forms marginally better.

When inspecting the first applications of our
convex-hull implementation to real data, we noticed
that the hulls were often significantly affected by a
few outlier points that weren’t particularly close to
any of the cluster centroids but our implementation
of k-means required that they be assigned to some
cluster. For example one data set had three clear
clusters in the northeast, the midwest, and the deep
south, plus a few extraneous data points in Califor-
nia. These California points caused the midwest-
hull to stretch halfway across the country (see figure
1).

To fix this, we tried two different methods. The

Figure 1: Convex hulls of point clusters for regions
where A and O are distinguished, without oulier re-
moval.

first was onion-peeling of the convex hulls, 3 which
would involve throwing out the points on the con-
vex hull and recomputing the convex hull of the re-
maining points (perhaps more than once). We found
this method ineffective because removing all out-
liers would sometimes require more than one onion-
peeling step, in which case some more-compact
clusters would be whittled away and no longer ac-
curately represent the data. We then tried, and were
satisfied with, calculating the outliers more explic-
itly. For each cluster, we computed the standard de-
viation of the distance from each point to the cen-
troid and removed all points more than some num-
ber of standard deviations4 away before computing
the convex hull.

3.3 Overlay

Finally, given the hulls for each cluster in a particu-
lar map, we overlaid them to find the common area
between, for example, the speakers who both make
the A/O distinction, and drop syllable-final r. By
overlaying hulls from different features, we could
identify regions of significant overlap, indicating di-
alect regions, and by overlaying hulls from different
settings of the same feature, we can determine bor-
der areas where common sets of linguistic features
cannot be readily described.

3Suggested by Andrew Danner.
4We found that 3 standard deviations produced good results.

24

Overlaying these regions requires first detecting
whether two polygons intersect. A method to do
this in O(log n) time was proposed by Chazelle and
Dobkin (1980), but is exceedingly difficult to imple-
ment, so we opted instead for an O(n2) algorithm
based on the leftTurn and rightTurn primitives we
had already implemented for computing the inter-
section. The idea is that if two polygons don’t inter-
sect, then there exists a dividing line between them,
and one such line must be a side of one of the poly-
gons. Therefore we can walk around the outside of
one polygon and determine for each side, whether
all points in the other polygon lie on the opposite
side of that line from the rest of its polygon. If so,
the polyogns don’t intersect; if no such line is found
after walking around both polygons, then the poly-
gons intersect.

Once we know that two polygons intersect, we
use a rotating calipers implementation provided by
Mary Wooters and George Dahl to compute bridge
points between them (Toussaint, 1983). Each of
these bridge points corresponds to a point of inter-
section between the two hulls at the other end of the
“sail polygon” (see figure 2), which we locate us-
ing the stepDown procedure outlined in Toussaint
(1985). Once we have located these intersection
points, finding the convex intersection of the two
polygons is simply a matter of walking around one
polygon and then the other, switching at each inter-
section point. Both rotating calipers and stepDown
run in time linear in the size of the polygons, as does
the final output step, so the whole overlay step runs
in worst-case O(k2 ∗ h) time, where k is the num-
ber of k-means centroids (and therefore the number
of polygons), and h is the number of points on the
polyogns being combined. In practice, k and h are
well under n

1
3 , so this works out to be no worse than

linear in the size of the overall data set.
To visualize the data, we used GRASS,5 mapping

our datapoints to latitude and longitude coordinates.

4 Results

The regions drawn by this method seem plausible
given our knowledge of the data sets we used. How-
ever, a rigorous test of the predictive power of this

5GRASS is an Open Source geographic information system,
available at http://grass.osgeo.org/.

Figure 2: The stepDown function iterates over a
“sail polygon” to find the intersection between two
polygons given a bridge-line between them.

model is not particularly feasible without more data.
One major difference is that this method produces

only convex polygons as dialect regions, and also
does not cover all the inhabited territory on the map.
Both of these facts imply something about how our
regions are to be interpreted: for a given feature, the
regions of no overlap with other settings for that fea-
ture are areas of high-confidence that there is one
dialect, areas of overlap are areas of confidence that
the speech is mixed there, and areas outside of poly-
gons are areas of insufficient data.

There were some moments when it was clear how
to hand-evaluate the algorithm. For example, be-
fore switching to standard-deviation hulls, we at-
tempted onion-skin hulls. This resulted in a hull that
stretched across the US from Wisconsin to south-
ern California, even after peeling off the first layer.
This was clearly an artifact of the processing, and
not reflective of a here-to-fore unobserved swath of
speakers who distinguish A and O; the greater part of
the polygon, as it stretched across the country, was
devoid of datapoints, having them all clustered at the
Wisconsin end.

5 Future Work

The clearest route for future work would be to de-
velop a metric with which to test the quality of a
dialect map. The purpose of such a map is presum-
ably as a predictive tool; as such, gathering larger
amounts of data, for distinct training and testing,

25

Figure 3: Overlaid convex hulls of clustered data. The red are areas where A and O are merged. The blue are
areas where I and E are merged before nasals.

would be ideal. However, collecting such data re-
mains time-consuming and difficult.

It has been suggested that an alternative approach
to this problem would be to treat it as a machine
learning task. One could imagine easily a learn-
ing system that would, given training data of geo-
graphic points classed by setting of linguistic fea-
tures, would produce the likeliest settings for lin-
guistic features, given testing data of just geographic
points. While such a system would be interesting,
and possibly very informative, it would not lend it-
self immediately to map-making, and was outside
the scope of this project.

6 Conclusions

It is difficult to evaluate the success of our algorithm
both because the Atlas is not conducive to a quanti-

tative comparison, and because testing our algorithm
against real-world data is impractical. The algorithm
seems to produce reasonable results, but a large part
of our ability to evaluate this is based, circularly, on
the maps available in the Atlas. Clearly, both more
data and a better means of evaluation would be de-
sirable.

7 Linguistic Appendix

A number of phonetic symbols have been used in
this paper. As familiarity with them is not assumed,
we will explain them here.

• A: for those that distinguish this from the fol-
lowing vowel, it is the vowel in tot.

• O: for those that distinguish this from the pre-
ceding vowel, it is the vowel in taught.

26

• w: this is the first consonant of witch.

• û: this is the first consonant of which, though
many speakers do not use this, instead merging
with w, above.

• I: as in pin.

• E: as in pen. Some US dialects do not distin-
guish I and E before nasal consonants, such as
n or m.

These features were selected because they were
available in the Atlas, and easily explicable. A thor-
ough effort to algorithmically create dialect maps
would use many more features.

References
David Arthur and Sergei Vassilvitskii. 2006. How slow

is the k-means method? In SCG ’06: Proceedings
of the twenty-second annual symposium on Computa-
tional geometry, pages 144–153, New York, NY, USA.
ACM.

Bernard Chazelle and David P. Dobkin. 1980. Detec-
tion is easier than computation (extended abstract). In
STOC ’80: Proceedings of the twelfth annual ACM
symposium on Theory of computing, pages 146–153,
New York, NY, USA. ACM.

M. Daszykowski, B. Walczak, and D. L. Massart. 2002.
On the optimal partioning of data with k-means,
growing k-means, neural gas and growing neural
gas. Journal of Chemical Information and Modelling,
42(6):1378–1389.

Mark de Berg, Marc van Kreveld, Mark Overmas, and
Otfried Schwartzkopf. 1997. Computational Geome-
try. Springer.

William Labov, Sharon Ash, and Charles Boberg. 2005.
The Atlas of North American English. Mouton de
Gruyter.

J. B. MacQueen. 1967. Some methods for classification
and analysis of multivariate observations. In L. M. Le
Cam and J. Neyman, editors, Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probabil-
ity, volume 1, pages 281–297. University of California
Press.

Godfried Toussaint. 1983. Solving geometric problems
with the rotating calipers.

Godfried T. Toussaint. 1985. A simple linear algorithm
for intersecting convex polygons. The Visual Com-
puter, 1(2):118–123.

27

Appeared in: Proceedings of the Class of 2008 Senior Conference, pages 28–37,
Computer Science Department, Swarthmore College

The Largest Empty Circle Problem

Megan Schuster
megan@cs.swarthmore.edu

Abstract

The largest empty circle (LEC) problem is
defined on a set P and consists of finding
the largest circle that contains no points in
P and is also centered inside the convex
hull of P . The LEC is always centered at
either a vertex on the Voronoi diagram for
P or on an intersection between a Voronoi
edge and the convex hull of P . Thus,
finding the LEC consists of constructing
a Voronoi diagram and convex hull for P ,
then searching the Voronoi vertices and
intersections between Voronoi edges and
convex hull edges to see where the LEC
lies. This paper presents a simple O(n[h+
log n]) solution to the largest empty circle
problem. Though previous work on this
problem has found O(n log n) solutions,
we find that for data sets which are some-
what normally distributed, h is small and
our simple algorithm performs well.

1 Introduction

The Largest Empty Circle (LEC) problem is defined
on a set of points P and consists of locating the
largest circle that contains no points of P and is cen-
tered inside the convex hull of P . Less formally, this
problem finds the point q bounded by the convex hull
which maximizes the distance to its nearest neighbor
p ∈ P ; this point is the center of the largest empty
circle. We constrain q to lie within the convex hull
of P because otherwise we would simply choose the
point at infinity as the center of the LEC.

This problem is sometimes referred to as the
Toxic Waste Dump problem, because given the co-
ordinates for a set of cities, the LEC problem would
allow you to find the best site for a toxic waste
dump by finding the location which is maximally far

from every city. This might also be useful for plan-
ning locations for new stores. For example, imag-
ine you would like to build a new McDonald’s in
a metropolitan ares that already has several dozen
McDonald’s stores. By computing the LEC on the
set of existing McDonald’s restaurants, you could
select a site for a new store which is maximally
far from all existing stores to minimize competition
with other McDonald’s restaurants and situate your-
self near people who previously did not have a Mc-
Donald’s nearby.

The Voronoi diagram for the set P is a useful tool
for solving the LEC problem. The Voronoi diagram
is a partition of the plane into convex faces such
that given a set of points P , each face (hereafter,
Voronoi cell) contains exactly one point p ∈ P and
all points in the plane which are closer to p than to
any other point in P . Points lying on the edges be-
tween Voronoi cells are equidistant between the two
points contained in the cells lying to either side of
the edge. Given these properties, it seems intuitive
that the largest empty circle should be centered on a
Voronoi vertex. Since the edges represent all points
which are equidistant to the two points they divide,
it follows that a vertex, which is simply an intersec-
tion between multiple Voronoi edges, would max-
imizes the minimum distance to all nearby points.
Any point that is not on a Voronoi vertex must be
closer to one point than any other and as such any
empty circle we can draw around it will not be of
maximal size.

Based on the above principles, it seems that we
might simply be able to draw empty circles around
all Voronoi vertices and see which is the largest.
However, since we constrain our circle to be cen-
tered inside the convex hull of P , we must be
slightly more careful in our search for the LEC.
First, we must consider only Voronoi vertices which
lie inside the convex hull of P . Second, we must
consider what happens on the edges of the convex

28

hull itself. At points where a Voronoi edge inter-
sects a convex hull edge, the distances between each
of the two nearest points is maximized, since we are
on a Voronoi edge. Such points must also be consid-
ered as candidates for the center of the LEC.

2 Related Work

The earliest solution to the LEC problem was
presented by Shamos in his Ph.D. thesis (1978).
Shamos presented an algorithm that, given the
Voronoi diagram and the convex hull, could find the
largest empty circle in O(n) time. Unfortunately,
this algorithm was based on the assumption that ev-
ery convex hull edge is intersected by at most two
Voronoi edges, which is not always true, as later
shown by Toussaint (1983). Because the original
Shamos algorithm incorrectly assumes a maximum
of two Voronoi edge intersections at each convex
hull edge, it can miss intersections at edges with
more than two intersections with Voronoi edges and,
as such, can fail to recognize the true LEC.

Toussaint (1983) went on to present an algorithm
which correctly finds the LEC in all cases. However,
the Toussaint algorithm requires O(n log n) running
time when given the convex hull and Voronoi di-
agram. The algorithm first computes the largest
empty circle about each Voronoi vertex which lies
in the interior of the convex hull. This step requires
O(n log h) operations; there are O(n) Voronoi ver-
tices for which we must do an O(log h) point loca-
tion step to check for interiority to the convex hull
(where h is the number of convex hull edges), and
computing the largest empty circle about a point can
be done in constant time. Once all interior points
have been considered, the algorithm computes all in-
tersections between Voronoi edges and convex hull
edges. Toussaint uses an O(log n) algorithm taken
from Chazelle (1980) to find the intersections be-
tween a line segment and a convex n-gon. Since
there are O(n) Voronoi edges (de Berg et al., 2000),
this step requires O(n log h) time overall. By check-
ing all points interior to the convex hull and all in-
tersection points between the Voronoi diagram and
the convex hull, all possible sites for the center of
the LEC have been considered. All that remains is
to report the point about which the largest circle was
drawn. Toussaint thus finds the LEC in O(n log n)

time.
Later, Preparata and Shamos (1985) offer an im-

proved version of Shamos’s original methods (1978)
which no longer relies on the assumption that each
convex hull edge is intersected by at most two
Voronoi edges. Preparata and Shamos describe an
O(n) marching method for finding all intersections
between the Voronoi edges and the convex hull,
which is an improvement on Toussaint’s O(n log h)
method. Preparata and Shamos do not go into detail
about how to check Voronoi vertices on the interior
of the convex hull to see if they might be the cen-
ter of the largest empty circle. We can only assume
that they, like Toussaint, also require an O(n log h)
technique for checking interior points. This solution
is then slightly faster than Toussaint’s, thanks to the
O(n) intersection location step.

Still, all of the LEC-finding algorithms discussed
above require use of the Voronoi diagram and
the convex hull. Both of these structures require
O(n log n) steps to compute. Construction of these
structures dominates the computation time when
finding the LEC, so while there may be some quib-
bling about the fastest methods for finding intersec-
tions between Voronoi diagrams and convex hulls,
overall the solution to the LEC problem is at best
O(n log n) regardless of the steps required to actu-
ally find the largest empty circle.

In this paper, we present a complete method for
finding the LEC, borrowing our approach to the
problem from the previous work of Toussaint. The
algorithm presented includes a computation of the
Voronoi diagram and the convex hull and requires
O(n[h + log n]) running time.

3 Methods

3.1 Computing the Voronoi Diagram and
Convex Hull

Before we can find the largest empty circle for a
set of points P , we must first construct the Voronoi
diagram (V or(P)) and convex hull (CH(P)) for
the set of points. Here, V or(P) is computed by
first finding the Delaunay triangulation, DT (P),
which is the dual of V or(P). Common algorithms
for computing V or(P) involve an O(n log n) plane
sweep and are not dynamically updateable. How-
ever, de Berg et al. (2000) describe an incremen-

29

Figure 1: A simple example of the Delaunay triangulation
computed on a small set of points.

tal algorithm for computing DT (P). Because we
would like to support dynamic updates to V or(P),
we choose to compute V or(P) by dualization of a
dynamically updateable implementation of DT (P).

3.1.1 The Delaunay Triangulation

de Berg et. al (2000) describe an incremental
algorithm for computing Delaunay triangulations,
which we employ here to compute DT (P). The De-
launay triangulation is a special type of triangulation
which maximizes the minimum angle found in any
triangle in the triangulation. An example is shown
in Figure 1.

We begin with a very large bounding triangle and
add points from P to it one at a time. When adding
a point p, we check the current triangulation and lo-
cate the triangle T which contains p. We then draw
edges between p and each of the vertices of T to
re-triangulate the set P . In doing so, however, we
may have introduced new triangles with small an-
gles such that we no longer have a Delaunay triangu-
lation. Thus, as we re-triangulate with every added
point, we must check the edges of new triangles in-
troduced to see whether they form any small angles.
We flip such edges as needed to the opposite corners
of the quadrilateral which contains them, recursing
on triangles in the neighborhood of newly flipped
edges until we have ensured again that the smallest
angle in the triangulation is as large as possible.

We represent triangles as nodes in a directed
acyclic graph. Whenever a triangle is divided by
insertion of a new point or changed due to edge-

Figure 2: The circumcircle for a triangle T , whose center v is
found by perpendicular bisector construction. If T is a triangle
in a Delaunay triangulation, the v is the Voronoi vertex obtained
when dualizing the Delaunay triangulation to the Voronoi dia-
gram.

flipping, it sets pointers to the new triangles which
result from these changes. Each triangle node also
maintains a pointer for each of its three edges indi-
cating which other triangle neighbors it along that
edge, with care being taken to update these neighbor
pointers as new triangles are introduced and edge
flips are performed. These neighbor pointers are cru-
cial to our ability to dualize DT (P) to V or(P).

For full details on the computation of Delaunay
triangulations, see see de Berg et al. (2000). Once
we have a Delaunay triangulation in place, we can
dualize it to give the desired Voronoi diagram.

3.1.2 The Voronoi Diagram
Once DT (P) has been computed, it is fairly

straightforward to dualize it to V or(P). The duality
between the Voronoi diagram and the Delaunay tri-
angulation is such that every triangle in DT (P) cor-
responds to a vertex in V or(P). Triangles which are
neighbors in DT (P) have their vertices connected
by an edge in the V or(P) dual space (de Berg et al.,
2000).

The coordinates of the Voronoi vertex which cor-
respond to a triangle T ∈ DT (P) can be found by
locating the center of the circle which circumscribes
T (Okabe et al., 2000). To compute the circumcir-
cle, we use the perpendicular bisector construction
as in Figure 2; the circumcircle for a triangle is cen-
tered at the point at which the perpendicular bisec-
tors for the triangle’s edges all intersect. To compute
V or(P) from DT (P), then, we first iterate over all
triangles in DT (P), computing the circumcircle to
find the dual vertex in V or(P).

Once all Voronoi vertices have been found, we

30

Figure 3: A simple example of the Voronoi diagram and con-
vex hull computed on the set of points shown in Figure 1.

connect them to one another by again iterating over
the triangles of DT (P). Here, we make use of the
neighbor pointers stored in our Delaunay structure.
For each triangle T ∈ DT (P) and its correspond-
ing point p ∈ V or(P), we retrieve all of T ’s neigh-
bors, T ′. For each t ∈ T ′, we take its corresponding
point p′ ∈ V or(P) and draw an edge between p and
p′. The resulting set of edges describes exactly the
Voronoi planar partition.

The dualization from DT (P) to V or(P) de-
scribed here can be computed in O(n) time. We
must iterate over all triangles in DT (P), of which
there are O(n) (de Berg et al., 2000). For each tri-
angle, we must compute the circumcircle to locate
the corresponding Voronoi vertex and check three
neighbor pointers to draw the appropriate Voronoi
edges. These two operations can be done in con-
stant time, giving an overall O(n) runtime for the
dualization step.

3.1.3 The Convex Hull

Finally, we must compute CH(P) before we can
go on to find the LEC. Here, we use the simple
O(nh) Jarvis march algorithm to compute the con-
vex hull. The interested reader should refer to de
Berg et al. (2000) for further details on this algo-
rithm.

At this point, we have found the Voronoi diagram
and convex hull for our data set (Figure 3). With all
necessary data structures in place, we now proceed
to find the largest empty circle.

3.2 Finding the Largest Empty Circle

To find the largest empty circle, we first locate
all potential centers for that circle, which involves
identifying all Voronoi vertices which are interior
to CH(P) and finding all intersections between
Voronoi edges and convex hull edges. Once all can-
didate centers have been located, we draw the largest
possible empty circle around each and report which
was the largest of all.

3.2.1 Checking Interior Voronoi Vertices
We use a naive approach for finding all Voronoi

vertices which are interior to CH(P). For each
Voronoi vertex, we march counter-clockwise around
CH(P), checking whether the vertex lies to the left
of the edge. If the vertex lies to the left of all edges in
CH(P), we know that it is interior and add it to the
list of candidate LEC centers. This requires O(nh)
steps, since we must check all h convex hull edges
for all O(n) Voronoi vertices.

3.2.2 Finding Convex Hull and Voronoi Edge
Intersections

We employ another naive approach for finding
all intersections between Voronoi edges and convex
hull edges. For every Voronoi edge, we check both
endpoints for interiority to CH(P). If one is interior
and one is exterior, we know that this edge must in-
tersect CH(P) at some point. We then iterate over
all convex hull edges and check for intersection with
the Voronoi edge in question. By repeating this pro-
cess for every Voronoi edge, we are guaranteed to
find all intersections between V or(P) and CH(P).

This step requires O(nh) runtime. We must check
all O(n) Voronoi edges, and for any which intersect
the convex hull, we must iterate over all h convex
hull edges to find the intersection point.

3.2.3 Locating the Largest Empty Circle
Now that we have found all possible points at

which the LEC can be centered (as in Figure 4),
we have to decide which of these candidates is the
actual center of the LEC. To find the largest empty
circle that can be drawn around any given candi-
date center, we exploit the duality between DT (P)
and V or(P). Candidate centers are vertices in V or
space; however, when drawing a circle around a can-
didate point we want to ensure that this circle does

31

Figure 4: Candidate centers for the largest empty circle for the
set of points shown in Figures 3 are outlined here. All candi-
date centers lie on Voronoi vertices or on intersections between
Voronoi and convex hull edges.

Figure 5: Solid, black lines indicate edges in DT (P).
Dashed, grey lines indicate edges in V or(P). The point p is
a Voronoi vertex and is thus a candidate LEC center. Here,
p’s three nearest neighbors are the three points contained in the
Voronoi cells adjacent to p, which are the vertices of p’s dual
triangle in DT space, v1, v2, and v3.

Figure 6: The LEC for our simple set of points.

not contain any points in P , which are vertices in
DT space.

Any Voronoi vertex is the intersection of at most
three Voronoi edges. This follows directly from
the dual relationship between V or(P) and CH(P);
each Voronoi vertex corresponds to one Delaunay
triangle and is connected to the vertices which cor-
respond to that triangle’s neighbors, of which there
are exactly three (except near the edges of the space,
where there may be only two neighbors). Since each
Voronoi vertex p is incident to at most three Voronoi
cells, the three points in P closest to p are those three
points which lie in the Voronoi cells to which p is
adjacent. Those three points are the vertices of p’s
dual triangle in DT (P) (see Figure 5). Thus, by
dualizing p ∈ V or(P) back to T ∈ DT (P), we can
find p’s three nearest neighbors. We then choose the
closest neighbor and draw a circle about p whose ra-
dius equals the distance between that neighbor and
p.

We accomplish the dualization of a Voronoi ver-
tex to a Delaunay triangle very simply by building a
dictionary of Voronoi vertex-Delaunay triangle pairs
as we are doing our initial construction of V or(P)
from DT (P). We then look up candidate vertices
in this dictionary to find their nearest neighbors and
draw empty circles about them. By drawing empty
circles around each candidate vertex, we can locate
and report the LEC.

This final step of the algorithm requires O(n)
time. Finding the closest point P to any candidate
center can be done in constant time by simple dic-
tionary lookup, and we must repeat this process for

32

Figure 7: A summary of the steps involved in computing the
LEC.

all O(n) candidate centers.
At this point, we need only to report the largest

empty circle we have found, as in Figure 6. Figure
7 provides a summary of all steps taken to compute
the LEC and their associated runtimes. The overall
runtime of our algorithm is thus O(n[h + log n]).

4 Results

We ran the algorithm described above on a set of
points corresponding to the latitude and longitude
coordinates of all U.S. cities in the 48 contiguous
states of population 100,000 or greater (there are 251
such cities). We found the LEC to be centered at
-108.2659◦ latitude, 46.7316◦ longitude, near Win-
nette, MT. V or(P) and CH(P) for this data set
are displayed in Figure 8; the resulting LEC is dis-
played in Figure 9.

The algorithm runs on this dataset of U.S. cities
in less than four seconds. In order to analyze the al-
gorithm’s overall performance and the performance
of intermediate steps within the algorithm, we ran it
on a number of data sets ranging in size from 100
points to 10,000 points and recorded the amount of
processor time required to compute each step of the
algorithm. For these timed tests, we used randomly
generated, normally distributed sets of points. The
results of these tests are shown in Figure 10.

5 Discussion

Our algorithm was tested on and successfully com-
puted the LEC for the U.S. cities data set as well as
randomly generated, normally distributed data sets
of up to 10,000 points. It is clear from Figure 10
that the time required to compute the LEC is domi-
nated by the computation of DT (P); all other steps
of our algorithm proceed quickly in comparison. For
the 10,000 point data set, for example, it took about
33 minutes to compute DT (P). The next slowest

step of the algorithm was locating the intersections
between V or(P) and CH(P), which took only 26
seconds.

As mentioned earlier, we used naive approaches
to several of the intermediate steps of this algo-
rithm, including the simple Jarvis march for con-
vex hull computation, the point location step for
finding all Voronoi vertices interior to the convex
hull, and the step for identifying intersections be-
tween Voronoi and convex hull edges. Each of
these naive steps was O(nh), and for each of these
steps we might have used a more sophisticated algo-
rithm in hopes of achieving better runtime for the
overall LEC algorithm. For the convex hull, we
might have chosen from a variety of O(n log n) al-
gorithms (see Preparata and Hong (1985), de Berg
et al. (2000), for examples). This only improves
the speed of computing the convex hull if the num-
ber of convex hull edges is somewhat large. For the
identification of interior Voronoi vertices, Toussaint
(1983) describes an O(n log h) technique, which is a
guaranteed improvement over the O(nh) technique
we use, regardless of the distribution of our set of
points. For the Voronoi/convex hull intersection lo-
cation step, Chazelle (1980) describes an O(n log h)
technique for computing the intersections between
a set of segments and a convex polygon, and better
still, Preparata and Shamos (1985) describe an O(n)
march around all Voronoi cells that discovers all in-
tersections with the convex hull.

While the naive approaches to these intermediate
steps used in our algorithm could be improved by
implementing any of the known faster algorithms
mentioned above, the results of Figure 10 sug-
gest that this would provide very little improve-
ment to the running time of our overall LEC algo-
rithm. It is clear that the O(n log n) computation of
DT (P) dominates the computation time for finding
the LEC, and thus minor speed-ups to intermediate
steps would be of limited value.

It should be noted that the data sets on which we
tested our algorithm’s running time were all approxi-
mately normally distributed. As such, h, the number
of convex hull edges, was quite small compared to n,
the number of data points (see, for example, Figure
8). Considering the possible applications of the LEC
problem, such as toxic waste dump site selection or
business location planning, we expect that the data

33

Figure 8: The Voronoi diagram and convex hull for the data set of all US cities of population 100,000 or greater.

Figure 9: The largest circle which contains no U.S. cities of population 100,000 or greater and is centered within the convex hull
of these cities. The center lies at -108.2659◦ latitude, 46.7316◦ longitude, near Winnette, MT.

34

Figure 10: At top, a plot of processor time versus number of
data points. The time required for the DT (P) computation is
barely distinguishable from the total running time of the entire
algorithm. All other algorithmic steps have running times clus-
tered very near to zero for data sets of all sizes and are not distin-
guishable on this plot. For this reason, a plot of log(processor
time) versus number of data points is shown at bottom. The
time for the DT (P) computation is again quite similar to the
time for the overall algorithm. The next most time consuming
step is the identification of V or(P)/CH(P) edge intersections,
but this step is far faster than the computation of DT (P).

Figure 11: Processor time used by our algorithm on 1000
data points lying on a circle as compared to 1000 normally dis-
tributed, randomly generated data points.

sets our algorithm will most commonly encounter
will be similar to the data sets on which we have al-
ready tested it–somewhat normally distributed, with
h small compared to n. However, should we need to
compute the LEC on some set of points which is dis-
tributed differently (say, in a ring-like shape, where
h and n would be similar), we expect our O(nh)
intermediate steps to begin to contribute to signifi-
cantly slower runtimes for our algorithm overall.

To test this idea, we ran our algorithm on a set
of 1000 points distributed on a circle so that h = n
and compared the resulting performance to the per-
formance on a normally distributed set of the same
size. The resulting running times are displayed in
Figure 11. Note that the O(nh) check for interior
Voronoi vertices is still relatively quick. However,
we see that our convex hull algorithm and our tech-
nique for locating Voronoi/convex hull intersections
take much longer on the circular data than on the
normally distributed data, leading to about a seven-
fold increase in the overall running time of our al-
gorithm. Thus, if we intend to run our algorithm
on non-normally distributed data where h may be-
come large, we would almost certainly benefit from
switching to an O(n log n) convex hull algorithm
and an O(n) technique for finding Voronoi/convex

35

hull intersections. Still, because our algorithm is pri-
marily applicable in domains where data is likely to
be normally distributed, such as sets of cities or busi-
ness locations, we continue to use the naive O(nh)
intermediate steps, since they seem to work well for
this type of data.

6 Conclusion and Future Work

In this paper, we have describe an algorithm which
computes the largest empty circle on a set of points
P . The algorithm is O(n[h + log n]) and sup-
ports dynamic updates to the set P without heavy
re-computation of underlying structures. The algo-
rithm requires the use of the Voronoi diagram, which
we compute by dualizing the Delaunay triangulation
of P . The convex hull of P must also be computed.
We then check all Voronoi vertices and intersections
between Voronoi and convex hull edges to see which
is the center of the largest empty circle.

Our algorithm is O(n[h + log n]), which is
asymptotically worse than the O(n log n) solutions
published by Toussaint (1983) and Preparata and
Shamos (1985). This extra h term results from tak-
ing naive O(nh) approaches to a few intermedi-
ate steps in computing the LEC. However, we have
shown that our algorithm’s overall running time
is not much affected by these O(nh) intermediate
steps when our data is more or less normally dis-
tributed. Thus, we find that our use of simple, naive
techniques at some steps of our algorithm is justi-
fied; while asymptotically faster techniques do exist
for these steps, these faster techniques are consider-
ably more complicated than the simple approach we
take. Because our O(nh) methods contribute very
little to the total runtime of our algorithm (Figure
10), we find that we can use simple, straightforward
techniques at a negligible cost to the running time of
our algorithm.

For future work, it may be useful to implement
support for further location constraints on the center
of the LEC, such as described in Chew and Drysdale
(1986) or Toussaint (1983). For example, we might
like to restrict the LEC to be centered in some sim-
ple, though not necessarily convex, polygon or set
of polygons other than the convex hull. This would
have been useful when working with the data set
comprised of US cities. Suppose we are using our

algorithm to find a toxic waste dump site. Rather
than using the convex hull of this data set, which
contains parts of Mexico, the Gulf of Mexico, and
the Atlantic and Pacific oceans, and does not include
all of the land comprising the 48 contiguous states
(Figure 8), we might have preferred to constrain the
LEC to be centered anywhere on US mainland terri-
tory. This would both ensure that the selected site
were actually a United States holding, and would
also provide a wider selection of possible LEC cen-
ters by including more area in the northern United
States. Thus, using some sort of simple, polygonal
approximation of the 48 contiguous states would be
an improvement.

To do this, we would have to change our point
location strategy for testing whether a Voronoi ver-
tex is interior to the bounding region, since that re-
gion would no longer be convex. The current naive
O(nh) technique for finding intersections between
the Voronoi diagram and the bounding region would
still be effective, but if we were to update to the
O(n) marching technique described by Preparata
and Shamos (1985), we would have to modify it
slightly to deal with non-convex bounding regions.

Our current algorithm avoids complicated inter-
mediate steps and successfully computes the LEC
on data sets of varying sizes and distributions. It is
quite fast on normally distributed sets. While we
could improve its performance on non-normal data
sets and support further location constraints on the
center of the LEC by using more complicated in-
termediate steps in our algorithm, for now we stick
with the simple solution to the LEC problem and
assume it will most often be used on normally dis-
tributed data sets.

7 Acknowledgements

I am grateful to Professor Andy Danner for advising
this project and for providing a script for graphing
the 48 contiguous states. I also thank my Swarth-
more College Computer Science Senior Conference
classmates for reviewing this paper and providing
suggestions for its improvement.

References
B.M. Chazelle, 1980. Computational Geometry and Con-

vexity, Ph.D. thesis, Carnegie-Mellon University.

36

L.P. Chew and R.L. Drysdale, 1986. Finding Largest
Empty Circles with Location Constraints Dartmouth
Computer Science Technical Report PCS-TR86-130

M. de Berg et al. Computational Geometry: Algorithms
and Applications (2ed). Berlin: Springer, 2000. pp
185-197.

A. Okabe et al. Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams (2ed). Chichester:
John Wiley and Sons, Ltd, 2000. pp 43-57.

F.P. Preparata and S.J. Hong. 1977. Convex Hulls of Fi-
nite Sets of Points in Two and Three Dimensions.
Communications of the ACM, v.20, n.2, pp 87-93.

F.P. Preparata and M.I. Shamos. Computational Geome-
try: An Introduction. New York, NY: Springer-Verlag,
1985. pp 251-253.

M.I. Shamos, 1978. Computational Geometry, Ph.D. the-
sis, Yale University.

G.T. Toussaint, 1983. Computing Largest Empty Circles
with Location Constraints. International Journal of
Parallel Programming, v12.5, pp 347-358.

37

Appeared in: Proceedings of the Class of 2008 Senior Conference, pages 38–44,
Computer Science Department, Swarthmore College

Unbiased Congressional Districts

Alex Benn
abenn1@swarthmore.edu

David German
dgerman1@swarthmore.edu

Abstract

This paper presents a strategy for dividing
a state into congressional districts using a
modified version of Smith and Ryan’s re-
cursive shortest splitline algorithm (2007).
Our strategy reduces the cost of the com-
putation by approximating the population
of a ZIP Code Tabulation Area (ZCTA) as
a point mass at its population centroid. If
there areN ZCTAs in the state withE to-
tal edges, andk districts to be created, our
algorithm runs in expectedO((N2 + E) ·
logk) time.

1 Introduction

The determination of congressional district bound-
aries within a state is often a controversial pro-
cess. Typically, any solution that gives contiguous,
equipopulous districts is legal. Therefore, the ma-
jority party in the state legislature has wide latitude
to draw districts that bolster its chances in congres-
sional elections. Such gerrymandered districts will
typically disperse regions of strong support for the
opposition party among the districts so that the ma-
jority will control most or all seats.

We adopt the following definitions. Anunbiased
districting is a division of a region into equipopu-
lous districts that is developed without any informa-
tion about the residents’ voting preferences. Ager-
rymandered districtingis a division of a region into
equipopulous districts such that the region’s major-
ity party is the majority party in every district.

2 Related Work

The literature contains several proposals for gener-
ating or maintaining unbiased districts that optimize
some geometric criterion.

Given an initial districting, Helbig et. al. heuris-
tically maximize district compactness using an iter-
ative linear programming technique (1972). In their
method, the region is discretized intom existing po-
litical zones, such as counties or census tracts, that
are small compared to the whole state and approxi-
mately equipopulous. They then proceed as summa-
rized in Algorithm 1. Constraint A is the one-vote
constraint: each zone belongs to exactly one district.
Constraint B is the equipopulation constraint. It re-
lies on the assumption that zones are equipopulous,
but this restriction could easily be lifted by rewrit-
ing the constraint as an inequality on the popula-
tion sum, with some deviation tolerance. The value
function to be minimized is simply the summed
population-weighted distance of zones from the cen-
troids of their districts. Since finding a minimum by
brute force takesO(2m) time, the transportation al-
gorithm is used; the details are out of the scope of
this paper. Note that this method does not guarantee
that districts will be contiguous.

Macmillan presents an innovative solution to the
contiguity problem (Macmillan, 2001). Macmillan
first presents the connectivity method of checking
contiguity of a region, which is a streamlined, but
still O(m3), version of connectivity matrix multipli-
cation. Macmillan improves on this algorithm by
initially assuming that the regions in the districting
are already connected, and what is being examined
is the decision to either add a single zone to or re-
move a single zone from the current region. Since
the only way the region can become disconnected
is if adding or removing the zone breaks contiguity,
we need only examine the single zone and the zones
it borders. Using Macmillan’s switching point tech-
nique, it can be determined quickly whether the op-
eration breaks contiguity. An initial districting can
then be updated in response to population movement

38

Algorithm 1 Helbig et. al. linear transport
Let ǫ be an arbitrary stagnation threshold.
Let m be the total number of zones.
Let n be the number of districts.
g = m/n
Let (ui, vi) be the centroid of zonei.
Let pi be the population of zonei.
repeat

for All districts j do
Compute(aj , bj), the centroid of districtj.
for All zonesi do

dij =
√

(aj − ui)2 + (bj − vi)2

if zonei is in districtj then
xij = 1

else
xij = 0

end if
end for

end for
constraint A:

∑

j

xij = 1 for all i.

constraint B:
∑

i

xijpi = g.

Using the transportation algorithm, minimize
∑

i

∑

j

(xij · dij · pi) subject to constraints

A,B.
for All districts do

Let (āj , b̄j) be the centroid of the new district
j.

end for
until |āj − aj | < ǫ and|b̄j − bj | < ǫ for all j.

by simulated annealing. In this process, donor dis-
tricts with excess population and recipient districts
with a population deficit are selected at weighted-
random by the size of the deviation. A zone to
transfer is selected at weighted-random by the size
of the resulting deviation. So long as the transfer
would not break contiguity, it is accepted if it strictly
improves deviation, and probabilistically accepted
based on the current annealing temperature other-
wise. Macmillan’s algorithm does not optimize for
compactness or any other geometric property, and
therefore may yield results as unattractive as a ger-
rymander.

The shortest splitline algorithm of Smith and
Ryan recursively divides the region to be districted
into two regions (Smith and Ryan, 2007). If the re-
gion being divided has an even number of congres-
sional seats, the two child regions are equipopulous.
If it has an odd number, then one region will be large
enough to have one more seat than the other. Smith
and Ryan compute splitlines on a grid sampling of
population. The details of their implementation are
only given as uncommented C source code, and are
therefore not summarized here.

Our literature search did not discover any exist-
ing work explicitly concerned with optimal gerry-
mandering. However, the generalized equitable ham
sandwich algorithm of Bespamyatnikh et. al. is
applicable (1999). This algorithm splits a set of
r · p red points andr · q blue points intor regions
with p red points andq blue points using a divide-
and-conquer strategy. Using voter registration rolls,
registered Democrats (blue points) and Republicans
(red points) can be identified with geographic loca-
tions. Lettingr equal the size of the state’s con-
gressional delegation, the majority party will control
every district in the equitable ham sandwich subdi-
vision.

3 Implementation

We have implemented a shortest splitline algorithm
using the basic concepts developed by Smith and
Ryan (2007), but with the adapted implementation
summarized in Algorithm 2. The algorithm pro-
duces districts that are contiguous, and equipopulous
to a variable tolerance parameterǫ. Degeneracy han-
dling is not included in the pseudocode, but has been

39

implemented and is discussed further in Section 3.3.
Smith and Ryan use a raster model for the re-

gion: boundary points are represented by pixels, and
a splitline starts and ends at the centers of pixels.
This model has the problem of fixed and arbitrary
granularity: edges cannot shift by less than one pixel
at either end, and the granularity is set by the reso-
lution of the original raster image of the region. If
the original image is too small, the resulting splitline
may be unsatisfactory in population distribution, but
if the original image is too large, the algorithm takes
much longer.

Instead of working within the limitations of a
raster image, we chose to use the ZIP code as our
fundamental element. Populations are stored by ZIP
code rather than by pixel. Splitlines start and end
on ZIP code population centroids, and the determi-
nation of the population of each district is calculated
by summing the populations of the ZIP codes whose
centroids fall within that region. The outer bound-
aries of the ZIP code zones comprise the border of
each district.

3.1 Data Set

ZIP codes have a number of virtues as fundamental
elements for the software. They are generally sized
to contain roughly even populations, so areas of high
population density are broken down into smaller ZIP
codes. However, ZIP code regions are determined
arbitrarily by the post office and tend to follow postal
routes rather than being shaped according to any
metric of geographical cohesiveness.

The US Census has found it useful to map out the
regions containing all addresses in each ZIP code,
called Zip Code Tabulation Areas (ZCTAs). Map
overlays in standard formats are available online
from the US Census’s website for all fifty states.1

Our implementation extracts data from the ArcView
Shapefile format.

Grubesic and Matisziw’s use of census ZCTA
maps for epidemiological studies (2006) helpfully
clarified that ZCTAs in which three numbers are fol-
lowed by anHH represent water surface, and those
with anXX represent unpopulated land. For exam-
ple, any water feature mostly within the303 ZIP3
ZCTA would be labeled303HH.

1http://www.census.gov/geo/www/cob/
z52000.html

Algorithm 2 ZCTASplit
Let ǫ be an arbitrary population deviation toler-
ance.
Let k be the number of districts.
Let t be the population.
Let R be the set of ZIP codes in the region.
if k = 1 then

return R
end if
for Each edgee of a ZIP inR do

If e adjoins only one ZIP, it is in the set of pos-
sible boundary edgesB.

end for
Find the northwesternmost edgep in B. {p must
be on the outer boundary.}
Z ← ∅
Let c be the edge followingp on the ZIPz thatp
adjoins.
while c 6= p do

Z ← Z ∪ {z}
while c ∈ B do

cn ← the edge followingc on z.
c← cn

end while
z ← the ZIP thatc adjoins that is notz.
cn ← the edge onz in B that shares a vertex
with c.
c← cn

end while
g ← ⌊k/2⌋ · t {g is the goal population.}
l←∞
for All z1 ∈ Z do

for All z2 ∈ Z do
Draw a splitline connecting the centroids of
z1 andz2.
a← the population above the line.
d← the distance between the centroids.
if (1− ǫ)g ≤ a ≤ (1 + ǫ)g andd < l then

l← d.
sb ← (z1, z2)

end if
end for

end for
if sb is not definedthen

error no acceptable splitline found
else

U ← ZCTASplit(ǫ, k = ⌊k/2⌋, t = g, R =
ZIP codes above the splitline)
O ← ZCTASplit(ǫ, k = ⌈k/2⌉, t = t− g, R =
ZIP codes below the splitline)

end if
return U ∪O

40

Since the ZCTA maps simply delineate each
ZCTA by one or more labeled polygons, no neigh-
borhood information can be directly determined
from the ZCTA shapefile. This complicates finding
the boundary of a region to split, an issue that is dealt
with in Section 3.2.

We have been testing our implementation with
publicly available voter rolls from the state of Geor-
gia.2 These voter rolls contain ZIP code, latitude,
longitude, and party registration. All voter entries
for a single ZIP code are placed within that ZIP
code, and the centroid of the population of that ZIP
code is found. This population centroid is used to
determine the side of a splitline on which each ZIP
code falls.

3.2 Strategy

Algorithm 2 can be divided into two phases. First,
ZIP codes on the boundary of the region are identi-
fied. A ZIP is a candidate to be on the boundary if it
has at least one edge that no other ZIP code in the re-
gion shares. Since the census ZCTA polygons may
not perfectly tessellate the state, a walk is performed
to identify the actual edge. This walk begins at the
northwesternmost edge in the entire set of candidate
boundary edges, which bounds some boundary ZIP
z0. The edges ofz0 are traversed in the cyclical or-
der extracted from the shapefile until an edgee that
also bounds some other ZIPz1 is reached. The walk
then moves ontoz1. One edge adjacent toe bound-
ing z1 is in the set of candidate boundary edges. The
walk returns to the boundary by proceeding in the
direction of that edge. When the walk revisits the
first edge, all visited ZIPszn are returned.

Then, for every pair of boundary ZIPs (za, zb), a
splitline is drawn between the population centroids.
Each ZIP population centroid in the region is classi-
fied as above or below the splitline, and the popula-
tions in each half are summed. If the ratio of pop-
ulation above the splitline to below the splitline is
within some arbitrary tolerance of the equipopulous
ratio, the splitline is a legal candidate. The shortest
legal candidate splitline is accepted, and the algo-
rithm recurses on the two ZIP sets returned.

2http://grso.uga.edu/voter/

3.3 Degeneracies

3.3.1 Rivers and Lakes

HH regions representing rivers can wander from
the border across large swaths of a state, making
it difficult to identify ZIP codes on the boundary.
Simply removing the water from the dataset directly
places a large number of interior ZIP codes on the
apparent boundary, which is no improvement. When
a split is made with water preserved, allocating wa-
ter that crosses the boundary to one side or the other
produces similar problems upon recursion.

The solution is to allocate the entire body of water
to both regions. The boundary walk then proceeds
along the edge of the water until it eventually returns
to the proper boundary on the other side. The result-
ing boundary will thus include protrusions that are
not actually part of the intended district. While po-
tentially bizarre in appearance, these protrusions are
not disruptive to the algorithm because they contain
no population. Since regions will eventually contain
water that is entirely disconnected from their actual
land area, the boundary edge traversal must begin on
the northwesternmost edge inB that adjoins a pop-
ulated ZIP in the region.

3.3.2 Eccentric Splitlines

Consider the line containing the segment that con-
nects the centroids of two boundary ZIP codesz1

andz2. If this line crosses the region boundary at
any other ZIP code, the subsets of ZIPs produced by
splitting on the line may be misidentified. We call
such lines eccentric splitlines.

As a simple example, considerz1 andz2 on the
boundary of a circular region, with populations dis-
tributed such that the line connecting the centroids
is perpendicular to the local boundary. A splitline
from z1 to z2 appears to divide the region in half,
when it actually should separatez1 andz2 from all
other ZIPs.

To work around this degeneracy, we simply reject
any eccentric splitline. The check for eccentricity
is fast. Recall that the boundary walk produces the
boundary ZIP codes in order. After classifying all
ZIP codes as above or below the line, we start at
an arbitrary ZIP code on the boundary and look up
its classification. We then consider each subsequent
boundary ZIP in order. If the classifications of ad-

41

jacent ZIPs differ, but neither is a boundary ZIP, the
splitline is eccentric.

3.3.3 Discontiguity

ZIP code boundaries are stored in the shapefile
as ordered lists of edges. Since the boundary-walk
algorithm must be able to wrap around the edge list
from the last edge to the first, each ZIP code cannot
store more than one polygon. However, the dataset
may include more than one polygon with the same
ZIP code label. Examples of situations where this
may occur include groups of islands with the same
ZIP code, and ZIP codes that have a river cutting
through the middle.

The solution to this problem is to symbolically
perturb the dataset by re-labeling multiple polygons
that have the same ZIP code. Data is read in a lin-
ear fashion, so the first polygon with the ZIP code
30304 will keep that label, but subsequent polygons
will be re-labelled 30304I, 30304II, etc. Population
data is only inserted into the polygon that happens to
have been inserted first, and therefore happens to be
labeled 30304. Since the population centroid is used
to determine splitline information, this has no nega-
tive effect on the accuracy of the resulting splitline.

3.3.4 High-Degree Vertices

There are two other degeneracies that result from
peculiarities of the ZCTA dataset. These must be
dealt with on a case-by-case basis.

The first situation that may arise is a polygon
making contact with the boundary at a single vertex.
This is a special case of a situation called a high-
degree vertex. The implementation is designed to
deal with vertices that are incident to at most three
edges: we walk the boundary of the current polygon
until we run into another polygon on the boundary,
then we jump to that polygon and keep walking. If
the abutting polygon only touches the boundary at a
single point, however, then the boundary continues
on some other polygon that also touches that vertex.
Since the algorithm does not know how to get to that
next polygon, it must search through all edges in the
candidate boundary edge list to find the one that con-
tinues from this vertex. It is important to look for an
incident edge that has not yet been traversed.

Another degeneracy occurs when a polygon has
only one edge on the boundary. The implementation

determines the direction to walk along each polygon
by looking one edge ahead and one edge behind.
If the first boundary edge is also the last boundary
edge, then the implementation cannot determine this
direction. It must then examine the vertices; the di-
rection selected is that which carries the walk away
from the last vertex seen.

3.4 Asymptotic Analysis

Say the dataset hasN ZCTAs andE edges, and we
wish to form k districts. Let us first consider the
topmost level of recursion. The algorithm first ex-
amines each edge to determine whether it appears
in more than one polygon in order to build a list of
candidate boundary edges. This takesO(E) time.
Next, we traverse the polygons that are incident to
the boundary edges to cull for internal water fea-
tures and polygon edge misalignments. Our al-
gorithm only walks those polygons that sit on the
boundary of the region. For the next step, we make
two assumptions. First, we assume that approxi-
mately

√
N ZCTAs lie on the boundary, and thus√

N polygons. Second, we assume that all poly-
gons in the dataset contain an approximately con-
stant number of edges. walking the boundary is then
anO

(

E +
√

N
)

operation at each level.
The final portion of the algorithm examines all

candidate splitlines, that is, the set of lines connect-
ing any pair of boundary ZIP code population cen-
troids. Assuming there are

√
N centroids, there will

beO
(√

N
2
)

= O(N) splitlines. For each splitline,
we must calculate the population above and below
that splitline, takingO(N) time. Thus the runtime
for this portion of the algorithm takesO

(

N2
)

time.
Each level of recursion must execute both of the

above operations. There arelog(k) levels of recur-
sion, so the expected runtime for the overall algo-
rithm is O

(

(N2 + E)logk
)

. The worst-case run-
time occurs when all ZCTAs lie on the boundary
of the region to be split, resulting in a runtime of
O

(

(N3 + E)logk
)

.

4 Results

We have tested our software on the state of Geor-
gia. Since our implementation is proof-of-concept,
we let the registered voters of Georgia approximate
the population. Our software produces lists of ZIP

42

codes by district, and generates KML output for vi-
sualization with Google Earth.

Georgia has 13 congressional districts. Our soft-
ware successfully computes a shortest splitline dis-
tricting for population variation tolerances of 3%
and higher. Since there are only about 1000 ZIP
codes in Georgia, the regions at low levels of recur-
sion can have very few non-eccentric splitline candi-
dates, resulting in failure to find an acceptable split-
line at tighter tolerances. If better population eq-
uity is required, smaller tabulation regions should be
used.

Figure 1 shows the results with a 3% tolerance,
and Figure 2 shows the results with a 5% tolerance.
As expected, the splitlines are noticeably longer in
Figure 1, particularly in the north of the state.

Figure 1: 13 districts attempted, 3% tolerance.

Of the approximately 3.5 million registered voters
in the Georgia data, only 102,227 have a declared
party affiliation. 63% of those with a declared affil-
iation are Democrats; consequently, Democrats ap-
pear to carry 10 of the 13 districts at 5% population
tolerance. Since so few voters have formal affilia-
tion, this result has no value as a prediction of actual
outcomes.

5 Conclusion

The software we have developed successfully dis-
tricts Georgia. Since there are relatively few ZIP

Figure 2: 13 districts, 5% tolerance.

codes per state, it runs quickly in practice: Georgia,
with about 1200 ZIPs, is districted in 210 seconds
on a modern workstation. Qualitatively, the results
are reasonable. The Atlanta area is partitioned into
small, compact districts, with larger but still simple
polygons outstate.

The districts produced by using ZCTAs as the fun-
damental zone are certainly preferable to gerryman-
dering, but have some quality issues. As seen in
Georgia, high equipopulation precision is not attain-
able with such large quanta. Moreover, the degen-
eracy handling required to cope with idiosyncrasies
of the ZCTA data set can distort results. In particu-
lar, the eccentric splitline handling will reject most
lines that closely parallel a region boundary, even if
that line would be a desirable solution. Finally, ZIP
boundaries themselves are arbitrary, irregular, and
potentially open to political manipulation.

The natural solution is to replace ZCTAs with
some other, finer tessellation of convex polygons.
In the extreme, this tessellation could be the
Voronoi diagram on the set of all voters. However,
the expected quadratic and possible cubic running
times will penalize performance severely for higher-
frequency sampling. It may be possible to remove a
factor ofN from the runtime by building a quadtree
index of voters, with each node storing the entire
population descended from it.

43

6 Acknowledgments

We thank Andy Danner for advising our project.

References

Micah Altman. 1997. Is automation the answer: The
computational complexity of automated redistricting.
Rutgers Computer and Law Technology Journal.

Sergei Bespamyatnikh, David Kirkpatrick, and Jack
Snoeyink. 1999. Generalizing ham sandwich cuts to
equitable subdivisions. InSCG ’99: Proceedings of
the fifteenth annual symposium on Computational ge-
ometry, pages 49–58, New York, NY, USA. ACM.

Tony H. Grubesic and Timothy C Matisziw. 2006. On
the use of zip codes and zip code tabulation areas (zc-
tas) for the spatial analysis of epidemiological data.Int
J Health Geogr., 5(58).

Robert E. Helbig, Patrick K. Orr, and Robert R. Roediger.
1972. Political redistricting by computer.Commun.
ACM, 15(8):735–741.

Jorg Kalcsics, Stefan Nickel, and Michael Schroder.
2005. Towards a unified territorial design approach -
applications, algorithms, and gis integration.Journal
of Geographical Systems, 13(1):1–56.

W. Macmillan. 2001. Redistricting in a gis environ-
ment: An optimisation algorithm using switching-
points. Journal of Geographical Systems, 3(2):167–
180.

Warren D. Smith and Ivan Ryan. 2007. Ger-
rymandering and a cure - shortest splitline al-
gorithm. http://www.rangevoting.org/
GerryExamples.html.

44

Appeared in: Proceedings of the Class of 2008 Senior Conference, pages 45–48,
Computer Science Department, Swarthmore College

Optimal Double Coverage In The Art Gallery

Scott Dalane
sdalane1@swarthmore.edu

Andrew Frampton
aframpt1@swarthmore.eu

Abstract

We plan to examine a well known visibil-
ity problem termed the art gallery prob-
lem. The general idea behind the prob-
lem is that a museum wants to mini-
mizethe number of cameras present in
an art gallery while still recording every-
thingthat happens in the room. We take
the problem a step further and investigate
the optimal arrangement of cameras so
that every spot in the room is covered by
not just one, but two cameras. This will
allow constant surveilance even if any one
camera were to fail. We do this by us-
ing a bottom-up approach where we use
a three coloring algorithm to find the op-
timal placement for single coverage and a
basic dobuble coverage of a polygon rep-
resenting a floorplan. We then use a opti-
mization algorithm with a line of sight al-
gorithm to check each camera of the dou-
ble coverage and remove any unnecessary
cameras, leaving the optimal double cov-
erage of the polygon.

1 Introduction

The problem is named after art galleries because the
art needs to be under surveilance at all times and
they tend to be shaped in irregular ways which can
make this security difficult. The problem was first
proposed by Viktor Klee in 1973 (Klee, 1979). It
has since been proven that a maximum of⌊n/3⌋
cameras will be needed,n being number of vertices
in the polygon that is the room, to cover the entire
room. This is known as the Art Gallery Theorem
and was stated by Vaclav Chvatal (Chvatal, 1973).

For us to tackle this problem we designed a program
that takes a set of points that make up the polygon
that will be guarded, and then returns an image of the
floorplan with the cameras placed upon it. By using
a three coloring algorithm on each of the points in
the triangulation determine the ideal single camera
placement and the basic double coverage placement
of cameras, which can then be optimized.

2 Triangulation

In order to perform the 3-coloring on the points of
the polygon, it is first necessary to break the polygon
down into its constituent triangles, so that we can
accurately determine whether the 3-coloring is ac-
curate. We do this by finding any splitpoints within
the polygon so that it can be seperated into mono-
tone polygons. These monotone polygons are then
individually triangulated, then put back together to
create an ideal triangulation ofn − 2 triangles forn
points.

2.1 Finding Split Points

The first step in our triangulation algorithm was to
locate any split points in the polygon that we can use
to break the polygon down into smaller, monotone
polygons to triangulate. The split point is a point that
is determined to be interior to its neighboring points
on they-axis, in other words, when the point causes
the polygon to be convex on the top or bottom. This
is done by going through each point and shooting a
rays up and down the point’sx-axis (Seidel, 1991).
We then use helper functions to determine whether
or not the rays intersect any other segments of the
polygon. If both rays hit a segment of the polygon,
they are then tested on the basis of how many times
they intersect the polygon to determine whether they
are interior to the polygon. If the point and its rays

45

Figure 1: The top two polygons are monotone be-
cause every line only intersect the polygon twice.1

meet these criteria they are then flagged as a split
point and the polygon is then split into three poly-
gons, one to the upper right of the point, one to the
upper left, and one beneath the point, with the bases
of the upper two polygons and the top of the lower
polygon formed by the rays along the x-axis of the
point. This continues until the original polygon has
been completely broken down into monotone poly-
gons (de Berg et al., 2000).

2.2 Monotone Triangulation

Since monotone polygons have no interior points on
the y-axis, they get rid of several possible degen-
eracies when being triangulate as opposed to try-
ing to triangulate the entire poylgon at once. Once
the monotone polygons have obtained, each point
within them is checked as the start point for the tri-
angulation using a method similar to the one used
for finding split points, but this time we check to see
if they are interior to their neighboring points in re-
gard to thex-axis. If such a point is found, then it
is chosen as a start point, otherwise the split point
is chosen. The triangulation algorithm then walks
around the polygon’s points using a list of connec-
tions stored in each point to determine the points it
is connected to, and if there is no connection to the
start point, then one is added and a line is formed.
The shared point between the two previous points
is added and then the three are saved as a triangle,
and this continues until the entire polygon has been
traversed. After each monotone triangle has been tri-

1image from http://en.wikipedia.org/wiki/Monotonepolygon

Figure 2: An example of triangulation around start
points.2

angulated, they are all put back together in the poly-
gon, and the horizontal rays from the split points are
removed, creating an optimally triangulated polygon
(de Berg et al., 2000).

2.3 Handling Degeneracies

It is worth noting that the algorithm that we have
come up with in this is capable of handling just about
any degeneracy that we encountered. If the polygon
is concave, our algorithm can deal with the problems
of possible outside segments as well as any problems
that may arise from having a vertex in the middle of
the polygon. the outside segment problem is done by
our suprisingly simple intersection test which takes
the modulus of the number of interstections that the
ray encounters with both edges and vertices. If the
number of intersections is even then the resulting
modulus is zero, and the ray is considered outside
and discarded, as was previously explained in sec-
tion 2.1.

3 Optimizing Camera Placement

3.1 3-coloring and Camera Placement

With the triangulation in place it is now possible
to perform an easy 3-coloring of the polygon, so
that cameras can be placed. Using the triangula-
tion within the polygon, we can now proceed to use

2from http://www.cs.ucsb.edu/s̃uri/cs235/Triangulation.pdf

46

three coloring to determine where to place the cam-
eras. Using the list of triangles that was created dur-
ing the monotone triangulation, our algorithm takes
the first triangle from the list and colors each point
a different color. The algorithm then looks for tri-
angles that share sides with the previously colored
triangle and color the remaining point is then col-
ored based on what coloring of the other two points
are. This continures until all of the triangles in the
list have been colored, with the number of the points
with each coloring stored as an integer. The integers
are then compared with one another, cameras being
placed at the color with the lowest integer value, cre-
ating optimal single coverage for the polygon (Urru-
tia, 1991) . But in order to achieve double coverage
another set of cameras have to be placed at the next
smallest coloring to provide a basic double coverage
which can be optimized.

3.2 Visibility Graph

Now that the cameras have been placed it is time to
determine what points they see and and what how
many cameras see each point, assuming that if a
camera could see a point then it generally sees the
area surrounding the point, barring degenerate cases
which are taken care of when the cameras are opti-
malized later on. Using a line of sight function,we
created a visibility graph by traversing every point
from each camera, drawing a line between the two
points, making sure that the line did not intersect a
segment of the polygon and remained inside of it.
By doing this we then built up a list of each point
seen by each camera, with thenumber of cameras
seeing each point, allowing our heuristic to optimal-
ize the camera placement (O’Rourke, 1987).

3.3 Camera Optimalization

Now we have our optimalize the camera placement
by going through each camera and seeing if it can
be removed from the polygon, updating the each
point it sees and decrements the number of cameras
that can see them accordingly. If one any point’s
count of cameras that can view it drops below 2, then
the camera has to be replaced, otherwise, it remains
taken off and the next camera is then checked. After
the optimization algorithm is complete, the cameras
left are the optimal.

Figure 3: Simple double coverage on a test polygon
using only 3-coloring.

Figure 4: Optimized double coverage using a visi-
bility graph and optimization.

47

4 Results and Conclusion

After testing our algorithm on progressively more
complex polygons, our algorithm easily does bet-
ter than⌊2n/3⌋ camera placement for double cover-
age of cameras outside of the the worst case, while
the entire program runs inn2 time, due to the fact
that the points are looked at multiple times espes-
cially during the optimalization step. It also proves
fairly adept at making a strong placement for cov-
erage greater than double, although it needs to be
more thoroughly tested to make any conclusions in
that regard.

References

V. Chvatal. 1973. A combinatoral theorem in plane ge-
ometry. Number 18, pages 39–41.

M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. 2000. Computational geometry: Al-
gorithms and applications (2nd ed.). pages 45–61.

V. Klee. 1979. Some unsolved problems in plane geom-
etry. volume 52, pages 131–145.

Joseph O’Rourke. 1987. Art gallery theorems and algo-
rithms. pages 11–23.

Raimund Seidel. 1991. A simple and fast incremental
randomized algorithm for computing trapezoidal de-
compositions and for triangulating polygons. InCom-
putational Geometry The- ory and Application, vol. 1,
no. 1, pp. 51-64.

Jorge Urrutia. 1991. Art gallery and illumination prob-
lems.

48

Appeared in: Proceedings of the Class of 2008 Senior Conference, pages 49–53,
Computer Science Department, Swarthmore College

Voronoi Natural Neighbors Interpolation

Chris Harman
charman1@cs.swarthmore.edu

Mike Johns
mjohns2@cs.swarthmore.edu

Abstract

Implementing point cloud to grid con-
version for digital elevation maps (DEM)
presents one with many options for inter-
polation and we intend to explore algo-
rithms for interpolation during the con-
version process with a specific focus
on Voronoi natural neighbor interpola-
tion. By partitioning the environment
into Voronoi cells and using the informa-
tion from neighboring cells and their re-
spective generating point’s elevation, we
can achieve aesthetically pleasing inter-
polation results with runtimes competi-
tive with lower-order interpolation algo-
rithms. We compare our natural neigh-
bors interpolation method with a linear
interpolation method and a regularized
spline interpolation method quantitatively
using cross-validation and qualitatively by
rendering the interpolted meshes using
GRASS. 1

1 Introduction

When dealing with discrete sets of elevation data
such as elevation information collected using meth-
ods such as laser range finding or LIDAR, it is often
desirable to be able to estimate or predict the val-
ues of unsampled locations using the available infor-
mation. One application where interpolation can be
useful is visualization of elevation data. Point eleva-
tion data obtained through LIDAR or other remote
sensing methods is not always uniformly sampled.
One way to visualize the data set would be to simply
triangulate the point set into a triangular mesh and

1http://grass.itc.it/

render that mesh, but the resulting image would not
model the underlying data well. By using different
interpolation methods on the original elevation data,
more accurate rendering can be performed and de-
pending on the method of interpolation, the resulting
visualization can change dramatically.

There are many interpolation methods available to
estimate these unsampled values, and the different
methods usually offer tradeoffs between the accu-
racy of the prediction and the efficiency of the com-
putation. One of the simplest interpolation meth-
ods would be to assign each unsampled location a
value based upon which location within the set of
known values it lies closest to. Although this sim-
ple method is computationally efficient, the resulting
function is not continuous everywhere, specifically
along the edges where locations are equidistant from
the samples. In most cases these discretized estima-
tions will not be as accurate as the results from other
more computationally expensive interpolations. The
discontinuities in the resulting function also do not
model the sampled data in an aesthetically pleasing
manner. Methods such as interpolation by regular-
ized spline with tension result in functions which
have regular derivatives of all orders everywhere al-
lowing for analysis of surface geometry as well as
improved accuracy in estimation (?).

Natural neighbors interpolation provides a good
tradeoff between computational efficiency and accu-
racy. In this method the value of an unsampled point
is determined through a weighted average of the val-
ues of the interpolation points neighbors within the
sample set. These natural neighbors are determined
by finding which Voronoi regions from the original
point set would intersect the Voronoi region of the
interpolation point, if it were to be inserted. The re-
sulting function is continuous everywhere within the
convex hull of the sample set and mimics a taut rub-

49

ber sheet being stretched over the data. Our hope is
that Natural Neighbors Interpolation will provide a
computationally efficient method with which to ac-
curately visualize elevation data.

2 Related Work

There are an overwhelming number of options when
choosing which method to use for interpolation
when converting from a point cloud to a grid for a
DEM. (?) details many low-level routines for in-
terpolation including: the level plane; linear plane;
double linear; bilinear; biquadratic; Jancaitis bi-
quadratic polynomial; piecewise cubic; bicubic; and
biquintic interpolation method. (?) draws the con-
clusion that higher- order interpolation methods will
always outperform those with linear complexity in
terms of modeling the terrain accurately. The prob-
lem with choosing higher-order interpolation rou-
tines is that the computational backlash is not neces-
sarily proportional to the gain in accuracy; this begs
the question: How do we balance modeling accuracy
and compuational efficiency?

Other interpolation methods such as the regular-
ized spline with tension described in (?) attempt to
balance computational efficiency and modeling ac-
curacy. The regularized spline with tension delib-
erately attempts to smooth the surface being iterpo-
lated and tweaks the mesh appropriately. Though
a little less straightforward than other lower-level
methods of interpolation, this method is a good
benchmark for performance and modeling accuracy;
as such, we will use it as a comparison for our
Voronoi natual neighbors method in this paper. We
expect Voronoi natural neighbors interpolation to
represent a desirable balance between computational
complexity and aesthetics.

3 Methods

3.1 Computing the Delaunay triangulation
The Delaunay triangulation for a set of points P is a
triangulation DT(P) such that no point in P is within
the circumcircle of any triangle within the triangu-
lation. This is also the triangulation which maxi-
mizes the minimum angle within the triangulation.
DT(P) is computed using a randomized incremental
approach as outlined in (?). Each point in P is in-
serted incrementally and the Delaunay triangulation

for that set of points is computed. Initially the tri-
angulation consists of a single triangle which is de-
fined to contain all of the points within P. As each
point is inserted, the appropriate edges are added
to the current Delaunay triangulation so that it re-
mains a triangulation although it is not necessarily
still a Delaunay triangulation. In order to ensure that
no point within the current triangulation lies within
the circumcircle of any triangle, illegal edges must
be flipped. An illegal edge is one where the cir-
cumcircle defined by the three vertices of one ad-
jacent triangle contains the outlying point from the
other adjacent triangle. Special care must be taken
when legalizing edges where one or more of the ver-
tices involved belong to the initial bounding trian-
gle. Only edges whose adjacent triangles have been
changed due to the insertion of the new point can
be illegal since the triangulation was legal before-
hand. As a result when an edge is illegal and must be
flipped, the other edges incident to the involved tri-
angles must also be legalized. Since the angle mea-
sure of the triangulation increases with each edge
flip and there is a maximum angle measure for the
given set of points, the edge legalization is guaran-
teed to terminate. Once all of the points have been
inserted into the triangulation, the vertices of the ini-
tial bounding triangle and all of the edges incident to
these three vertices must be removed from the trian-
gulation.

3.2 Transforming to the Voronoi Diagram

The Voronoi Diagram of a set of points P Vor(P)
can be computed easily given its dual DT(P). Each
triangle within DT(P) corresponds to a vertex in
Vor(P). Each edge in DT(P) corresponds to an edge
in Vor(P). For a triangle in DT(P), the location of the
vertex in Vor(P) can be calculated by determining
the center of the circle circumscribed by the three
vertices of the triangle. This point can be found by
determining the intersection of the perpindicular bi-
sectors of each edge in the triangle. Each edge in
DT(P) is adjacent to two triangles and corresponds
to an edge in Vor(P) connecting the two vertices
which are the duals of these adjacent triangles. Us-
ing this dual transformation it is a simple procedure
to compute Vor(P) given DT(P).

50

Figure 1: This figureashows the Voronoi cell for the inserted
point v overlayed on the Voronoi diagram for the original point
set. One of v’s natural neighbors, p, is shown with its Voronoi
cell shaded. The area stolen by the insertion of v can be seen in
the overlap between the two Voronoi cells.

3.3 Computing the Natural Neighbors
Interpolant

When computing the natural neighbors interpolant,
it is important to intuit the relative ‘neighborliness,’
as (?) calls it, of adjacent Voronoi cells. These
neighbors are the points within the original point
set whose Voronoi cells intersect the Voronoi cell
of the interpolated point, if it were to be added to
the point set. The interpolated value is computed
as a weighted average of the area stolen from each
neighbor by the insertion of this point.

To compute this weighted average, we first com-
pute the Delaunay triangulation of the original set
of points P. Given DT(P) we need to calculate the
Voronoi cell of the point v, whose value we want to
estimate, if it were to be added to P. Since the in-
sertion of v will only alter DT(P) and consequently
Vor(P) locally, we do not need to recompute the en-
tire Delaunay triangulation. We only need to com-
pute a Delaunay triangulation for the points which
would be neighbors of v. In order to determine this
local point set we can use the existing triangulation
DT(P)and corresponding Voronoi diagram. The area
stolen from each neighbor of v can be computed by
finding the difference between the area of Voronoi
cell in Vor(P) and the area within the local Voronoi
diagram. The interpolated value for v is then cal-

culated as:
∑

neighbors ofv
areastolen

area of the Voronoi cell ofvα
where alpha is the value, possibly an elevation value,
for the specific neighbor.

To compute DT(P) and transform to Vor(P) as de-
scribed earlier takes O(n logn) time where n is the
size of P. Vor(P) must be calculated once for the
original point set. The local Voronoi diagram must
be calculated for each interpolated point. Since the
size of this local subset of P does not depend on
n but rather the distribution of points in P and the
number of neighbors that the inserted point would
have, we can assume that for large point sets, this
local set of points will be much smaller than n and
will not depend on n. This means calculating the lo-
cal Voronoi diagram will take a relatively constant
amount of time independent of the size of P. In or-
der to determine which points belong in this local
point set we determine which triangle in DT(P) the
point lies within. We can follow the outgoing edges
from the vertices of this triangle to determine the ap-
propriate neighbors to include. This process again
depends on the the size of the local point set which
does not depend on n. To calculate the weighted av-
erage we must locate Voronoi cells a constant num-
ber of times. We can use the DAG search structure
for DT(P) to locate points and follow the dual point-
ers into Vor(P). Locating a Voronoi cell will take
O(logn) time. For each point we need to interpo-
late we need to perform a constant number of logn
searches plus a relatively constant amount of work
to compute the local Voronoi diagram, so to inter-
polate k points for a point set of size n would take
O((n+k)logn) time.

4 Results

A set of 50 points within a 400 by 400 region were
chosen. Elevation data for these points was then ob-
tained by sampling an elevation image which can be
seen in Figure 2 (far left). Three different interpola-
tion methods were performed on a small subregion
of the image using the 50 sampled points. The first
method used was our natural neighbor interpolation
algorithm. The results of our interpolation were then
compared to two of GRASS’ built in interpolation
routines, regularized spline with tension and inverse
distance weighting. The differences between the re-
sulting interpolated images and the original image

51

Figure 2: This figure shows the original image, the image generated using our natural neighbors interpolation routine, GRASS’
regularized spline with tension and GRASS’ inverse distance weighting from left to right, respectively.

Figure 3: This figure shows the difference images generated by subtracting the interpolated images from the original image. The
difference images were then thresholded to only display values above a certain value. Their arrangement is identical to the table
below.

Threshold NNI RST IDW
10 5.1% 13.5% 38.9%
2 28.4% 44.4% 57.1%

Table 1: This table displays the percent of the interpolated image that differs from the original image by a defined threshold.

52

were calculated within the appropriate region. The
results were thresholded at varying levels and per-
centages for estimated values lying outside of the
threshold were calculated in table 1.

For the given data set and sampled points, our
natural neighbor interpolation routine outperformed
the built in regularized spline with tension and in-
verse distance weighting interpolation routines. At
a threshold of 10 units, only 5.1% of the pixels were
incorrectly estimated by our interpolation routine
compared with 13.5% and 38.9% incorrect respec-
tively for the regularized spline with tension and in-
verse distance weighting routines. At a lower thresh-
old of 2 units, our routine still dramatically outper-
formed the other two methods.

5 Discussion

All three methods of interpolation seemed to have
trouble estimating values in relatively similiar areas.
This could result from the sample points being more
sparse in these areas or the frequency of the data in
the original image being higher. Looking at the dif-
ference images generated for each of the interpola-
tion routines reveals that these trouble zones for in-
terpolation are common across each method.

Due to a lack of robustness in our interpolation
routine, values at certain locations could not be es-
timated which can be seen with the speckling in the
difference image. This leads to a greater percent in-
correct which leads us to believe that our method
would perform even better given a more robust im-
plementation. The relative aesthetic advantage of
natural neighbors interpolation over the regularized
spline with tension method and the inverse distance
weighting method is readily apparent. It seems that
the natural neighbors method is much more capa-
ble of dealing with a sparse set of points to interpo-
late. This advantage could be because the tessela-
tion underlying the interpolation routine extends be-
yond the boundary of the eventual image, allowing
for better interpolation around the boundary of the
image relative to the other methods.

We chose not to include runtime comparisons be-
cause our method took far longer to finish compared
to the others. Each time we ran the natural neighbors
routine, it required approximately an entire night
to complete. When GRASS interpolated using its

built-in routines, they both finished in about one sec-
ond - negligible compared to our runtime. The ex-
treme expedience of GRASS’ routine is likely due
to the sparse number of points that were interpolated
over.

6 Future Work

There are several improvments to our interpolation
method that would greatly enhance the usefullness
of our implementation. The first necessary improve-
ment centers around the degeneracies hinder the
proper triangulation of the environment. Having a
more robust Delaunay triangulation would remove
the uninterpolated holes in the final image. This
could have also been worked around easily by av-
eraging over the gaps in interpolation once the De-
launay triangulation failed. Improving our point in-
sertion method during the interpolation step would
help cut down on some of the computational costs
as well.

Creating a more extensive set of comparisons by
varying the number of points interpolated over, vary-
ing the image frequency and complexity and in-
cluding other interpolation methods would provide
a more accurate gauge of our interpolation method’s
relative performance. A more comprehensive run-
time comparison between methods would hopefully
help determine the practical usage of our interpola-
tion method too.

53

Appeared in: Proceedings of the Class of 2008 Senior Conference, pages 54–58,
Computer Science Department, Swarthmore College

Bridge Detection By Road Detection

Jeff Kaufman
cbr@sccs.swarthmore.edu

1 Introduction

It is useful to be able to determine water flow
patterns over terrain. The raw data for this task
is usually collected via airborne laser range find-
ing, or LIDAR. This yields a point cloud rep-
resenting the uppermost surface of the terrain.
This cloud is interpolated onto a grid where
each grid cell represents a square portion of the
earth’s surface and it’s value is the average hight
of that portion. Water flow patterns can then be
calculated by looking at the direction of greatest
descent from each cell.

There is a problem, however, with local min-
ima: cells from which there is no direction of
descent. A common cause of this is bridges.
The area over which a bridge passes shows up in
the digital elevation as being of a height greater
than the surrounding terrain, but for the pur-
poses of water flow it is not there. A water flow
simulation model will treat those grid cells as
indicating a barrier, then, when there is in fact
no impediment to water flow. The goal of this
project is to identify bridges to aid in the accu-
rate determination of water flow patterns

2 Past Attempts and Related Work

A common method for dealing with local min-
ima is flooding. In this all grid cells, exclud-
ing those at the edges of the grid, where there
is no lower adjacent cell are raised up to the
height of their lowest neighbor. Repeating this
will eventually rid the map of local minima.
Identical results to this naive method can be
achieved efficiently with a plane sweep algorithm
using topological persistence. (Edelsbrunner et
al., 2000) Unfortunately, as Soille et. al. (Soille
et al., 2003) recognize, this loses information.
Large flat areas, a common result of flooding,
retain no information about their original low
points and do not provide information actual

flow patterns. One can still determine a pos-
sible flow pattern through it, but that pattern
may be totally different from the true one.

Soille et. al. were working with a very low
resolution (250m) grid elevation model to de-
termine the water flow pattern for Europe and
the problems they ran into are somewhat dif-
ferent from those encountered with higher res-
olution data. When they encountered a local
minimum, specifically, it was usually because
some small stream or channel went undetected
with the coarse sampling. Their replacement of
flooding, carving paths from local minima to the
nearest lower area, makes sense for dealing with
the missing channels but can of course get things
wrong. As the local minima in higher resolution
data are much more likely to be products of hu-
man terrain manipulation, generally in the cre-
ation of roads, a system that tags and removes
bridges ought to come closer to true water flow
paths than either flooding or carving.

For last year’s senior conference, Manfredi
and Pshenichkin (Manfredi and Pshenichkin,
2006) used a series of classifiers to tag bridges.
They had a series of simple criteria that a win-
dow had to match to be tagged a bridge. They
were able to detect many of the larger bridges
but missed some smaller ones, as well as complex
structures such as highway interchanges. Their
system also had a large number of false positives,
detecting vegetation and other small artifacts as
bridges. They rightly point out, however, that
there is not too much harm in removing them
along with bridges as they are also not really
there from the perspective of water flow.

One feature that they did not take advan-
tage of is the tendency of bridges to be part
of the road network. All of their classification
work considered only the window that poten-
tially contained the bridge. There has been some

54

work on detection of of roads from LIDAR data
(Clode et al., 2005), and while the final detected
roads may not be completely accurate, for this
task we don’t need perfection. Instead we just
need a rough idea of how likely a region is to
be part of the road network, which can then be
input to the bridge detection system.

3 Bridge Detection via Road
Detection

For this project I locate bridges in two stages.
In the first I determine an approximate map of
the road network, a map that should generally
be best in areas where the roads are in high re-
lief. These areas correspond well to those where
bridges are likely, so it should be a well suited
map for the task. Second I identify local min-
ima that are near the computed roads in order
to tag road sections as bridges. Input consists of
a digital elevation model in the form of a grid of
floats indicating hight. Output consists of five
similar models with floats indicating likelihood
of being a bridge, with calibration required for
the particular data set.

3.1 Road Detection

Roads are places in the terrain that are flat. Any
flat area could be part of a road. Areas that are
linearly flat, however, are much more likely to be
roads. These would be areas where lines in one
direction are flat while in other directions are
not. Finally, roads tend not to bend sharply,
so if there is a road in a direction we treat grid
cells in that direction as being more likely to be
a road.

This yields four indicators of bridge-likeness.
All are computed on a series of cells represent-
ing a potential road. For every cell c in the grid
we calculate 32 potential roads of a configurable
length running through that point. We then find
which of those series of cells has the lowest av-
erage change in steepness and call that the ‘best
road’ centered on that cell. We also find the
set of cells representing a line perpendicular to
the best road and call that the ‘perpendicular’.
Each indicator acts on one of these two roads
and yields a value attributed to c.

1. Maximum gradient. For the best road, the
likelihood of it being actually a road is in-
versely proportional to the greatest differ-
ence between adjacent cells in the road.

2. Average gradient. Like the previous, except
the average absolute difference is calculated
instead of the maximum one.

3. Maximum gradient of perpendicular. The
likelihood of the best road being a road in-
stead of just a cornfield is indicated by the
unroadlikeness of the perpendicular. This
is calculated as for the maximum gradient.

4. Standard deviation of gradient. Even when
not level, roads tend to be flat. That is,
while they might sometimes have high gra-
dients the (root mean square) standard de-
viation should be low.

3.2 Local Minima

A maximally simple algorithm for determination
of local minima turns out to be quite effective
as the data is not very noisy. For every grid
cell, if no neighbor is smaller, then that cell is
a local minimum. With worse data we might
have a large number of these places and a small
amount of flooding might be worth while. After
flooding an amount small enough not to overflow
bridges we have not lost much flow information
and now should generally have local minima just
in places where there are bridges.

4 Results

These four indicators were tested on two differ-
ent examples of roads. Figures 1 and 2 show
the LIDAR-derived input grids. Figures 3 and 4
show the maximum gradient indicator. Fig-
ures 5 and 6 show the average gradient indicator.
Figures 7 and 8 show the maximum gradient of
perpendicular indicator. Figures 9 and 10 show
the standard deviation of gradient indicator.

All four indicators appear to capture an ele-
ment of bridge detection. One important aspect
of these indicators is that they most strongly la-
bel cells as indicating bridges when those cells
are in places where they would be incorrectly

55

Figure 1: The input digital elevation model for
the Bridge test

Figure 2: The input digital elevation model for
the Interchange test

Figure 3: The maximum gradient indicator on
the Bridge

Figure 4: The maximum gradient indicator on
the Interchange

Figure 5: The average gradient indicator on the
Bridge

Figure 6: The average gradient indicator on the
Interchange

56

Figure 7: The maximum perpendicular of gra-
dient indicator on the Bridge

Figure 8: The maximum perpendicular of gra-
dient indicator on the Interchange

Figure 9: The standard deviation of gradient on
the Bridge

Figure 10: The standard deviation of gradient
on the Interchange

impeding water flow. Actual use of these in-
dicators on real data would require calibrating
them. This would require hand tagging a small
number of bridge examples and computationally
determining the combination of these indicators
that best fits that data.

5 Conclusions

In this paper we have shown that several rel-
atively simple functions analyzing a digital el-
evation model can produce good indicators for
classification of cells as to their probability of be-
ing a road. Further work would include a large
scale test with calibration on a large digital ele-
vation model. Implementation of a second pass
that combined these local bridge likelihood es-
timates into a road network could also improve
accuracy.

References

S. Clode, F. Rottensteiner, and P. Kootsookos.
2005. Improving city model determination by us-
ing road detection from lidar data. IAPRSSIS,
XXXVI(3/W24):159–164.

H. Edelsbrunner, D. Letscher, and A. Zomorodian.
2000. Topological persistence and simplification.
In 41st IEEE Symposium on Foundations Com-
puter Science, pages 454–463.

A. Manfredi and A. Pshenichkin. 2006. Bridge
detection from elevation data using a classi-

57

fier cascade. http://web.cs.swarthmore.edu/
∼adanner/cs97/f06/papers/bridge.pdf.

P. Soille, J. Vogt, and R. Colombo. 2003. Carving
and adaptive drainage enforcement of grid digi-
tal elevation models. Water Resources Research,
39(12).

58

Appeared in: Proceedings of the Class of 2008 Senior Conference, pages 59–65,
Computer Science Department, Swarthmore College

Image Stained Glass using Voronoi Diagrams

Michael Gorbach
mgorbac1@cs.swarthmore.edu

Abstract

The geometrical concept of the Voronoi
diagram was used to create an image
filter providing a “stained glass” or mo-
saic effect on an image. The Voronoi
diagram was calculated by exploiting
its dual relationship with the Delaunay
triangulation, which was in turn calcu-
lated using a randomized incremental
algorithm and stored in a DCEL. Var-
ious methods were tried for selecting
the points, including sampling from a
distribution built using edge detection.
Sampling using edge detection distri-
butions was shown to provide results
significantly better than uniform ran-
dom sampling.

1 Introduction

Voronoi diagrams, when calculated on some
set of N points in the 2d plane, segment the
space into regions surrounding every point. The
polygonal regions are such that, within a region
surrounding some point p0, the point p0 is closer
to any point p in that region than any other of
the N points included in the Voronoi diagram.
The mapping between points in the plane and
surrounding regions is one to one.

This information has many uses, but one of
the most obvious is processing an image for an
artistic effect. The representation created by
shading a Voronoi diagram on N points in the
image plane with colors from each sample point
creates a “stained glass” or mosaic version of the
image. One of the key problems here is effective
selection of the point set P for the Voronoi dia-
gram.

2 Theory

2.1 Voronoi Diagrams

First, it is appropriate to examine the algo-
rithms involved in the efficient calculation of a
Voronoi diagram on a set of N points. The goal
is a polygonal map of the plane consisting of a
set of polygons surrounding the N points. The
polygon surrounding a point p covers the area
for which p is the closest of the N points.

Given two points p and p′, we can create a
Voronoi diagram by drawing a line perpendic-
ular to the line pp′, intersecting pp′ at its mid-
point. A Voronoi diagram with more points in-
cludes many such lines, meaning that each poly-
gon has straight edges consisting of line seg-
ments which are sections of such perpendiculars.

Voronoi diagrams can be calculated directly,
using for example the beach line algorithm from
the work (Fortune, 1986). It is often simpler,
however, to take advantage of the close rela-
tionship that exists between the structure of the
Voronoi diagram, and that of the Delaunay tri-
angulation. (Guibas et al., 1990)

2.2 Delaunay Triangulation

A triangulation of some point set P is a planar
subdivision such that every polygon is a triangle
(except for the unbounded face), and the ver-
tices are points in P . A triangulation exists for
every point set P , as any bounded face can be
split up into triangles, and the unbounded face
is simply the complement of the convex hull for
P . There are, of course, many different trian-
gulations on any one set of points P . Given
two triangles bordered by a common edge, it is
always possible to “flip” this edge such that it
connects the remaining two points, assuming the
quadrilateral in question is convex. (Berg, 2000)

In a triangulation, it is undesirable to have
small (sharp) angles. There is one triangula-

59

tion, called the Delaunay triangulation, which
maximizes the minimum angle and therefore is
the “best” triangulation. One simple way to find
this triangulation is to take an arbitrary trian-
gulation and flip all illegal edges. Here, an il-
legal edge is defined as an edge for which flip-
ping will improve the triangulation: the ordered
set of angles after flipping will be lexicographi-
cally greater than the set before flipping. (Berg,
2000) Of course, an edge can only be flipped in
the case of a convex quadralateral. An example
of such an edge flip is shown on fig. 1.

It is not necessary to calculate all the angles
to determine the legality of an edge. Consider
two triangles abc and dbc that share an edge cb.
Let C be the circle defined by abc. The edge ij
is illegal if an only if the point d lines inside C.
A proof can be found in (Berg, 2000).

Figure 1: An edge flip during the process of
creating a Delaunay triangulation.
http://www.cescg.org/CESCG-
2004/web/Domiter-Vid/

A Delaunay triangulation can be constructed
using an incremental algorithm based on the
above. (Berg, 2000) Randomizing the point set
P , add the points sequentially to the triangula-
tion. Each time a point is added, start by trian-
gulating the face containing the new point, and
then legalize edges recursively until all edges in
the triangulation are legal. Thus, the algorithm
maintains a correct Delaunay triangulation of
the currently included points as an invariant.

2.3 Dual Transformation

The last step in constructing a Voronoi diagram
on P is to convert the Delaunay triangulation
on P into a Voronoi diagram. The structures
are related through duality.

A face in the Delaunay triangulation corre-
sponds to a vertex of the Voronoi diagram, such
that the location of the Voronoi vertex is the
center of circumcircle for the (triangular) De-
launay face. A vertex in the Delaunay trian-
gulation corresponds to a face in the Voronoi
diagram. This Voronoi face surrounds the De-
launay vertex and represents the Voronoi cell for
this vertex. An edge in the Delaunay triangula-
tion corresponds to a perpendicular edge in the
Voronoi diagram. Two Voronoi vertices are con-
nected if an only if the corresponding Delaunay
faces are adjacent. Figure 2 shows a Delaunay
triangulation and the corresponding Voronoi di-
agram.

2.4 Point Sampling

One of the primary difficulties in using Voronoi
diagrams to create stained glass effects is the
selection of the point set P on which to build
the diagram. Badly chosen points create a re-
sult that captures none of the features in the
original image. In this project, the implemen-
tation of fully automated, intelligent point se-
lection was a key goal. Point selection can be
done, or adjusted, manually, however the need
for such intervention limits to applicability of
the processing, and so was not studied here.

2.4.1 Naive Approaches

The simplest method for point selection uses
a random sample of N points, distributed uni-
formly within the boundaries of the image. Such
a method is of course very simple to implement,
and also has an advantage that follows from its
uniformity. Because the distribution is uniform,
the sizes of all the Voronoi cells will be relatively
small, and thus a badly-colored Voronoi cell can
have only a limited size. The obvious issue with
such a method is that it fails to account for the
global features of an image. Random point se-
lection, in practice, results in significantly dis-
torted representations, especially in high-detail
regions of the image, even at large N .

A grid-based point selection approach is an-
other simple alternative. It has the advantage of
highly uniform cell size, similar to that seen in a
real mosaic. Like uniform random sampling, it

60

Figure 2: Example of a Delaunay triangulation
(top) and corresponding Voronoi diagram (bot-
tom). The colors have no meaning.

suffers from a failure to account for the image’s
important features. Good representations can
only be obtained with fairly large N values.

2.4.2 Distribution Sampling

The earlier discussion of uniform sampling can
be generalized to an arbitrary probability distri-
bution on the 2d plane of the image. The ques-
tion, then, is what distribution Ps(x, y) on the
image pixels would, when sampled from for a
total of N points, produce the best representa-
tion of the image. One quantitative criterion
for Ps(x, y) is the error between the colored,
N-point Voronoi representation with sampling
from Ps(x, y) and the real image. Such a value,
however, does not necessarily reflect an aesthetic
judgment of the colored Voronoi mosaic.

Edge detection appears as an efficient way to
obtain a good Ps(x, y). Good mosaics are cre-
ated when Voronoi cell edges fall on edges of
the image. In order for this to happen, Voronoi
points must be located at equal distances from
an edge line. It is undesirable for sampled points
to fall on image edges themselves, as then the
Voronoi cell surrounding that point is likely to
be badly colored, in a way that is not expressive
of key image features. The goal then, is to re-
ceive a distribution that has symmetric and sig-
nificant values around edges (leading to points
likely sampled there), and low values directly on
edges. Here, symmetric means that values are
equal at equal distances along a perpendicular
to the edge.

Such a distribution can be achieved using
basic edge detection and blur filters. Specifi-
cally, it is effective to use a distribution of the
form Ps(x, y) = Pblur(x, y)− Psharp(x, y). Here,
Psharp(x, y) comes from an sharp, or only very
slightly blurred, black and white edge detection
image. Pblur(x, y) comes from an image pro-
cessed with the same edge detection filter, fol-
lowed by a significant (on the order of 5 pix-
els) gaussian blur. The subtracted distribution
has low (dark) values immediately on the edges,
and higher (lighter) values farther out from the
edges. Due to the Gaussian blur, the lighter val-
ues decrease in intensity with distance from the
edge. Example distributions are presented on

61

fig. 3. Note that the distribution along both
sides of an edge is symmetric, which is good for
Voronoi point selection.

2.4.3 Related Work

In addition to considering the distribution
Ps(x, y), it is also possible to look instead at the
representation error discussed earlier. This was
implemented in the work (Dobashi et al., 2002).
The authors started with a simple set of points
leading to a hexagonal Voronoi diagram across
the image. They then adjust the locations of
the Voronoi points to decrease the error (calcu-
lated as difference in colors per pixel) between
the mosaic and real image representation. In the
first phase, the entire set of points is moved in
batch, with each point moving somewhere in its
surrounding 8 pixels in such a way as to decrease
the error. This process continues until changes
in error are below a threshold. The second phase
implements finer adjustment where each site is
moved individually within its 8 pixels and the
error is recalculated each time.

While this approach appears to be effective,
it requires significant computational power even
with approximations, and the inclusion of man-
ual adjustments in the paper makes it difficult
to judge the effectiveness of such a method for
purely autoamted processing.

3 Methodology and Implementation

3.1 The Doubly-Connected Edge List

The most important component in an implemen-
tation of the above algorithms is the data struc-
ture used to represent the planar subdivision,
whether it be the Delaunay triangulation or the
Voronoi diagram. This data structure must sup-
port several operations in a performant way. It
needs to allow fast adding of points into an exist-
ing triangulation structure, flipping of any par-
ticular edge, and traversal of a face to find its
boundary edges.

The most common data structure used to
meet the above requirements is called a dou-
bly connected edge list (DCEL) (Muller and
Preparata, 1977). The structure contains sev-
eral types of records: faces, edges, and vertices.

Figure 3: Examples of sampling distributions
created using edge detection: Psharp(x, y) (top),
Pblur(x, y) (middle), and Ps(x, y) (bottom).
Edge detection and blur were implemented us-
ing Apple Inc.’s Core Image processing filters.

62

Edges are represented as half edges, storing a
pointer to their twin, adjacent face, and dou-
bly linked list pointers allowing traversal of face
boundaries. A face record simply contains a
pointer to one half-edge along the face’s outer
boundary (if it exists), and a set containing one
edge along every “hole” inside the face. The
Delaunay triangulation was constructed in a
DCEL, and then the Delaunay DCEL was trans-
formed into its dual, representing the Voronoi
diagram.

The DCEL structure described here meets all
the requirements for storing a planar subdivi-
sion. However, given a point, the structure does
not provide a fast way to locate the face con-
taining a point. For this purpose, an additional
DAG (Directed Acyclic Graph) data structure
is layered on top of the DCEL.

3.2 DAG For Point Location

A Directed Acyclic Graph was constructed to
provide fast point location during triangulation.
This point location was used during the first tri-
angulation step, where it is necessary to find
the face containing the point being added. The
DAG algorithm used was described in (Berg,
2000).

The leaf nodes of the DAG correspond to the
current triangulation. The other nodes corre-
spond to previous triangles that existed ear-
lier during the incremental triangulation pro-
cess. When a point p is added, causing a split
of the face f , the leaf node representing f re-
ceives 3 children for the newly created triangles.
The DAG is also updated on edge flips, leading
to situations where a leaf node has more than 1
pointer leading to it.

Using such a DAG structure, a point can be
located by starting from the root and navigating
down the children, checking for containment in
the process.

4 Results and Discussion

The figures below present the results of con-
structing mosaic representations for a test im-
age.

The butterfly image was chosen as it is sim-
ilar to example images used in (Dobashi et al.,

2002). It is extremely difficult to constructed au-
tomated mosaic representations on images with
many human faces.

Looking at the images on figs 4 and 5, we can
see that the representation unsurprisingly im-
proves with increasing N . It is clear that the
images generated using edge-detection distribu-
tion based sampling retain significantly more of
the key features, and also have a far cleaner
appearance. This is due to points being sam-
pled from a distribution symmetric around the
edges, leading to Voronoi cell edges matching up
with image edges. The improvement using edge-
detection distribution based sampling is partic-
ularly evident with lower N values.

Significant artifacts still exist with edge-
detection based sampling under lower point
counts. This is because the correct distribution
does not guarantee a good set of sampled points
with low N , meaning that there are or empty ar-
eas in the points. One approach to remedy this
would be to adjust the distribution during the
sampling process, subtracting discreet, 2d Gaus-
sians from the distribution around each point as
it is sampled. This would help prevent clusters
of points and empty areas, improving uniformity
with low N .

Ideally, it would be effective to add equidis-
tant points in pairs, one on each side of an edge.
Doing this, however, requires knowledge of the
edges as vector paths instead of as lighter pix-
els in an image. Such an approach would not
require sampling, and would probably work sig-
nificantly better than a distribution-based ap-
proach. It does, however, require a very different
kind of processing.

5 Conclusion

A stained glass / mosaic filter was successfully
implemented based on Voronoi diagrams. Sev-
eral solutions to the problem of sampling points
were compared. While the solution by (Dobashi
et al., 2002) provides good results, it requires
both significant processing power and manual
adjustment. A simple, fully automated sam-
pling method was proposed based on subtraction
of blurred distributions obtained using edge de-

63

Figure 4: An example image (top), rendered us-
ing distribution-based point selection. The dis-
tribution was created by subtracting two blurred
edge detection distributions, with a blur of 5.0
and a blur of 1.0. The middle image has N =
1000 points sampled, and the lower image has
N = 5000.

Figure 5: An example image (top), rendered us-
ing uniformly random point selection. The mid-
dle image has N = 1000 points sampled, and the
lower image has N = 5000.

64

tection. Results presented from application of
this method, shown on figs. 4 and 5, are both
significantly cleaner than the mosaics created
using random sampling, and more reflective of
key image features.

References

Mark de Berg. 2000. Computational geometry: al-
gorithms and applications. Springer, Berlin, 2nd
rev. ed edition.

Y. Dobashi, T. Haga, H. Johan, and T. Nishita.
2002. A method for creating mosaic images us-
ing voronoi diagrams. In Proc. EUROGRAPHICS
2002 Short Presentations, pages 341–348.

S Fortune. 1986. A sweepline algorithm for voronoi
diagrams. In SCG ’86: Proceedings of the sec-
ond annual symposium on Computational geome-
try, pages 313–322, New York, NY, USA. ACM.

Leonidas J. Guibas, Donald E. Knuth, and Micha
Sharir. 1990. Randomized incremental construc-
tion of delaunay and voronoi diagrams. In Pro-
ceedings of the seventeenth international collo-
quium on Automata, languages and programming,
pages 414–431, New York, NY, USA. Springer-
Verlag New York, Inc.

N. E. Muller and F. P. Preparata. 1977. Finding the
intersection of two convex polyhedra. Technical
Report ADA056889, U. Illinois at Urbana Cham-
paign, Coordinated Science Lab, October.

65

	Program
	Seamless Intersection Between Triangle Meshes
	Approximate K Nearest Neighbors in High Dimensions
	The Road Not Taken: Creating a Path-Finding Tool Using Consumer-Grade GPS Equipment
	Drawing Isoglosses Algorithmically
	The Largest Empty Circle Problem
	Unbiased Congressional Districts
	Optimal Double Coverage in the Art Gallery
	Voronoi Natural Neighbors Interpolation
	Bridge Detection by Road Detection
	Image Stained Glass using Voronoi Diagrams

