
The Road Not Taken: Creating a Path-Finding Tool Using Consumer-Grade
GPS Equipment

Allison Barlow
ajb@sccs.swarthmore.edu

Lucas Sanders
lsanders@sccs.swarthmore.edu

Abstract

We automate the organization of GPS data
to create a visibility map with correctly
connected intersections. For our exam-
ple case study, we use GPS data collected
on the Swarthmore College campus. Af-
ter the data is automatically organized and
cleaned, a user is able to select points on
a visual map to search for an optimal path
between those points.

1 The Problem of Navigation

Swarthmore College, set in the beautiful Scott Ar-
boretum, has many scenic routes and winding paths
between the lovely stone buildings. This serene set-
ting is wonderful for long walks, but can be trou-
blesome in trying to navigate from one’s dorm to a
classroom when one is half-awake and running be-
hind schedule. In order to assist the poor, sleep-
deprived students of Swarthmore College, we cre-
ate an interactive map of the campus to help users
discover the appropriate paths between the various
buildings on campus. In doing so, we develop a
set of tools that can easily create similar systems for
data collected in other locations.

1.1 Previous Work

Another group worked on a GPS path-planning
project for last year’s Senior Conference (Singleton
and Woods, 2007). Because their data required quite
a bit of manual editing, their system would not eas-
ily scale to larger data sets. We also noticed that

their interface was difficult to understand immedi-
ately. Taking these challenges into account, we cre-
ate a scalable, user-friendly path planning tool.

We used a large amount of previous research
to build our tools. Most notably, Dijkstra’s algo-
rithm (Dijkstra, 1959; de Berg et al., 1997) and
the more general A* search algorithm (Hart et al.,
1968) have been developed to find appropriate paths
through our spatial graph. We also implement an
improved version of the Douglas-Peucker line sim-
plification algorithm (Hart et al., 1968).

1.2 Approaches to Path Planning

Path planning is essentially a least-cost graph
searching problem, a task for which several algorith-
mic variations have been developed. In the past, Di-
jkstra’s algorithm has been widely used for this task,
but we implement the A* search algorithm, which is
a generalization of Dijkstra’s approach that is both
complete and optimally efficient. In typical situa-
tions, A* performs slightly faster than Dijkstra’s al-
gorithm because it uses a heuristic to help decide
which search paths are most promising. This process
minimizes the size of the subgraph to be explored.

2 Implementation

This project consists of three main parts: data collec-
tion and processing, path planning, and UI develop-
ment. The first two parts center on problem solving
using computational geometry while the third pro-
vides easy access to the results.



2.1 Data Collection and Processing

We use self-collected GPS data for our finished map-
ping system. Swarthmore College kindly provided
their survey plans for use with this project, but due
to a lack of time, we were not able to complete an
integration of this data into our user interface. We
prioritized our work with the GPS data, even though
that data is not as precise, because we wanted our
system to be useful in creating mapping systems in
other situations where no such detailed survey plans
have been prepared.

2.1.1 GPS Data Collection

Our main dataset is GPS tracking data recorded
by walking the paths of Swarthmore’s campus
with a consumer-grade GPS receiver, the Garmin
GPSmap 60CSx. For consistency, we carried the
GPS receiver at about waist-height and walked on
the center of each footpath, recording tracks of
where we had walked and marking a waypoint each
time we encountered a path intersection. We used
GPSBabel to transfer data from the Garmin unit to
the GPX format, an XML-based file format that in-
cludes latitude, longitude, elevation, and timestamp
data. We collected GPS data for virtually all exterior
paved footpaths on the Swarthmore campus; in con-
trast to last year’s project, we did not record indoor
footpaths because of the inability to collect GPS data
indoors with inexpensive equipment and our desire
to avoid manual editing of the collected data (Sin-
gleton and Woods, 2007).

2.1.2 GPS Data Processing

Our pre-processing algorithms find clusters of
paths with geographically nearby endpoints. We as-
sume that these paths intersect at a common point, so
we reassign the endpoint coordinates of all paths in a
cluster to the arithmetic mean of the endpoint coor-
dinates in that cluster. While this approach is fairly
naive, we found that it works quite well in prac-
tice with the relatively coarse resolution captured by
consumer-grade GPS equipment.

We experimented with simplifying the data as a
final processing step, hoping to reduce the computa-
tional power needed for both the user interface dis-
play and our path-finding algorithms. We use the
Douglas-Peucker line simplification algorithm to do
so. This, however, was not particularly helpful for

this particular application in part because of the rela-
tively infrequent position sampling provided by our
equipment. Also, we constructed our search graph
on adjacent path intersections, ignoring the com-
plexity of the path segment between those intersec-
tions, which is an even more efficient simplification
for searching purposes. It is important, however, to
explore the practicability of such simplification tech-
niques for use with larger, higher-precision datasets.

At the end of these pre-processing steps, the re-
sulting data is saved as latitude, longitude, and ele-
vation tuples for each meaningful point of each path
segment. Figure 1 shows a clear difference between
our raw data and the same data after being processed
with our programs.

Figure 1: Before and after data processing cleanup
on a subset of our GPS data

Figure 2: GIS overlay of our GPS data and the sur-
vey drawings

2.1.3 CAD Survey Drawings

Thanks to the maintenance staff at Swarthmore
College, we also acquired survey-grade mapping
data for the Swarthmore campus in AutoCAD for-
mat. We convert the several layers of data from these



drawings to the Shapefile format and simplify the
data using the Douglas-Peucker algorithm. The fi-
nal output data uses the same simplified data format
described at the end of our GPS data pre-processing
algorithms. We had hoped to use information from
these drawings as a base layer to help orient users
to the paths as displayed in our user interface, but
ran out of time before we could complete that ef-
fort. Figure 2, however, shows an overlay of these
datasets that has been prepared with a GIS package.

2.2 Path Planning

Path planning using the A* search algorithm is fairly
straightforward. We create a graph of the connec-
tions between path intersections; each edge in the
search graph is weighted with the path distance be-
tween its endpoint vertices. Then, we apply the
search algorithm to this graph, finding the shortest
path between the two selected nodes.

A* uses a heuristic function: the sum of distance
to get to the current node plus the cost to get to the
next node. Using this function, A* chooses which
nodes to visit based on the routes that appear to be
shortest. The partial paths it has explored are stored
in a priority queue, and when its cheapest path be-
comes relatively expensive, other potentially shorter
paths are explored. When a path is found to reach
the goal with a lower heuristic value than any other
(partial) path in the queue, A* has found the shortest
path. A* is both complete and optimal, making it an
obvious choice for path finding.

We choose to implement the A* search algo-
rithm because its implementation is not significantly
more difficult than implementing Dijkstra’s algo-
rithm. Given this, the heuristic in A* provides a
slight performance improvement in typical situa-
tions.

2.3 UI Development

We provide a python program for visualizing the
paths in our search space and the optimized paths be-
tween selected points. Search endpoints are selected
simply by clicking on intersections in our search
graph, and the optimal path between those points is
then highlighted on the map. A screenshot of this in-
terface is provided in Figure 3, where the first point
selected is green, the second point selected is red,
and the shortest path between them is shown in blue.

Figure 3: Screenshot of our UI with a path selected



We did not have time to complete further UI de-
velopment work, although this was not the largest
focus of our project. The UI would be even more in-
tuitive, however, if the paths were overlaid on a map
that shows other landmarks, such as buildings.

3 Results & Conclusions

Our system appears to be robust and to provide ac-
curate results for a user’s queries. The interface can
be quickly and simply explained, but is not yet intu-
itive enough to be used by most individuals without
a brief explanation.

We are quite happy with the way that our system
meets the goals set out at the beginning, especially
with regards to scalability. For example, we devel-
oped our processing routines with a subset of our
collected GPS data, then were able to add the re-
mainder of our data with less than five minutes of
additional work. We are confident that our system
would scale well even to much larger datasets than
the ones used in this project, and that this represents
a good approach to developing such path-finding
systems much more quickly and cheaply than has
been previously possible.

References

M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. 1997.Computational Geometry: Al-
gorithms and Applications. Springer.

E. W. Dijkstra. 1959. A Note on Two Problems in Con-
nexion with Graphs.

P. E. Hart, N. J. Nilsson, and B. Raphael. 1968. A For-
mal Basis for the Heuristic Determination of Minimum
Cost Paths.

Matt Singleton and Bronwyn Woods. 2007. Finding
Your Inner Blaha: GPS Mapping of the Swarthmore
Campus.


