
Computer Science Department

CPSC 097

Class of 2007

Senior Conference on

Computational Geometry

and GIS

Proceedings of the Conference



Order copies of this proceedings from:

Computer Science Department

Swarthmore College

500 College Avenue

Swarthmore, PA 19081

USA

Tel: +1-610-328-8272

Fax: +1-610-328-8606

adanner@cs.swarthmore.edu

ii



Introduction

About CPSC 097: Senior Conference

This course provides honors and course majors an opportunity to delve more deeply into a particular

topic in computer science, synthesizing material from previous courses. Topics have included advanced

algorithms, networking, evolutionary computation, complexity, encryption and compression, and

parallel processing. CPSC 097 is the usual method used to satisfy the comprehensive requirement for a

computer science major.

During the 2006-2007 academic year, the Senior Conference was led by Andrew Danner in the area of

Computational Geomety with Applications in GIS.

Computer Science Department

Charles Kelemen, Edward Hicks Magill Professor and Chair

Lisa Meeden, Associate Professor

Tia Newhall, Associate Professor

Richard Wicentowski, Assistant Professor

Andrew Danner, Visiting Assistant Professor

Program Committee Members

Dan Amato

Scott Blaha

Andrew Danner

Taylor Hamilton

Phil Katz

Anthony Manfredi

Shingo Murata

Mustafa Paksoy

Alexandr Pshenichkin

Matt Singleton

Stephen St. Vincent

Giovanna Thron

Bronwyn Woods

Conference Website

http://www.cs.swarthmore.edu/˜adanner/cs97/f06/

iii



Conference Program

Wednesday, December 13, 2006

1:20–1:40 Finding Your Inner Blaha: GPS Mapping of the Swarthmore Campus

Matt Singleton and Bronwyn Woods

1:45–2:05 Border Patrol

Shingo Murata and Dan Amato

2:10–2:30 Parallelized Interpolation: A Quantitative Assesment

Scott Blaha and Mustafa Paksoy

2:45–3:05 Bridge Detection from Elevation Data Using a Classifier Cascade

Anthony Manfredi and Alexandr Pshenichkin

3:10–3:30 Flow Routing on Flat Terrains

Taylor Hamilton and Giovanna Thron

3:35–3:55 Shapefile Overlay Using a Doubly-Connected Edge List

Phil Katz and Stephen St. Vincent

iv



Table of Contents

Finding Your Inner Blaha: GPS Mapping of the Swarthmore Campus

Matt Singleton and Bronwyn Woods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Border Patrol

Shingo Murata and Dan Amato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Parallelized Interpolation: A Quantitative Assesment

Scott Blaha and Mustafa Paksoy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Bridge Detection from Elevation Data Using a Classifier Cascade

Anthony Manfredi and Alexandr Pshenichkin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Flow Routing on Flat Terrains

Taylor Hamilton and Giovanna Thron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

Shapefile Overlay Using a Doubly-Connected Edge List

Phil Katz and Stephen St. Vincent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



Appeared in: Proceedings of the Class of 2007 Senior Conference, pages 1–5,
Computer Science Department, Swarthmore College

Finding Your Inner Blaha:
GPSMapping of theSwarthmoreCampus

Matt Singleton and Bronwyn Woods
{msingle1,bwoods1}@cs.swarthmore.edu

Abstract

Swarthmore College is a largely un-
mapped, dangerous region of southeast-
ers Pennsylvania. Or rather, we treat it as
such for the purposesof this paper. We
present an interactive tool for calculating
the shortest path between two points on
theSwarthmore campus. We develop our
tool using a combination of GPS tech-
nology and knowledge of Swarthmore’s
buildings. We allow users to specify a
Blaha factor, which scales theweights of
indoor paths, causing them to betreated as
shorter or longer than their real lengths in
the shortest path calculations. In this way,
users can express apreference for travel-
ing primarily indoorsor outdoors, depend-
ing on personal preference and weather
conditions.

1 Introduction

People familiar with a place often have strong in-
tuitions about the most efficient ways of traveling
between locations they frequent. However, people’s
intuitions are sometimes indisagreement. Addition-
ally, special circumstances such as extraordinarily
nice or foul weather may influence aperson’s pref-
erence for possible routes. We present a tool for
identifying the shortest pathbetween two points on
theSwarthmore College campus, allowing for pref-
erencesfor indoor or outdoor paths.

We mapped theoutdoor pathson the campus us-
ing GPStechnology and estimated the indoor paths

based on our knowledge of the buildings. Using a
combination of manual and algorithmic techniques,
we transformed our raw point data into a graph on
which we perform shortest pathrouting using Dijk -
stra’s algorithm. We allow indoor and outdoor paths
to beweighted differently, effectively discounting or
penalizing thedistancetraveled inside.

Our tool is presented as an interactive GUI that
allows theuser to select points on a map of Swarth-
more’s campus. The tool graphically displays the
shortest path according to thevalueof theBlahafac-
tor, or weighting of the indoor paths, set by theuser.

2 Related Work

2.1 Global Posit ioning System

The NAVSTAR Global Positioning System (GPS)
providesprecise information about location by us-
ing signals transmitted by 24satellites inEarth’sor-
bit. Originally designed for exclusive military use,
the system wasopened for civilian use asit became
fully operational in the early 1990s. GPSsatellites
transmit ranging signals which encode information
about the satellite’s location at the time the signal
was sent. By combining information received from
several satellites, this signal allowsGPSreceivers to
calculate their 3D location on Earth’s surface. The
accuracy of locations determined by GPScan range
dramatically depending onthequality of theGPSre-
ceiver. Commercial quality GPSreceiver units have
typical errors of between 10m to 30m, while more
expensive systemscan reach an accuracy at the sub-
centimeter level (US , 2003).

Many factors contribute to the overall accuracy

1



of measurements taken using GPS. These include,
in addition to the quality of the receiver, atmo-
spheric conditions, the environment of theuser and
theposition of theGPSsatellites relative to theuser.
GPSmeasurements with commercial receivers can
only beperformed outdoors andcan bedisrupted by
densetree cover or other largeobstacles(US, 2003).

2.2 Dij kstra’sAlgor ithm

Dijkstra (1959) describes two algorithms for find-
ing shortest pathson a graph, one for finding the
minimum spanning tree andtheother for finding the
shortest path between two nodes. For the purposes
of this project, wewere concerned only with thelat-
ter. The operation of this algorithm is discussed in
section 3.3.

3 Methods

3.1 Data Collection

We collected raw dataabout thepathsontheSwarth-
more College campus using a Garmin GPSMap70
GPS unit. We marked paths by recording points
manually at regular intervals. Manually recording
points allowed us to determine thefrequency with
which we recorded points and to ensure that we
recorded pointsat the intersections andendpointsof
paths. Each point we recorded wasgiven a unique
ID, allowing us tokeep track of which pointsstarted
and ended any given path. In total, we collected
910 points. In addition to thedata points delimiting
the paths, we recorded individual points represent-
ing the doors into the campus buildings. The self -
reported accuracy of theGPSunit averaged around
10m for all of our datacollection.

We recorded our data using the UTM coordinate
system. The UTM system breaks the globe into
zones, or bandsrunning north to south. A location is
defined by its zone, an easting and a northing. The
easting represents thedistancefrom the edge of the
zone, while thenorthing gives thedistancefrom the
equator.

3.2 Processing Techniques

Once we had gathered our raw data, we needed to
make anumber of additions and changes toprepare
it for screen display and path computation.

3.2.1 Hand Cleanup (Fir st Pass)

Our raw GPSdata was surprisingly good, but it
still contained anumber of erroneousdatapoints. At
this point we had a preliminary GUI that allowed us
to view thedata as a collection of numbered points
and lines. Given this view, it wasrelatively easy to
identify the erroneous data points visually and then
remove them by hand.

In addition to the erroneous data points, the raw
GPS data is presented as one unbroken line. The
result is long segments connecting the end of one
path to thebeginning of another. Wedivided thedata
into the individual paths againby visual examination
of thedata.

3.2.2 L ine Intersection

Our next task was tofind thepoints at which the
paths intersected. Because thenumber of points in
our data set was small, we decided to do this us-
ing a brute-force algorithm. Each path is made up
of a number of straight line-segments, so we sim-
ply check each segment for intersections with ev-
ery other segment. If an intersection is found, that
point is added to both paths. This operation isO(n2)
wheren is thenumber of line segments.

3.2.3 Hand Cleanup (Second Pass)

Figure 1: In theraw pathdata, somepaths end a bit
too soon, while others endabit too late.

While GPSdid a very goodjob of gathering data
with good relative positioning (straight paths are
straight and curved paths curve where they are sup-
posed to), it did a much poorer job at absolute posi-
tioning. As aresult, pathsoften end slightly before
or slightly after they should (seefigure 1). We used
our preliminary GUI to visually identify where these
problem areaswere. We then added or removed
points from thedataby hand, as appropriate.

2



3.2.4 Adding Doors and Indoor Paths

As noted above, we gathered individual points
marking the entrances tobuildings in addition to
our path data. Unfortunately, due to the absolute
positioning problems with the GPS data, many of
thesepoints were significantly wrong. Based on our
knowledgeof thebuildingsoncampus, wewere able
to identify which doors points were worth keeping
and which we needed to be adjusted manually. GPS
doesnot work inside, so we needed to add indoor
pathsby hand. We approximated thesebased on our
knowledge of thebuildings and the locations of the
doors.

3.2.5 Creating aGraph

Finally, with all the paths and intersections in
place, we needed to convert our data into a graph
that that we could use to compute shortest pathsus-
ing Dijkstra’s algorithm. As our data was then, a
single path could contain multiple vertices and span
multiple edges. Weneeded to segment it so that each
path corresponded to one edge in thegraph, andeach
endpoint corresponded to avertex in thegraph. With
thedata in this format, it wasrelatively easy to build
thegraphstructure inonepass throughthedata.

Figure2: A simple graph.

Our graph is implemented as Python dictionary
(essentially a hash table) where thekeys are vertex
IDs for every vertex in the graph and the value is
a dictionary where thekeys are vertex IDs for all
connected vertices and thevalueis theweight of the
correspondingedge. Becausehash table lookups can
be done in constant time, building the graph is an
O(n) operation wheren is thenumber of paths.

{‘A’: { ‘B’: 3, ‘C’: 2},
‘B’: { ‘A’: 3, ‘C’: 1},
‘C’: { ‘A’: 2, ‘B’: 1}}

Figure 3: An example of our graph representation
describing thegraph displayed in figure2

3.3 Computing thePath

Now that we have constructed our graph, we can
compute the shortest pathbetween any two vertices
using Dijkstra’s algorithm (Dijkstra, 1959). Dijk -
stra’s algorithm, left to its own devices, will com-
pute the entire minimum spanning treeof a graph,
starting at a given node. Since all we care about is
a single shortest path, we can stop computation as
soonasour destination vertex is added to thetree.

The algorithm is simple, and can be easily imple-
mented in Python. To begin, the algorithm sets the
distance to the start vertex as0 and the distance to
all other vertices as∞. Initially, the tree contains
only the start vertex. The algorithm proceeds by in-
crementally adding adjacent vertices to thetreeuntil
every reachable vertex is added. The next vertex to
be added to thetreeis always thevertex whose ad-
dition will minimize thelength of the longest path.
Refer to figure4 for an example.

4 Results

4.1 Raw Data

Figure5: The raw pathdata from theGPSunit.

3



(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

(g) Step 7

Figure4: A trivial example of the execution of Dijkstra’s algorithm.

Figure 5 shows our raw path data. The map is
clearly recognizeable as theSwarthmore campus,
but there aremany flaws tobe corrected. We can see
several immediate problems with this data. Some
paths that should intersect fall short and do not meet.
Other linesdointersect, but extend past the intersec-
tion when they should end. Lastly, somepoints are
clearly inaccurate by a large margin causing spikes
in a few of thepaths.

4.2 GUI

Oncewehad all of theunderlying structurebuilt, we
created aGUI to concisely present all of thedataand
provide an easy method for getting user input. The
GUI is comprised of threedistinct areas.

Map canvas Thelargest andmost important part of
the GUI is the map canvas. This is where the
map is displayed and the user can select the
start and end points of their desired path. Once
two pointsare selected, the shortest pathis cal-
culated based on the current Blaha factor and
drawn own themap.

Statusbar Along the bottom of the window, the
status bar displays the current x- and y-
coordinates of themousepointer aswell as the
current Blaha factor.

Input area To theright of theMap canvas, the input
area allows theuser to change theBlaha factor

and reset themap.

5 Discussion

Our final product is an interactive tool for shortest
pathrouting ontheSwarthmore campus. Thoughit
might seem that the tool would be superfluousgiven
the familiarity of students with the campus, anec-
dotal evidence shows that some shortest paths, es-
pecially with modified Blaha factors, are surprising
even to Swarthmore students.

Though our map is created from GPSdata, there
are several possible sources of inaccuracy which
might affect the shortest path calculations. For one
thing, the lengths of the indoor paths are only esti-
mated, and do not take into account stairs that must
be climbed or doors that must beopened. We also do
not consider elevation for theoutdoor paths, though
this is unlikely tomake a significant difference.

There is a potential to expand our tool in a vari-
etyof directions. For instance, we could expand our
map to cover a greater portion of Swarthmore Col-
lege and the surrounding areas. We could allow the
user to specify which buildings he could not pass
through due, for instance, to not having a key. We
might also be able to improve the accuracy of the
door data points by sampling several points at the
doors andaveraging their positions.

Though the methods we used for creating a
searchable map of the Swarthmore campus worked

4



(a) Theshortest path with theBlaha factor set to 1. (b) Theshortest path with theBlaha factor set to 0.1

Figure 6: The final display given by the GUI, showing the shortest pathsfrom the Science Center to the
McCabeLibrary with theBlaha factor set to 1 and 0.1.

for this task, they would not be scalable. This isdue
to thelarge amount of handcleanupinvolved. How-
ever, the amount of error present in theGPSdatawe
obtained necessitates this hand clean-up. It seems
that thetask of creating amap of the typewepresent
for a larger areawould require adifferent approach.

6 Conclusion

We present in this paper an interactive path finding
tool for the Swarthmore College campus. The tool
allows for differential treatment of indoor and out-
door paths, allowing theuse to specify a preference
for travel. Thoughthemethods that weused for cre-
ating the map and searchable graph would not be
scalable to larger maps, the techniqueswere effec-
tive for our task. Our interactive GUI allows the
user to discover efficient pathswhich are occasion-
ally surpsising even to individuals familiar with the
area.

References

E. W. Dijkstra. 1959. A Note on Two Problems in Con-
nexion with Graphs. Numerische Mathematik, 1:269–
271.

US Army Corps of Engineers, 2003. Engineering and
Design - Navstar Global Positioning System Survey-
ing, July.

5



Appeared in: Proceedings of the Class of 2007 Senior Conference, pages 6–14,
Computer Science Department, Swarthmore College

Border Patrol

ShingoMurata
SwarthmoreCollege

Swarthmore, PA
19081

smurata1@cs.swarthmore.edu

Dan Amato
SwarthmoreCollege

Swarthmore, PA
19081

damato1@cs.swarthmore.edu

Abstract

We implement a border patrol program
that computes ideal locations for observa-
tion towers overlooking a border of inter-
est. In this particular project, we study
theborder of Arizona facing Mexico. We
useGRASSto manipulateelevation raster
data. Our algorithm extracts the border
from araster file andlocates candidatepo-
sitions for observation towers along that
border. The viewshed of each observa-
tion tower iscomputedwith adirect lineof
sight algorithm. We employ a tower place-
ment algorithm to select only the neces-
sary towers from the set of all candidate
towers. Our algorithm selected 92towers
within a 5km zone from theborder to pa-
trol the approximately 680km border.

1 Introduction

Border patrol is a common interest involved in na-
tional security. Militaries are frequently concerned
with detecting threatsalongthe extent of aparticular
border as completely and efficiently aspossible. It
is important that border security can be established
cost-effectively aswell. We model this problem as
the task of placing the minimum number of towers
necessary to view the entireborder of interest within
somerangeof that border.

Current GIS technology makesit possible to au-
tomate theprocessof planning optimal locations for
border observation towers. In this paper we develop

algorithms to automatically extract a border from a
raster file, find candidate tower locations near the
border, and select the optimal set of towers that is
capable of observing the entireborder.

Elevation data for many areasof interest areread-
ily available on theInternet. Weuse theGeographic
ResourcesAnalysis Support System (GRASS) for
data manipulation. GRASSis suited for this project
becauseit hasfull functionality in visualizing eleva-
tion, data conversion, and I/O support for ascii files
that are compatible with our C programs. With an
abundance of digital elevation models in raster for-
mat and the software tools to manipulate them, we
can successfully apply useful viewshed computation
algorithmsto theproblem of finding theoptimal set
of observation towers.

The viewshed of a view point is the set of points
in the terrain model that can be observed from that
point. Viewshed computation is central to the au-
tomation of these algorithms becauseit is essential
to know which border pointsa candidatetower is ca-
pable of observing. Our tower placement algorithm
involves theiterative selection of candidate towers
with the greatest contribution of yet unseen border
points to the current optimal set of observation tow-
ers.

There are several parameters involved in tower
placement. Oneof our goals isto minimize thenum-
ber of towers we need to observe the entire border.
This number is dependant both on theheight of the
towers and themaximum distance they are allowed
to be placed from the border. As theheight of the
towers is increased, the number of necessary tow-
ers decreases, but the cost of each tower increases.

6



Finding a cost-minimizing solution would involve
balancing thesefactors. Increasing thedistancefrom
theborder in which towers can beplaced may incor-
porate useful elevation maxima into themodel that
were previously out of range. The gains from this
are limited by atmospheric conditions that limit vis-
ibility and, ultimately, by the curvatureof theEarth.

We begin by reviewing the viewshed algorithm
presented byDavid Izraelevitz in (Izraelevitz, 2003).
We then describe in detail the threemajor steps in
our project: border extraction, viewshed computa-
tion, and tower placement. Finally, we present the
results in section 4.

2 Related Work

Several algorithms for computing the viewshed of
a point are presented in (Izraelevitz, 2003). The
first method presented is direct computation. This
methodessentially checks each possible obstruction
on a line from theview point to thetarget point. If
there areno obstructions alongthis line, then thetar-
get point is considered visible. This algorithm is
straight forward, but is computationally inefficient,
becauseit requiresO(n) computations for each grid
point on an n x n field, resulting in an O(n3) algo-
rithm.

The Xdraw algorithm employs theLine of Sight
(LOS) function to compute the viewshed of a view
point. This algorithm is faster than thedirect method
becauseit storespreviousresults that can beutilized
at thenext stageof computation alongthe sameline.

The final algorithm improves theXdraw algo-
rithm by introducing a backtracking method to re-
duce thenumber of interpolations and increase the
accuracy of theLOScalculations. If any point along
the line between theview point and thetarget point
coincideswith a grid data point, that data point is
used to initialize theLOS computation. Otherwise,
the algorithm backtracks a specified distance and
initializes the computation with an interpolated LOS
value.

To determine border visibility , we do not need
to compute the entire viewshed from a given view
point. We only need to determine whether target
points on theborder are visible from a tower’s view
point. It is irrelevant to know whether thepointsbe-
tween theobservation tower and theborder are vis-

ible. This negates thebenefits of the Xdraw algo-
rithm which are based ona fast incremental compu-
tation. We implement and use thedirect algorithm
becauseits inefficient computation is mitigated due
to the limited number of points we are examining.
In addition, its accuracy is superior to Xdraw.

Vincent presents an alternative viewshed algo-
rithm based on ray casting in three dimensional
polygonal models in (Vincent, 1999). The algorithm
is based on a hierarchical partitioning of three di-
mensional space. This partition is represented by a
k-d tree. The hierarchical partitioning of the space
continuesuntil the model of the terrain is enclosed
in appropriate bounding boxes. This hierarchical
structuring of the space allows Vincent to increase
the search speed for view obstructions. Other opti-
mizations include abackface culling mechanism to
remove irrelevant surfacepolygons from the search
space andaparallelization of the algorithm. Vincent
also setsupan error vs. speed tradeoff by adaptively
spacing therays used to test for intersection. As the
number of rays increases, accuracy improves at the
cost of increased execution time.

3 Methods

Our automated border patrol algorithm has three
main phases. First, the relevant border must be ex-
tracted from the data. Second, the set of candidate
towers must be determined, and the viewshed of
these towers must be computed. Finally, the tower
placement algorithm must select the optimal set of
observation towers from the entire set of candidate
towers. These selections are based on thevisibility
characteristics of the candidate towers. These steps
are elaborated below.

3.1 Border Extraction

To patrol theborder, wefirst need the coordinatesof
each point on theborder. It is not trivial because the
digital elevation model contains no information re-
garding theborder. Sincewe are looking at theAri-
zona border for this particular experiment, and Ari-
zona has a straight border facing Mexico, we could
have figured out the equation for theline. However,
this method would severely restrict the type of bor-
der we can patrol. Therefore, we present an algo-
rithm to extract aborder in general.

7



Figure1: Start List Construction

Althoughwe have no information about the bor-
der in the raster file, we do have a vector file that
traces theborder. Webegin by converting thevector
file into raster format using GRASS. Raster cells on
the interior of theborder are marked with a 1, while
raster cells exterior to theborder are marked with a
NULL flag. We then output theraster to an ascii file,
giving us afile of 1’s and NULL’s. Our algorithm
defines aborder candidate to be apoint whoseown
valueis 1, and also has at least one neighbor that is
NULL.

Sincewe areworking with a section of theborder,
we need to specify the start coordinate and the end
coordinate. The algorithm checks the8 neighborsof
the start point. If any of them areborder candidates,
thepointsare added to thestart list. It also marks all
8 neighbors as “visited” . Figure 1 displays the state
of the algorithm after the start list hasbeen created.
The grey cells are those that have been added to the
start list.

For each point in the start list, our algorithm
works asfollows:

1. Dequeue apoint from the start list. Call it p.

2. Look at the 8 neighbors of p, and find border
candidates that have not been marked as “vis-
ited” yet. If there are any such points, addthem
to awork list. Thework list is implemented as a
linked-list queue, asis our temporary “border”
described below.

3. Dequeue thefirst point from the work list and
mark it as “visited.” Add thepoint to thetem-
porary border linked list. Call this point p and

then repeat step 2. Continue until thework list
becomes empty or wehit the “end” point.

4. If the work list has become empty without
reaching the end, we scrap that temporary bor-
der. If we hit the end point, we have detected
a potential border. In either case, we restart the
processfrom step 1with another start point, un-
til we exhaust all the start point possibilities.

Once all start pointshavebeen expanded, wemay
have two valid borders: one for each of the two
directions along the border that lead from the start
point to the end point. We must determine which
of thetwo potential borders is thereal border of in-
terest, and which is simply the remaining border of
theregion which excludes theborder of interest. For
now, we make this decision by simply choosing the
shorter border.

We then copy the linked list into an array, as ar-
rays are easier to work with for our purpose. At this
point, each border cell all hasheight of 1 since they
were extracted from the1 or NULL raster. It is im-
portant that wegothroughthe actual elevation raster
and set the elevation of theseborder points to their
truevalues.

At this point we have extracted the border be-
tween the start point and the end point. We also de-
fine thezone in which towers may be placed. This
zone is aband of specified width alongthe extracted
border and insideof the “home” territory. To find
the points falling in this zone, we essentially per-
form a breadth first search of the1 or NULL raster.
We begin with the extracted border points, and add
them into a queue. While the queue is not empty
andthe specified width hasnot been reached, wede-
queue apoint from thequeue. This point is flagged
as “visited,” and all of its unvisited, home territory
neighbors are added to thequeue. All of thepoints
in the zone are stored in an array for futureuse.

3.2 Viewshed Computation

The viewshed of a view point in a terrain model is
the set of all pointsvisible from that point. To patrol
theborder we do not need to compute thefull view-
shed of a tower location. We only need to compute
thevisibility of points on theborder. If a set of tow-
ers can collectively view each border point, then the
border is considered to be fully patrolled by that set.

8



As we are not interested in computing the full
viewshed of potential tower points, but only the
visibility of the border points, we do not need the
optimized approximation algorithms presented in
(Izraelevitz, 2003). We can afford to simply com-
pute the visibility from the potential tower point to
each target border point. The relevant points in the
viewshedcomputation are theview point, pv, thetar-
get point, pt, andthepoint of potential view obstruc-
tion, p. The visibility of pt from pv can be deter-
mined with equation 1.

elv(pt) > elv(pv)+
|pt − pv|

|p − pv|
(S(p)−elv(pv)) (1)

elv(pa) denotes the elevation of point pa.
|pa − pb| representstheEuclidean distancebetween
two points, pa and pb. Finally, S(pa) is the inter-
polated elevation of the terrain model at the (x, y)
coordinates of pa.

This inequality places a constraint on the height
of the target point, pt, based on the elevation data
along a sight line between the view point and the
target point. The inequality generates theminimum
elevation at the target location that is visible from
the view point given the elevation of the potential
obstruction at point p. If the actual target elevation
is less than or equal to this minimum, then thetarget
point is not visible from theview point because the
sight line is obstructed by theobstacle at point p.

To determine the visibility of the target point,
equation 1 must be evaluated at each point, p, along
the sight line between the view point and the tar-
get point. If no point along the sight line obstructs
theview, then thetarget is visible. We approximate
this test by evaluating equation 1at regular intervals
along the sight line between theview point and the
target point. The theoretical sight line will fall be-
tween two grid datapoints in general. The elevation
at point p is the interpolated elevation of thetwo grid
datapoints oneither sideof the sight line.

The interpolated elevation at point p and the ele-
vation of thetarget point are adjusted for theEarth’s
curvature prior to the computation of equation 1.
The curvature adjustment of a point pa’s elevation,
∆elv(pa), is given by equation 2, where d represents
thequantity |pa − pv|. The geometry of the approx-
imation is illustrated in figure2.

Figure2: Geometry of theEarth CurvatureApprox-
imation

∆elv(pa) =
√

REarth
2 + d2 − REarth (2)

We use this viewshed computation method to
compute the visibility of each border point from a
potential tower location.

3.3 Placement Algorithm

Our goal is to view the entire border with as few
towers aspossible. As noted in section 3.1, there
is a zone of specified width back from the border
in which towers may be placed. We baseour tower
placement on theprinciple that an observer can see
more if s/heis at a higher elevation. We begin by
locating all of the local maxima with in the zone.
A local maximum is defined as araster cell having
no higher neighborswithin the zone. Thesemaxima
serve as the candidatepositionsof our towers.

Wefirst figureout which candidate towers are ab-
solutely necessary. A candidate isconsidered neces-
sary if there are points on the border that can only
by seen by that candidate position. Therefore, in-
stead of computing which points each tower would
be able to see, we compute for each point on the
border, which towers can seeit (although they are
computationally equivalent).

9



Figure3: Example of border visibility state

We maintain a table of integers, with each row
corresponding to apoint on theborder. In each col-
umn, we keep track of a tower identifier that can
see thepoint. For each point on theborder, we test
whether that point can be seen by each of the can-
didate positions. If the point is visible from a can-
didate tower location, we add the identifier for that
tower to thepoint’s row in thetable.

Our table may look likefigure3, which shows that
thefirst point on theborder can be seen byTower 0,
the second byTower 0 and 1, the third by Tower 0,
1 and 2, and so on. Every time a tower is added to
thetable, we increment the “score” of that candidate
tower by 1. The score corresponds to thenumber of
points the candidate tower could seeif it werebuilt.

After we have created the table, we traverse the
table to find theborder points visible from only one
tower. We know that the single towers that can see
thesepoints are critical. In the table above, for ex-
ample, Tower 0 is critical becauseit is theonly tower
that can see thefirst point of theborder.

Every time we find a critical tower, we add it to
thepermanent tower list. Then we traverse the inte-
ger table to “close” all border points that can be seen
by that tower. We traverse thelist, find out which
points that tower can see, and, flag that point as “se-
cured.” We also traverse therow for the secured
point, and if any other towers can seeit, we decre-
ment the scoreof those towers. By decrementing the
scoresof these towers, we ensure that the score rep-
resents only the number of unsecured points view-
able from the candidate tower. This prevents redun-
dant towers which can view few new border points
frombeingselectedasgoodcandidates infutureiter-
ationsof the algorithm. The effect of addingTower 0
to thepermanent list in our example above is illus-
trated in figure 4. The score of Tower 1 is decre-

Figure4: Example of updated border visibility state

mented by threebecause threeof the border points
it can view are made redundant with the addition of
Tower 0 to thepermanent list.

Every timewe adda tower to thelist, we check to
seeif the entire border hasbeen “secured” yet. The
chances are, the border cannot be secured by just
those critical towers. So we move on to the second
phaseof theplacement algorithm, in which we sim-
ply pick the candidate tower with the highest score
out of the remaining towers (when we put a tower
into thepermanent tower list, we set its score to -
1, so we never look at it again). When we add the
tower, we “close” thepoints it can see asbefore. We
repeat this processuntil the entireborder is secured,
or there arenomore candidate towers to consider.

4 Results

The input raster, which covers the southern half of
Arizona, has2846 x 5705 data points at 100m res-
olution. When we extract theborder, we find that it
has6768 data points. Out of the6768 points, 1332
are local maxima, so we begin with 1332candidate
points for the towers.

Webegin by restricting tower placement to points
directly on theborder. When we scan for pointsvis-
ible from only one tower, we find that only 6 towers
are critical. With those6critical towers, we can view
844/ 6768 border points. The next tower we place,
the tower with thehighest score, can view 619 points
by itself . After securing 6642/ 6769 points, our ad-
ditional towers can only see5 novel points. We also
need 15towers that can only see1 unique point. In
total, weneed 120towers.

When we expand the zone, we have many more
points to work with. Within a 5km zone from the
border, we have more than 370,000 points, from
which we obtain 8974 maxima. While we have

10



Figure 7: Number of Towers vs. Height of Towers
(meters)

about 50 times asmany total data points, we only
have about 7 times asmany maximabecausewe are
now checking all 8 neighbors to test if a point is a
maximum, asopposed to just checking the 2 adja-
cent points on the border. For 20m towers, by ex-
panding theborder zone to5km wide we decreased
thenumber of necessary towers to92.

5 Discussion

Considering that theborder is approximately 680km
long, thenumber of towersweneed is relatively low.
With 20m towers in a5km border zone, we need 92
towers. On average, each tower is responsible for
roughly 70 data points, or 7km of the border. The
number of towers seems to be higher than it could
bedue to the clusters that we can observe infigure6.
The clusters suggest that our algorithm may not be
suited to certain geographical featuresfoundin these
regions.

Still, we can infer some useful information from
thedata. We expected thenumber of towersrequired
to decrease aswe increased the tower height, but as
we can seefrom figure 7, it seemsto be asymptotic.
In fact, when we tested with kilometer-high towers
(which is absurdly high), we found that we would
still need 23 towers. What it tells us is that after

Figure 8: Number of 20 meter Towers vs. Width of
Border Zone (meters)

Figure 9: Effect of Zone Size on Number of Neces-
sary Towers

11



Figure5: Tower LocationsDirectly On TheBorder

Figure6: Tower LocationsWithin A 5km Zone

12



Figure 10: Pie Chart Overlay of Zone Point Eleva-
tion, MaximaElevation, andTower Elevation

a certain point, we do not gain asmuch from mak-
ing the towers taller. By comparing our data with
the cost of building towers of varying height, we
can theoretically obtain theoptimal tower height in
termsof cost.

We can also see that expanding the zonefrom just
on the border to some distance away from the bor-
der tends to improve performance. As seen in fig-
ure 9, we can reduce thenumber of towers (ranging
in height from 10 meters to100meters) by between
13.85% and 28.86% by allowing a 5km zone. The
number is boundto be inconsistent, because it de-
pendson how many more important maximawe can
gain by backing up, and thedefinition of an impor-
tant maxima depends on the tower height. We also
note that this behavior also seemsto be asymptotic,
even more so than the tower height. By moving
away from theborder, we are expanding thevisible
region, but we are also making ourselves suscepti-
ble to moreobstaclesontheway. Also, wemay lose
somevisible pointsdue to theEarth’s curvature. For
20m towers, it looks like 3km away from theborder
is the best distance. Still, it seems to be very im-
portant that we actually use the zone toimprove our
performancerather than rely onincreasing the tower
height. For 20m towers, the23% improvement due
to the5km zone is roughly equivalent to improve-
ment that could be gained by increasing the tower
height to 50m.

The distribution graph in figure 10 shows the el-

evation distribution of 3 categories: the outermost
ring corresponds to the entire border zone, themid-
dle ring is the local maxima, and the inner ring
shows the actually placed towers. Local maximaare
distributed fairly evenly across the zone, as inferred
from thegraph. In contrast, we can tell that the algo-
rithm preferred to place the towerson higher points.
Even thoughmajority of theregion is low elevation
(0 - 1000m), almost half of the towers are placed
at elevation 1000m or higher. We had few towers
placed in elevation 2km or higher relative to there-
gion, but it is mostly because all the high elevation
points are clustered near the east end of theborder,
and if we place afew towers in the elevated region
their visible field should be large, negating theben-
efit of more towers in that region.

A major problem with our algorithm is its com-
putational complexity. Disregarding the complexity
of file I/O, it first takesO(n) time for locating the
maxima, where n is the length of the border. Then
scanning thepoints on theborder costs O(n3) time
(each border point × each candidate point × linear
viewshed computation, thoughwe expect the linear
viewshed computation not to be aslarge asn). The
addition of critical towers to thepermanent tower
list requires another O(n3) time, aswe need to tra-
verse thetable to find each point visible from the
critical tower. For each point found, we need to tra-
verseits row in the table again to “close” thepoint
and decrement the score of all other towers that can
see thepoint. Again, the last step usually is much
smaller than n, as we do not expect all towers to
be able to see the same border point. When plac-
ing 20m towers on top of the border, our running
timewas around 90seconds after extracting thebor-
der. As we increase theborder zone, running time
increases, asis the casewhen we increase the tower
height. This happensdue to themethod of our view-
shed computation. Becausewe are doing linear line
of sight from a point to a point, as soon aswe see
an obstacle high enoughto block thetarget point on
thedirect line, we can stop the computation. When
more towers tend to be visible from theborder, the
number of computations required increases.

13



6 Conclusion

We have determined that theborder of Arizona can
feasiblybe patrolled by observation towers of rea-
sonable height andreasonable distancefrom thebor-
der. We expect that this algorithm could be success-
fully applied to any border. The execution time of
the algorithm for alargedataset wasnot prohibitive,
and we conclude that thedirect line of sight method
for determining visibility is sufficient for theborder
patrol problem. Finally, we conclude that there are
diminishing returns in terms of visibility as tower
height and distance from the border are increased.
Givenappropriatecost parameters, themost efficient
means of patrolling the border could be obtained
with our method.

7 Acknowledgements

We would like to heartily thank seamless.usgs.gov
for presenting us with the elevation data.

References

David Izraelevitz. 2003. A Fast Algorithm for Approx-
imate Viewshed Computation. American Society for
Photogrammetry andRemote Sensing, 69.7.

Andrew Vincent. 1999. Terrain Occlusion Using Binary
Adaptive Ray Casting. Sili conGraphics Inc.

14



Appeared in: Proceedings of the Class of 2007 Senior Conference, pages 15–20,
Computer Science Department, Swarthmore College

Parallelized Interpolation: A QuantitativeAssessment

Scott Blaha
SwarthmoreCollege

Mustafa Paksoy
SwarthmoreCollege

Abstract

The conversion of raw point-cloud eleva-
tion data to grid DEMs is done by in-
terpolation. Current interpolation meth-
ods produce either high quality results or
take an acceptable amount of time, but
not both. This paper seeks to reconcile
these two objectives through paralleliz-
ing a high-quality interpolation method,
nearest-neighbor averaging. We explore
the speed-up obtained by parallelization
andcomparerun-timewith the lower qual-
ity binning method.

1 Introduction

LIDAR, one of theprimary formsof elevation data
collection, yields a cloud of elevation data points.
However, Geographic Information Systems (GIS)
like GRASSoften require data in theform of a dig-
ital elevation model (DEM). One of the simplest
methods to perform this conversion is called bin-
ning. Binning simply averages thepoints in each
grid cell of the DEM to yield an elevation for the
grid cell. However, becauseof thenon-uniform na-
ture of thepoint cloud, someof thegrid cells of the
DEM might not contain any points. Thus, it is pos-
sible to haveholes in theDEM after binning.

The solution to this is to useone of a set of meth-
ods known asinterpolation. A typical simple linear
interpolation might take an average of points close
to an empty cell, weighted by distancefrom the cell.
Unfortunately, if there are n points, then there are

potentially O(n2) interpolation calculations to be
performed. This fact, paired with the typically ex-
tremely large data sets of interest in GIS, makes in-
terpolation a highly non-trivial task. In fact, in a re-
cent I/O-efficient point cloudto DEM algorithm (0),
from 52% to 86% of running time was spent inter-
polating depending onthedata set. Clearly, a faster
method of interpolation is needed.

The basic trade-off in interpolation is quality
(e.g. representativeness) of the resulting DEM ver-
sus the computational complexity of the interpola-
tion. Rather than deal with reduced DEM quality
in our quest for better interpolation run-times, we
will parallelize the interpolation of point cloud ele-
vation data. Becauseof the locality of referenceof
the interpolation task, parallelization can provide an
exponential reduction of thetime to interpolatea set
of points, based onthenumber of computers.

2 Methods

2.1 Serial Binning

Our first method is a simple implementation of se-
rial binning. A grid cell’ s valueis the average of all
points from thepoint cloud in that cell. A grid cell
containing no points is assigned a “no value” con-
stant; in our case, this was-99999. Serial binning
will be our base-line for comparison of competing
interpolation methods, both in termsof interpolation
quality and run-time efficiency. We hope that paral-
lelization will speed up creating a DEM, and that
interpolation will improve thequality of the DEM.
Since it takes constant time to place a point into
a bin, the run time complexity of binning is O(n),

15



wheren is thenumber of input points. However, the
constant hidden in this notation was experimentally
shown to bequite small.

2.2 Parallelized Binning

Next, we implemented a parallelized binner. This
simply splits the task of binning and averaging
points between several computers. It will produce
the same interpolation as a serial binner, but hope-
fully with a slight efficiency boost. Wedo not expect
to seemuch improvement by using this method.

Our parallel applicationsuse theMessagePassing
Interface(MPI) standard for distributing andcollect-
ing data. MPI providesvarious facilities for passing
data aroundand synchronizing computation. In our
case, we just needed to send data back and forth.
We use theLocal AreaMulti-computer (LAM) im-
plementation of MPI, it letsus set up virtual clusters
using an arbitrary number of nodes in theComputer
Science Department network. Thesemachines are
all on the samesubnet, so we expect network band-
with to behigh and latencies tobe low.

Initially, we split data into equal size y-intervals.
This led to different hosts creating overlapping
grids, which greatly complicates the process of
merging results. To ameliorate this, we increase the
y-interval so it becomes amultiple of thebin height
of thegrid (seeFigure 1). So, the splits in thedata
align with the grid, which prevents different hosts
from creating overlapping grids.

2.3 Nearest-Neighbor I nterpolation

Wehaveimplemented a simple typeof interpolation,
nearest-neighbor interpolation. In this method, we
first calculatethecentroid of each grid cell, the cen-
ter point of the cell. Then, we sort points by their
Euclidean distance from the centroid. Finally, we
set the elevation of thegrid cell to be the average of
thek pointsnearest to the centroid. Experimentation
showed that 10 is an acceptable valuefor k.

Because sorting is O(n log n), if we have g grid
cells andn points, then this algorithm has arun-time
complexity of O(g · n log n). This is because we
must sort all thepoints based on distancefrom each
cell’ s centroid. As we note below, this method is
unacceptably slow. However, it doesnot suffer from
the “holes” in thegrid that binning does.

2.4 Parallelized Nearest-Neighbor
Interpolation

Parallelization of our interpolation algorithm pro-
ceeds inmuch the sameway aswith simple binning:
we break the grid into a number of approximately
equal sections, onefor each host, andsendeach host
only the points which fall in that bin. Each host
then performsthenearest-neighbor interpolation de-
scribed above.

The theoretical speed-up we should seeis more
than quadratic in thenumber of hosts. If we have h

hosts, and the points are approximately evenly dis-
tributed over thegrid, then each host will get about
g
h

of the grid and n
h

of the points. So, each host
will have aruntimecomplexity of O( g

h
· n

h
log n

h
) =

O(gn
h2 log n

h
). Our tests have supported this analy-

sis: wedo in fact get super-quadratic speedups from
adding hosts (seeSection 3).

2.5 Smoothing Parallelized Interpolation

Unfortunately, parallelization can result in edge ef-
fects in interpolation results. Along the edge of a
sub-grid sent to a host for interpolation, the clos-
est elevation data points to a centroid might be in a
different sub-grid, and thus are not considered dur-
ing the interpolation. This can result in noticeable
linesor bands in theresultant DEM. We have called
our solution to this smoothing. We pass thepoints
belonging to theimmediately surrounding sub-grids
along with the points in the sub-grid we send to
each host. This approximately triples thenumber of
pointssent to each host, but results in lessnoticeable
edge effects.

3 Resultsand Discussion

Wehavefully implemented the algorithmsdescribed
above. We ran tests on a 100,000 point subset of a
LIDAR-generated 100 foot resolution point cloud.
This subset was picked by sorting the 2,000,000
points by y-value, and picking every twentieth. See
Figure 2 for visualizations of the interpolated data
set. Interpolation is the clear winner in the quality
department - there are no holes, and the resultant
DEM looks like a “filled-in” version of the binned
DEM (Figure 2(a)). It is hard to notice thediffer-
ence between smoothed and non-smoothed DEMs
with thenaked eye, but Figure 2(d) shows theresult

16



� �� �� ����	 
 ��
 �� �
 ��

Figure1: Splitting thegrid into sub-grids for parallelization

of subtracting the two DEMs from each other. No-
tice that the difference lies along the cuts between
the sub-grids sent to different hosts. This shows that
smoothing actually doeswhat it is supposed to, that
is, it smoothsout the edge effectsbetween sub-grids.

The actual running time of each algorithm was
calculated several times to test the possible speed-
ups obtainable by parallelization. Unexpectedly,
parallel binning is actually slower than serial bin-
ning (seeFigure 3). We believe this in due to the
overhead of passing dataover thenetwork compared
with the blazing speed of the simple binning algo-
rithm. In the caseof interpolation, we observed the
extreme parallelization speed-ups predicted above.
SeeFigure4 for a chart of running timeversusnum-
ber of hosts - note that the time axis is logarithmic.
So the predicted super-quadratic speed-up doesoc-
cur. As a simple comparison between binning and
interpolation, with 100,000 points, 20 hosts, and
a 100 foot resolution, binning takes 1.4 seconds,
non-smoothed interpolation takes24.8 seconds, and
smoothed interpolation takes73.3 seconds. Refer to
Figure 5 for a comparison between the threemeth-
ods

4 Conclusion

Parallelization provides an excellent speed-upfor in-
terpolation methods, but doesnot decrease therun-

ning time of binning. Before parallelization, our in-
terpolation method was intolerably slow, but with
20 hosts, its runtime is very reasonable. Smooth-
ing is also adesirable option when using parallelized
nearest-neighbor interpolation, however it approxi-
mately triples therun time of the interpolation. For
casual use, parallelized non-smoothing interpolation
suffices. However, if more accuracy is required, then
smoothing provides that with only a three-fold slow-
down.

Future work in this area could include paralleliz-
ing the extremely popular quad-tree interpolation al-
gorithm. Also, we can optimize thenearest neighbor
interpolation by using a scan-line approach and only
sorting a section of thewhole dataset a time.

References

P. K. Agarwal, L. Arge, and A. Danner. From point
cloud to grid DEM: A scalable approach. In Andreas
Riedl, Wolfgang Kainz, and Gregory Elmes, editors,
Progressin Spatial Data Handling. 12th International
Symposiumon Spatial Data Handling, pages771–788.
Springer-Verlag, 2006.

17



(a) (b)

(c) (d)

Figure 2: Results of interpolating sparsedata at 100feet. (a) is theresult of binning - note the cells with no
value. (b) is our parallel interpolation algorithm without smoothing, and (c) is with smoothing. (d) is the
differencebetween (b) and (c).

18



 1

 10

 100

 1000

525250

T
im

e 
(s

)

Resolution (m)

serial
lam5

lam10
lam15
lam20

Figure3: Comparison of serial and parallel binning running times.

 10

 100

 1000

 10000

 20 15 10 5 1

E
xe

cu
tio

n 
tim

e 
(s

)

Number of nodes

Parallel execution of interpolation

No smoothing
Smoothing

Figure4: Comparison of non-smoothed andsmoothed interpolation running times, showing super-quadratic
speed-up for adding hosts.

19



 0.1

 1

 10

 100

 1000

 10000

20101

T
im

e 
(s

)

Hosts

Binned
Not smoothed

Smoothed

Figure 5: Comparison of parallel binning, non-smoothed interpolation, and smoothed interpolation running
times.

20



Appeared in: Proceedings of the Class of 2007 Senior Conference, pages 21–24,
Computer Science Department, Swarthmore College

Bridge Detectionfr om Elevation Data
Usinga ClassifierCascade

Anthony Manfr edi
amanfred1@swarthmore.edu

Alexandr Pshenichkin
apsheni1@cs.swarthmore.edu

Abstract

Bridges and similar non-obstructingfeatures
inhibit correctflow routing on high-resolution
digital elevationmodelsbecausetheir apparent
elevationdoesnotreflecttheelevationatwhich
watermaypassunderneaththem.Ourgoalis to
identify suchfeaturesusingthe elevation data
so thatflow-routingalgorithmsmayfind paths
under them correctly. We use an algorithm
basedon Viola and Jones’object-recognition
system.Simplefilters areappliedin sequence
to efficiently narrow the searchspacedown to
afinal set of likely candidatefeatures.Thispa-
perpresentsasuccessfulsystemfor identifying
bridgesthatcanbefairly easilyintegratedinto
existingGISsystems.

1 Intr oduction

New hi-resterrainscanningtechniques suchaslaseral-
timetry (lidar) have greatly expandedthe accuracy of
GIS. The improvedresolution hasintroducedmany new
detailsinto digital elevation maps;many suchfeatures,
however, hinder analysisof the underlying bare-earth
terrain. One of the most important problem features
are bridges. From the air, a bridge appearsas a solid
ridge, but, in reality, water can pass beneathit. While
a raw datadumpmay containsomepointsthat arevisi-
bleunderneathabridge,currentpreprocessingtechniques
will tend to remove these,leaving a solid obstacleon
the processeddigital elevation model(DEM). This con-
fusesflow-routing algorithms,which mustflood terrain
or searchfor convoluteddetoursto escapethelocal min-
imum createdby the presenceof the false ridge. Our
goal is to identify bridgesandsimilar features,suchas
drainagetunnels,ondigital elevationmodels,sothatwa-
ter flow canbe routedthroughthem. Appropriateflow
routing canbe accomplishedwith minimal modification
of existingalgorithmsby simplycuttingthroughabridge
onceit is markedout.

1.1 RelatedWork

SitholeandVosselman(SitholeandVosselman,2006)de-
scribea systemfor thegeometricrecognition of bridges
as part ofa general systemfor creatingbare-earthdata

from raw lidar input. Their system looksfor featuresthat
dropoff sharplyon twosidesandfadesmoothlyinto the
surroundingterrainon the others. Calculatingandana-
lyzing boundingpolygonsfor terrain features,however,
is computationallyintensive.

Our algorithmis inspiredby computervision research
by Viola andJones(Viola andJones,2002). Their sys-
tem utilizes a “cascade”of simplefilters, eachof which
is sensitive to a specificpattern. The algorithmreliably
recognizesfacesin real-timevideo. They alsosuggesta
techniquefor fastcomputationof rectangle sums,called
theintegral imagemethod.Eachpixel in theintegral im-
ageis the sumof the valuesof the pixels above and to
theleft of its locationin theoriginal image,whichallows
any rectanglesumto be computedwith only four addi-
tion operationsif the integral imagealreadyexists. This
techniqueallowsusto quickly calculatestatisticsfor sub-
sectionsof themap.For example,finding theaverageel-
evationin a ten-by-tensquareareaconventionallywould
requireaddingtogetheronehundredvalues;with theinte-
gral imagemethod,we needonly accessfour values(the
cornersof thebox) to get theareasum.

2 Methods

2.1 Algorithm

Our system is an implementationof thecascadeconcept
of Viola and Jonesin a novel domain. A sliding win-
dow moves over the map, examining small sectionsof
the terrain in sequence.The window may move oneor
several pixels at a time: this is the stepsizeof the win-
dow. A larger step sizedecreasesruntimesignificantly
but alsodecreasesaccuracy. Empirically we determined
that a stepsize of2 pixels did not result in a significant
decreasein accuracy.

Eachwindow is passedthrougha seriesof filters. A
filter is afunctionthatevaluatesthepixelswithin thewin-
dow statisticallyor geometricallyand decidesto acceptor
rejecttheslice. To save storagespace,thealgorithmap-
pliesall thefilters to eachwindow in orderbeforemov-
ing on to the next; this way, no intermediatecandidate
lists (which could be quite large) arestoredin memory.
If any filter rejectsthe slice, it ceasesto be relevant and
thewindow movesto thenext target. Like in the Viola-
Jonesalgorithm,thecollective actionof thefilters makes
upfor their individual inaccuracy. It is importantfor each

21



individualfilter to have avery low rateof falsenegatives,
sothatthey donot rejectgoodcandidatesprematurely.

In orderto accommodatebridgesof varyingsizes,we
make several passesover the map, changingthe scale
of the window eachtime. One can reasonablyexpect
bridgesto be at leastone car lane and no more than a
dozenlaneswide,andfiltersmusttakein someof the sur-
roundingareafor comparison aswell. We arecurrently
usingwindow sizesof 100, 150, 200, 250, 300,and400
feet in an attemptto accommodateall reasonably-sized
bridges.

2.2 Filters

We have implementedseveralfilters to detectbridge-like
features. Since the overall goal is to aid hydrological
modeling,we focuson discovering terrainelementsthat
have astrong effect on existing flow-routing algorithms
andtrying to identify themasbridges.

1. Thehigh gradientfilter acceptsan imageif at least
ten percentof the pixels in the filter window have
a gradientabove acertainthreshold.Currentlythis
thresholdis 2.4feetof elevationper10feetof trans-
lation (empirically determined),but we may adjust
it in the future and analyzehow it affects our re-
sults. This filter is designedto find thesteep edges
of bridges.

2. Thefloodfill filter acceptsanimageif at leastthirty
percentof thepixelsin thefilter window wereflood-
filled by a flow-routingalgorithm. This filter is de-
signedto capitalizeon the fact that bridgesin gen-
eral,andparticularlythebridgesthatwe wantto re-
move to do correctflow routing, causeflood filling
alongtheir length.

3. Theminimumfill depthacceptsan imageif thereis
at leastonepixel in thewindow thatwasflood-filled
higherthan8 feet.Thisfilter is designedto focuson
areasthataresignificantlyproblematicfor hydrolog-
ical modeling.

4. The low gradientfilter acceptsan imageif at least
twenty percentof the window areais low gradient
pixels, wherethe low gradientthresholdis 0.5 feet
of elevationper10 feetof translation.This filter is
designedto look for theflat areaof thebridgeitself.

5. The minimumelevation differencefilter acceptsan
imageif thedifferencein elevationbetweenany two
pixelsin thewindow is above7 feet.Thisfilter capi-
talizesonthefactthatbridgeswill beelevatedabove
thesurroundingterrain.

6. Theheightbridge shapefilter acceptsanimageif a
stripedown the middle third of the imagematches

Figure1: A DEM with hand-labeledfeatures.

a low:high:low elevationpatternwhencomparedto
theaverageelevation theentirewindow. This filter
is rotatedeighttimesatpi/8 radianintervals to catch
varying bridgeorientations. If any of theserotated
filters match, the imageis accepted.This filter is
designedto find anelevationpatternthat looks like
abridge:high in themiddleand loweron thesides.

7. Much like the height bridge shapefilter, the gra-
dient bridge shape filter acceptsan image if a
stripedown the middle third of the imagematches
a high:low:high gradient pattern, using the same
thresholdsfor low andhighgradientsthatwereused
in thepreviousgradientfilters. This filter is alsoro-
tatedin the samemanneras filter 6. This filter is
designedto find a gradientpatternthat looks like a
bridge:flat in themiddleandsharponbothsides.

3 Results

WefocusedourtestingonanareaoutsideDurham,where
Interstate85 crosseshighway 70. The combinationof
multiple roadwaysandawindingstreamproducenumer-
ousinterestingfeaturesto analyze.

Figure1 shows a DEM of the areawith hand-labeled
features.Notableelementsin this imageare:

• Feature1 (seenin detail in Figure2) is a drainage
pipeunderaroadway. While shapedverydifferently
from a bridge,it servesthe samehydrologicalpur-
pose,allowing waterto passbeneathit.

• Features2, 3, 4,and5 are,very distinctly, bridges.
Some(particularly2 and5) appearto havebeenpre-
cut. While it appearsto belesspronouncedthanthe
others,Feature4 hasnot beencut by thepreproces-
sor, soit is of interestto us.

22



Figure2: A drainagepipeundera roadway, correspond-
ing to Feature1 from Figure 1. Picture from Google
Maps.

• Feature6 is a setof small roadways,possiblywith
bridges.

• Feature7 is an elevatedinterchangewith a stream
flowing underneathit. The exact patternof flow is
difficult to discernfrom lidar andsatellitemaps,but
it is clearthatpart ofthis structureneedsto becut.

• Feature8 is a roadway over anobviousdepression.
Thesharpnessof thecutoff betweentheroadandthe
surroundingterrainindicatesthattheroadis likely to
beraisedabove thegroundprominentlyhere.

• Features9 and10 representareaswherea roadway
seemsto have beencompletelywiped out by the
river, probablyin the interpolationstep. Theseare
bridge-likefeatures,but ouralgorithmshouldignore
themin theend.

Figure3 shows theresults of filtering our datasetand
groupingtheselected locationsusingthebuilt-in visual-
izationtools in theGRASSsoftware package.Thealgo-
rithm clearlylabelsthelargeuncutbridge-like featuresin
theimage,suchastheinterchangeandthedrainagepipe,
and avoids several pre-cutbridges. It correctly identi-
fies the uncut bridge labeled4, above, as a noteworthy
feature,and isolatesseveral small bridgesin the tangle
of elementslabeledhand-labeledasfeature6. Features
9 and10, alreadydeeplycut, are ignored. Overall, the
computer-generatedmapseemsto captureall of therele-
vantfeaturesexceptfor a few ambiguousparts of area6,
while ignoring already-cutbridgesandgeneratingfairly
little noise.

Performing the feature extraction on this relatively
small (609180cells)maptook 6m 45s. We expectcom-
putationalcomplexity to be linear with respectto the

Figure 3: A comparisonof hand-labeled(dark) and
machine-detected(light) features.

numberof cells. This bearsout in practice: it takes25
minutesto processa21117520-cellgrid with oursystem.

Figure4: DEM of a roadover a ravine in anurbanarea,
demonstratingtheshortcomingsof thealgorithm.Several
bridge-like structuresarecorrectly labeled,but theseare
alsomany falsepositivescausedby treesin theravine.

Figure 4 shows a lessfunctional job. This time, the
algorithm hasidentified a seriesof noisy-lookingareas
alongwhat looks like astreamasbeingbridges,aswell.
Analysisof theimagearearevealsthat theareaisn’t con-
ventionallyfilled with water, however: thegrainy lumps
thathave beenlabeledasbridge-like objectsthat impede
theflow of waterareactuallytreesin a ravine. While the
imageof all thoseareasbeingselectedasgoodareasis
ratherunsightly, mostrepresentterrainartifactsthat can

23



Figure 5: The bridge detectionalgorithm applied to a
larger area. Note the tendency to over-selectlow areas
whenthey arenotuniform.

easilybecut; thosethatdon’t areactuallymajorfeatures.
Figures5 and6 demonstratesimilar resultswith larger

datasets.There arequiteafew falsepositivesoverall,but
numerousbridgesarecorrectly detected.

4 Conclusionand Futur eWork

Overall, our algorithmseemsquiteeffective in detecting
bridgesandsimilar featuresthat impedeflow routingon
high-resolutionDEMs.

Experimentingon other datasets,however, revealed
thatthealgorithmis fairly sensitive to input error. While
noisemostly just impairsits ability to detectusefulfea-
tures,errorsthatproduceregularpatternswill often lead
to numerousfalsepositives.Thisproblemoccursbecause
our program is searchingfor regular, mostly-linearfea-
tures,whichcanbeintroducedinto theimageasartifacts
duringthevariousstagesof preprocessingif theraw data
is sufficiently poor. It shouldbe notedthat, while such
resultsincludea lot of falsepositives,mostof thoseare
clusteredaroundimageartifacts,socuttingthroughsuch
areasshouldn’t deform theactualmapvery much. Very
few falsepositives generatedby our algorithm are ac-
tually objectsthat would greatly affect the hydrological
modelif cut.

The computationtime currently leaves somethingto
be desired,however. While the integral imagemethod
speedsup the first few statisticalfiltering steps,we cur-
rently usenaive techniquesto find local extrema– these
cost us a lot of time spentrescanningthe samepixels
as the window moves acrossthe map. Finding the ex-
tremevalue for a strip of dataat a time and then sim-
ply taking the extremaof thosecould greatly speedup
theexecutionof this stage.For theshapefilters, a more
computationally-efficientwayto performtherequiredro-
tationswould be ideal. Overall, thecomputationalover-

Figure 6: The bridge detectionalgorithm applied to a
largearea with a very complex roadnetwork. While the
systemis incapableof puzzling out the interchange,it
doesidentify a largenumberof bridge-like features(and
a few falsepositives).

headof runningthealgorithmcould probablybesignifi-
cantly reducedby runningit as part ofanotherwindow-
sweepingalgorithmandreimplementingit in C/C++.

It maybepossibleto getimprovements in accuracy by
running this algorithm iteratively with a bridge splicer,
recalculatingtheflood fill depthafter theremoval of the
currenttargetbridge. Sucha systemwould requirea lot
of repetitivecomputation,however.

Sincemostof our falsepositivesseemto come from
artifactsin the DEM, we believe that simply cutting the
regionsidentifiedby our algorithm, even if the detected
featureis notabridge,will improveflow-routing.

References

G. Sithole and G. Vosselman. 2006. Bridge detection
in airbornelaserscannerdata. ISPRSJournal of Pho-
togrammetryandRemoteSensing, 61(1):33–46,Octo-
ber.

Paul Viola andMichael Jones. 2002. Robust real-time
object detection. International Journal of Computer
Vision - to appear.

24



Appeared in: Proceedings of the Class of 2007 Senior Conference, pages 25–30,
Computer Science Department, Swarthmore College

Flow Routing on Flat Terrains

Taylor Hamil ton
Department of Computer Science

SwarthmoreCollege
thamilt1@swarthmore.edu

Giovanna Thron
Department of Computer Science

SwarthmoreCollege
gthron1@swarthmore.edu

Abstract

Most current flow routing algorithms use
digital elevation models (DEMs) to con-
struct flow models. In order to success-
fully use current techniquesfor flow rout-
ing, they floodlocal minima and then find
a way of routing the flow across theflat
surfaces. In this paper, we examine an al-
ternativemethod for computing flow rout-
ing on theseflooded surfaces that takes
into account the original elevation data.
Our approach is based uponDijkstra’s sin-
gle source shortest path algorithm. We set
thedistancebetween two adjacent cells to
be the elevation of one of the cells. While
our results are not yet ideal, altering our
distance formula shows promise for im-
provement.

1 Introduction

A current problem in geographic information sys-
tems is the automatic extraction of river networks
from a set of elevation datausing themethod of flow
accumulation. Calculating river networks is useful
in determining floodinsurance zones.

The basic idea for solving this problem is rela-
tively simple: for each elevation point, route flow to
theneighbor with the steepest downhill slope. This
methodis effective as longas there arenolocal min-
ima. Local minima will be pits or valleys in which
thewater will get trapped. Ideally, all water should
flow to someoutlet point at the edgeof thegrid.

Current algorithms(JensonandDomingue, 1988;
Garbrecht and Martz, 1997; Soille and Colombo,
2003) tend to deal with this problem by flooding the
minima until they are all removed. This approach is
justified by the assumption that minima are the ac-
cidental result of poor sampling in theoriginal data.
However, this is not always the case. Many minima
are caused by large-scale terrain features, such as a
bridgeover a river. When theseminimaget flooded,
useful information about theunderlying river is lost,
as can be seen in Figure1.

Theseflooding algorithms create large flat sur-
faces, which cause a new problem in flow rout-
ing. Without a steepest downslope neighbor it is
not immediately obvious in which direction thewa-
ter should flow across the surface.

Several algorithms have been developed that at-
tempt to solve theproblem of flow routing over flat
terrain. A side effect common to all these algorithms
is that they fail to use information about theoriginal
terrainwith their flat terrainflow routing algorithms.
Wehavedeveloped an algorithm to routeflow across
flat surfaces that takes into account theoriginal ter-
rain. This providesriver networks that more accu-
rately match reality.

2 Related Work

Current algorithms for solving this problem do not
produce ideal results. Jenson and Domingue (1988)
focussed mainly on flooding and their method for
flow routing onflat surfaceswasnot very involved.
For each point on a flat surface, they assigned the
flow to be in thedirection directly towards theout-
let. This resulted in artificial looking river networks

25



Figure1: Original andflooded elevation data

becauseof longstretchesof parallel lines.
Garbrecht and Martz (1997) improved uponthis

algorithm by not only routing flow towards theout-
let, but also away from the bordering high terrain.
This provided more natural looking river networks.
However, as theseriver networksdo not take into ac-
count theunderlying elevations, they do not always
accurately model thetrueflow of water in theregion.

Soille et al. (2003) proposed themethod of carv-
ing as opposed to flooding for removing minima,
which reduces thenumber of flat areas. They also
proposed a flat terrain flow routing algorithm that is
an improvement on Garbrecht and Martz’s method.
Although Soille’s algorithm is an improvement, it
has the samefundamental issues as that of Garbrecht
andMartz.

3 Methods

Our algorithm focuseson improving flow routing
over flat terrains. To accomplish this, we useboth
the flooded terrain information and the original el-
evation data. The flooded terrain indicates the ar-
eason which to concentrate, and theoriginal terrain
provides the elevation data needed for our method.
We useDijkstra’s algorithm to calculate the short-
est path to the spill points. We vary the metric for
computing thedistancebetween twoadjacent cells.

We begin with digital elevation models in the
GRASS ASCII f ormat: one of the original terrain
and one with the local minima flooded. We find the
spill points, cells adjacent to theflooded terrainwith

lower elevations.

We used a single source shortest path algorithm
to calculate flow directions for flat areas. This al-
gorithm treats our grid as a connected graph where
each cell is connected to its eight neighbors. The
weights of the edges can be chosen independently
of the algorithm,andwe experiment with several op-
tions.

To compute the single source shortest path, we
used Dijkstra’s algorithm. The algorithm begins by
initializing all thepathlengthsof any cell to the spill
point to infinity. We createapriority queue that con-
tains the spill points, and set their path lengths to
zero. We continue extracting thepoint from thepri-
ority queue with theminimum path length until the
queue is empty. Each time we remove apoint, we
look at each of its neighbors and update their paths
if the path throughthe current point is shorter than
the stored path. We then add each updated neighbor
to thepriority queue.

When the algorithm is finished, theresult is a for-
est that spans the areaof interest, where each treeis
rooted at a spill point. The leavesof thetrees are the
points farthest away from the spill points. The path
from a node to theroot of a treeis the shortest path
to a spill point.

We can use thesetrees to calculateflow accumula-
tion. We imagine that a unit of water falls onto each
cell in the grid. Using the flow directions of each
cell, we can determine the amount of water that ac-
cumulates in each cell. Let p be any cell and F (p)

26



Figure2: River networks andflow directions using theEuclidean distancemetric

Figure3: River networks andflow directions using Soille’s algorithm

be the set of cells flowing into p.

acc(p) = 1 +
∑

q∈F (p)

acc(q)

We calculatetheflow accumulations of a node in
theforest as the sum of theflows of each of its chil-
dren plus one. A grid showing cells whoseflow ac-
cumulations are greater than somethreshold should
show the locations of theriversof theterrain.

Our algorithm outputs GRASSASCII files with
the flow directions and the flow accumulations at
each cell of the grid. We represent flow direction
with numbers 1 through 8, corresponding to the
eight possible directions of flow. We create river
networks based on the set of points with flow ac-
cumulations over agiven threshold.

3.1 Metr ics

Below wepresent theweightsused to determine the
distancesbetween cells for theDijkstra’s algorithm.
In all cases, we added an extra weight of

√
2 to di-

agonally adjacent cells to account for thedifference
in Euclidean distance.

3.1.1 Euclidean Distance

The simplest methodweused was setting thedis-
tancesbetween adjacent cells to 1. This resulted in
the Single Source Shortest Path (SSSP) method, as
used by Jenson and Domingue (1988). In effect this
method just computes the shortest Euclidean dis-
tance from any point to the spill points, and routes
flow over that path.

27



Figure4: River networks andflow directions using the elevation distancemetric

Figure5: River networks andflow directionsusing thetranslated elevation distancemetric

3.1.2 Soille’s Algor ithm

The flat terrain flow routing algorithm introduced
by Soille (2003) is designed to route flow through
the center of the terrain and avoid having straight
parallel lines. We calculate the distance, d(c) from
each cell to the border of the flat terrain using a
breadth first search away from theborder. Let c be a
cell andC the set of all cells.

w(c) = max{d(f)|f ∈ C} + 1 − d(c)

3.1.3 Elevation

Our first metric that uses theoriginal elevation
datasetsthedistancebetween any twoadjacent cells
to the elevation of the cell flowed to. Thus, the to-
tal distance from a cell to the spill point is the sum

of the elevations of the cells traversed. This encour-
ages theflow to travel down to lower elevations, as
well astraversing a small number of cells between
the source and the spill points.

3.1.4 Translated Elevation

To weight more heavily the importance of flow-
ing across low elevations, asopposed to traversing
short distances, we translate the elevations of all
cells down by the minimum elevation over the rel-
evant area. Thus, the weight of a cell is the differ-
ence of the elevation of the cell and the minimum
elevation.

28



Figure6: River networks andflow directions using the squared translated elevation distancemetric

Figure 7: River networks and flow directions using the fourth power of the translated elevation distance
metric

3.1.5 Power of Translated Elevation

Raising the translated elevation to a positive
power puts a greater penalty on higher elevations.
This further encourages flow to follow low eleva-
tions. A greater power will put more emphasis on
traveling onlow elevations.

4 Data

Weused raster dataof theNorth Carolinariver basin
at 10 foot resolution. We used both theoriginal ele-
vation data andelevation data of theterrainwith the
sinksflooded.

5 Results

For each metric, we show the river networks and
flow directions. In computing the river networks,
we used an accumulation threshold of 150 cells
(150,000 ft2). In the flow directions figures, each
color indicates adifferent flow direction.

Theresults of using theEuclidean distancemetric
are shown in Figure 2, Soille’s algorithm in Figure
3, the elevation metric in Figure 4, thetranslated el-
evation metric in Figure5, the squared translated el-
evation metric in Figure 6, and the fourth power of
thetranslated elevation metric in Figure7.

29



6 Discussion

As can be seen in Figures2 through 7, the results
improvewith each alteration of our algorithm, even-
tually producing natural looking river networks that
follow the elevationsof theoriginal terrain.

By comparison, the Euclidean metric (Figure 2
fails to produce natural looking or accurate rivers.
The flow is routed in straight parallel lines and
hugs theboundaries of the region, as the algorithm
searchesfor the shortest Euclidean distance.

Soille’s algorithm (Figure 3), on the other hand,
producesmorenatural looking river networks. How-
ever, as this algorithm fails to take into account the
original elevation data, the rivers do not follow the
terrain features. As an example of this behavior, ob-
serve theoxbow near the center of theregion. Rather
than following the bend in the river, the river stays
in the center of theregion.

Each of Figures5 through 7shows an improve-
ment on the previous river network. As you can
see inFigure7, our river network both looksnatural
andaccurately models theterrain. Our river network
tends to stay in the lighter yellow areas, which cor-
responds to the lowest elevations in theregion.

From theriver networks inFigure7 it can be seen
that our algorithm tends toperform better on lower
elevations than on higher ones. This is a result of
translating the elevations by theminimum elevation
of the region. While this translation succeeds in
appropriately weighting elevation against Euclidean
distance at lower elevations, this balance too heavily
in favor of Euclidean distance at higher elevations.

7 Future Work

Wewould like todevelop adistancemetric that does
not have thedrawbacks at higher elevations that our
current algorithm displays. To accomplish this, we
have experimented with other distancemetricswith-
out success. We began by taking the exponential of
the elevation, but discovered that this this resulted
in numbers that overflowed Python’s float type. We
would like to experiment with the taking thediffer-
encesof elevationsof neighboring cells.

References

J. Garbrecht and L. Martz. 1997. The assignment of
drainagedirection over flat surfaces in raster digital el-
evation models. Journal of Hydrology, 193:204–213.

S. Jenson and J. Domingue. 1988. Extracting topo-
graphic structure from digital elevation data for geo-
graphic information system analysis. Photogrammet-
ric Engineering andRemote Sensing, 54:1593–1600.

J. Vogt Soill e, P. and R. Colombo. 2003. Carving and
adaptivedrainage enforcement of grid digital elevation
models. Water Resources Research, 39:10–1–10–13.

30



Appeared in: Proceedings of the Class of 2007 Senior Conference, pages 31–37,
Computer Science Department, Swarthmore College

Shapefile Overlay Using aDoubly-Connected EdgeList

Phil Katz and Stephen St.Vincent
SwarthmoreCollege

500CollegeAve.
Swarthmore, PA 19081

[pkatz1, sstvinc2]@swarthmore.edu

Abstract

We present a methodfor finding the over-
lays of a set of polygons that uses the
doubly-connected edge list structure. We
first detect all i ntersections between poly-
gons using a brute-force method. We
then build the doubly-connected edge list,
maintaining information about the origi-
nal polygons, from which we can easily
perform shapefile overlay operations: in-
tersection, difference, and union.

Our algorithm runs in O(n2) time. Our
doubly-connected edge list construction
algorithm runs in O(n log(n)) time,
with the bottleneck being the brute-force
O(n2) line segment intersection. Once
that list is built , any given overlay oper-
ation isO(n).

1 Introduction

Natural disasters such as floods often occur
swiftly and without warning. It is imperative, there-
fore, that politi cal entities such as counties andstates
be adequately prepared to deal with such disasters.
Often, this level of preparation variesdirectly with
the amount of funding recieved, which is in and of
itself afunction of thepercieved threat in that region.
Determining the extent to which region is in danger
of flooding is difficult to assess anecdotally. How-
ever, by combining geographical data such as wa-
tershed layouts with politi cal boundary data, we can

(a) (b)

(c) (d)

Figure 1: Examplesof shapefile overlays. (a) The
original polygons in set S. Here, we have two over-
lapping squares at different orientations. (b) The
intersection of the two squares, represented by the
green region. (c) The difference of the two poly-
gons, shown bytheblue and yellow regions. (d) The
union of the two polygons. Note that the interior
segments arenow gone.

use shapefile1 overlays to assign an unbiased value
to thelevel of danger toany region. Thisinformation

1A shapefile is a common file format for exchanging poly-
gon data that does not maintain topology

31



can then assist in appropriate resource allocation, as
well as computation of floodinsurancerates.

Given a set of polygons S, how can one efficiently
determine the new set of polygons P that is defined
by the overlay of the polygons in S? Polygons in
P can include the intersection, union, or difference
of members of S. Figure 1 shows examplesof these
typesof overlays.

To solve theproblem of shapefileoverlay, wewill
usemethods from (de Berg et al., 1998) to build a
data structure called a doubly-connected edge list
that will allow us to calculate overlays efficiently.
The more general problem of shapefile overlay has
special caseswhich would be unusual in settings
such asthe one described above, such aspolygons
with holesin them. Still , we consider these special
casesto make our algorithm asgeneral aspossible.

In section 3, we present our methods for build-
ing the doubly-connected edge list and calculating
shapefile overlays. In section 4, we discussthe run-
time analysis of our algorithms. In section 5, we
present results applying our algorithms to simple
test-casepolygons aswell as to real geographical
data. Finally, in section 6, we discuss the implica-
tions of our results.
2 Related Work

When building topological representations, it isusu-
ally the casethat we wish to restrict the topologies
to follow a specific set of constraints. (Hoel et al.,
1994) describe such a system. Their topologieshave
certain consistency requirements, and as such must
follow an explicit set of rules, such asthe following:

• Interiorsof polygons in afeature classmust not
overlap

• Polygons must not have voids within them-
selves

• Polygons of one feature classmust share all of
their areawith polygons inanother feature class

Shapefile overlay is necessary to enforce these
ruleson large setsof polygons. Without an effective
shapefileoverlay algorithm, thework of (Hoel et al.,
1994) could not be implemented in an efficient, ro-
bust manner.

Figure 2: Doubly-connected edge list for two poly-
gons. Half-edge e1 has anext pointer to e2 and
a previous pointer to e3. The current faceof all
threeof theseisF1. The twin of e2 ise4, whose cur-
rent faceis F2. The twins of e1 and e3 have Null
astheir current face.

3 Methods

To find the overlays of multiple polygons, we
must construct the doubly-connected edge list. Be-
forewe can dothat, weneed to know where the seg-
ments of each polygonintersect the segments of the
other polygons in the set.
3.1 L ine intersection calculations

This is by far the most straightforward step in cal-
culating shapefile overlays. Because the runtime
of brute-force algorithms is not significantly slower
than more complex algorithms for the data sets we
are considering (Andrews et al., 1994), it doesnot
cost us significantly to implement a brute-force al-
gorithm. For each segment of a polygon, we check
explicitly whether it intersects any segment of any
other polygon, and keep a list of all i ntersection
points that occur on that segment. This allows us to
easily create all of the subsegments for the doubly-
connected edgelist, aswell asto keep track of which
of the original polygons a segment was associated
with.

3.2 Thedoubly-connected edge list

A doubly-connected edge list (de Berg et al., 1998)
stores all of the information regarding the set of
polygons that is necessary to calculate the shape-
fileoverlays. Thebasic setup of adoubly-connected

32



edge list begins with the edges. The edgesof each
polygon are stored as directed half-edges that go
aroundthe polygonin clockwiseorder such that the
facethat is bound bythe half-edgesis always to the
right of each half-edge (seefigure 2).

Each half-edge storesthe following information:

• Starting point

• Ending point

• The ID of the face from which the half-edge
originated

• A pointer to the next half-edge on the current
face

• A pointer to the previous half-edge on the cur-
rent face

• A pointer to its twin half-edge

As we build the half-edgesthat are on the interi-
ors of the original polygons, we can build their twin
edges. Twin edges are the same asthe original half-
edge, but with itsorientation reversed anditsface set
to null. So, for half-edge e, twin(twin(e))=e.

For each new half-edge that we add, we update
a dictionary, vDict, that contains all of the neces-
sary edges. ThevDict is ahash tablekeyed on ver-
tices andcontains alist of thehalf-edgesthat start at
that vertex. This is critical for building thenext- and
previous-edge pointers.

3.2.1 Creating next- and previous-pointers

Determining the next and previous pointers for
each half-edge is non-trivial. For the next pointer of
each half-edge e, wemust findthehalf-edgeswhose
starting point is the same asthe ending point of e.
Then, we must determine which of thesehalf-edges
makesthe largest clockwise anglewith e, andset the
next-pointer of e to that half-edge.

Now that the vDict hasbeen updated for each
half-edge, this task becomesmuch easier. Usingfig-
ure 3 as an example, let us attempt to find the next-
pointer of the half-edge AX . By treating each half-
edge as avector originating at X , we can find the
angle between the half-edge AX and all the other
half-edges by using the cross product and the dot
product:

Figure3: Finding thenext-pointer. Here, we are try-
ing to find the appropriate half-edge for the next-
pointer of half-edge AX. θ measuresthe anglesbe-
tween AX and the other half-edges in the image.
We choosethe half-edge with the largest value of θ,
which in this caseisXB.

sin (θ) =

∣

∣

∣

∣

∣

∣
AX × BX

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
AX

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
BX

∣

∣

∣

∣

∣

∣

cos (θ) =
AX · BX

∣

∣

∣

∣

∣

∣
AX

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
BX

∣

∣

∣

∣

∣

∣

After computing cos(θ) and sin(θ), we can calcu-
late the true angle θ (where 0 ≤ θ ≤ 2π) between
AX andeach of theother threehalf-edgesin thefig-
ure. The candidate half-edge with the largest value
of θ can now be set as the next-pointer. To com-
plete the example, thenext-pointer of AX would be
XB, and the previous-pointer of XB can be set to
AX . After walking completely arounda facein this
fashion, all of thenext- andprevious-pointers for the
half-edgesthat boundthat facewill havebeen set, so
wedo not need to calculate thepreviouspointers ex-
plicitly.
3.3 Computing theoverlays

Now that we have walked along the half-edges of
every face, wehave alist for each new faceof all of
the original facesfrom which it wasderived. From
here, we can easily specify an overlay by selecting
the new facesthat meet the criteria of the overlay in
question.

33



3.4 Non-intersecting overlays

Figure 4: Line-Sweep Algorithm. Thedotted line is
sweeping rightward. Right before reaching the cur-
rent point, there should be four edges(A,B,C,E) in
the data structure, and uponreaching this point, two
(B,C) should be removed.

Not every overlay of two polygons will i nvolve
the inteserction of their segments. Consider for in-
stance the overlay of the Sahara Desert with Cum-
berland County, Pennsylvania. The intersection of
thesetwo polygons should be null , given that the
two polygons are clearly not spatially coincident and
have no intersections.

But we cannot simply say that a lack of segment
intersections implies alack of spatial coincidence.
Consider now the overlay of Nebraska with the en-
tire United States. While it is not apparent why one
would choose to perform this overlay, it should be
clear that this is an example of an overlay that has
no segment intersections but doeshave some over-
lap.

We solve this problem by using a line-sweep al-
gorithm (de Berg et al., 1998). Figure 4 shows
two polygons, with one completely interior to the
other. Once our line-intersection algorithm deter-
mines that there are no segment intersections be-
tween thesetwo polygons, we can move into our
line-sweep algorithm. We sort the verticesin order
of their x-coordinate; we also store the face associ-
ated with the first vertex in the sorted list. We then
step throughthe sorted verticesin order whilemain-
taining a list of edges that currently intersect the

sweep line. When a vertex is encountered that has
an associated facethat differs from the faceof the
first point, we can stop our line-sweep. If the new
vertex is below an odd number of segments, then
we know that the new faceis completely interior to
the other; otherwise, it must be completely exterior.
Thismethodis robust for concave polygons.

3.5 Polygons with holes

Figure 5: Polygons with holes. The blue polygon
has ahole in its center, which isnot filled in. Where
the yellow polygon intersects with the hole, it re-
mains unchanged.

Consider thenationsof South Africa andLesotho.
Lesotho is an independent nation completely inte-
rior to the borders of South Africa. As such, South
Africamay be treated as apolygonwith ahole in it.
If weworked for the South African government and
needed to determineoverlays, wewould surely want
to take Lesotho into account.

We can handle this by allowing each faceto have
a pointer to its inner edges. Theseinner edgeswill
form a closed polygon. The outer half-edgesof this
interior polygon(which runcounter-clockwise) have
the same face asthe original polygon, while the in-
ner half-edges(which runclockwise) have their face
set to null . From here, we can perform our normal
shapefile overlay process, starting with segment-
intersection.

4 Runtime analysis

Our brute-force polygon intersection calculation is
O(n2). For each line segment, we test all of the
line segments in the other polygon for intersection.
Given that we do not check segments in the same

34



polygon, this upper bound of O(n2) can never be
reached, but is still t he appropriate theoretical upper
bound. This assumesthat the polygons are simple.

Our line-sweep algorithm is O(n log(n)). For
each of the n vertices, the operations we need to
perform (search, insertion, and deletion) can be im-
plemented (with a binary tree, for example) to re-
quire O(log(n)) operations to maintain the line-
sweep data structure.

Once we have the doubly-connected edge list
built , we will have k edges, stemming from the n

original edges. To build the overlay faces, we need
only go througheach of thek edgesonce, removing
them from the list of all edgesoncewe assign them
to a face. So the overlay algorithm itself (assuming
that thedoubly-connected edge list has already been
built ) is O(k). In the worst case, k is O(n2), but
in most real-world polygon intersections, k will be
O(n).

5 Results

Figure6: Exampleof polygonintersection. Theblue
areaindicates areasthat areonly covered bythe con-
vex polygon(rotated square). Theyellow areaswere
only covered by the concave polygon. The green
arearepresents the intersection of the two polygons.
The white circles show points of intersection be-
tween the segments of the two polygons.

Figure 6 is a sample run of our intersection al-
gorithm on two hand-made polygons. The image
was created using the Python graphics library from
(Zelle, 2004). The green polygon in the center
shows the intersection polygon. The blue and yel-
low polygons combine to define the difference of
the polygons. The entire shaded area is the union

Figure 7: Interior polygons. This image shows the
effects of scaling the concave polygon in figure 6
so that it fits completely inside the concave poly-
gon. No area has maintained the yellow coloring
from above.

of the two polygons. The small white circles show
thepoints of intersection between the two polygons.

Figure 7 shows the intersection of two polygons
where one of the polygons is completely interior to
theother. Despite the lack of intersection points, our
algorithm hashandled this flawlessly.

Figure 8: Intersection of Cumberland County with
watershed 2050305. Thered region is thewatershed
only, the blue region is Cumberland County only,
and the purple region is the intersection of the two.

Figure 8 shows the intersection of Cumberland
County, Pennsylvania, with watershed 2050305
(USGS Hydrological Unit Code). Figure 9 shows
Cumberland County intersected with watershed
2050306.

35



Polygons Time(ms) Points Intersect time (ms) DE list time (ms) Overlay time (ms)

CC, WS5 8126 693 6132 238 1642
CC, WS6 7950 688 6000 252 1556

Table 1: Benchmarking onsample county and watershed data. The Cumberland County (CC) polygon had
284 points; the watershed 2050305(WS5) polygon had 409 points; the watershed 2050306(WS6) polygon
had 404 points.

.

Figure 9: Intersection of Cumberland County with
watershed 2050306. Theyellow region is the water-
shed only, the blue regions are Cumberland County
only, and the green region is the intersection of the
two.

Table1 showsbenchmarkingfiguresfor thesetwo
runs. The tests were run onan Intel(R) Pentium(R)
4 running at 3.00 GHz with 156MB of RAM.

6 Discussion

The goal of this project wasto implement shapefile
overlay in an efficient manner. In order to accom-
plish thisgoal, we implemented adoubly-connected
edge list that allowed our algorithms to efficiently
compute overlays. With the exception of our brute-
forceline segment intersection, all of our algorithms
are relatively computationally inexpensive. Table
1 shows that the line segment intersection is the
clear bottleneck. It is possible to implement faster
line segment intersection algorithms, but that is not
within the scope of this project.

Our algorithm works successfully for most com-
plex cases, including concave polygons, polygons
inside other polygons, polygons with holes, and up

to three polygons, as in figure 10. Our algorithm
can not handle the caseof intersecting two poly-
gonsthat share an edge. This caseispathological for
lineintersectionaswell asfor constructingadoubly-
connected edge list.

Figure 10: Intersection of Three Polygons. This
image shows that our algorithm can be extended to
threepolygons.

7 Conclusions

Shapefileoverlay is afundamental building block of
computational geometry. It is imperative to thefield
that shapefile overlay can be computed quickly and
correctly. Althoughwe do not introduce any revo-
lutionary methods to accomplish this task, we show
that it can be performed with fairly straightforward
algorithms onsimple data structures.

References

D. S. Andrews, J. Snoeyink, J. Boritz, T. Chan, G. Den-
ham, J. Harrison, andC. Zhu. 1994. Further compari-
son of algorithmsfor geometric intersection problems.
In 6th International Symposiumon Spatial Data Han-
dling.

Mark de Berg, Mark van Kreveld, Mark Overmars, and
Otfried Schwarzkopf. 1998. Computation Geometry:
AlgorithmsandApplications. Springer.

36



E. Hoel, S. Menon, and S. Morehouse. 1994. Build-
ing a robust relational implementation of topology. In
8th International Symposiumon Spatial andTemporal
Databases.

John Zelle. 2004. Python Programming: An Introduc-
tion to Computer Science. Franklin, Beedle, & Asso-
ciates.

37


