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Finding Your Inner Blaha:
GPSMapping of the Swarthmore Campus

Matt Singleton and Bronwyn Woods
{msi ngl el, bwoodsl}@s. swart hnor e. edu

Abstract

Swarthmore College is a largely un
mapped, dangerous region of southeas$
ers Pennsylvania. Or rathe, we tred it as
such for the purposesof this paper. We
preseit an interadive tool for caculating
the sortest path between two pants on
the Swarthmore canpus. We develop our
tool using a cmbination of GPS tech-
nology and knavledge of Swarthmore's
buildings. We dlow uses to edfy a
Blaha factor, which scdes theweights of
indoar paths causing them to betreaed as
shorter or longer than ther red lengths in
the dortest path cédculations. In this way,
uses can express apreference for travel-
ing primarily indoarsor outdoors, depend-
ing on personal preference and weathe
condtions.

1 Introduction

People familiar with a place often have grong in-
tuitions abou the most efficient ways of traveling
between locations they frequent. However, people’s
intuitions ae smeimes indisagreement. Addition-
aly, spedal circumgances sich as etraordinarily
nice or foul weathe may influence aperson’s pref-
erence for possille routes. We presant a tool for
identifying the dhortest path between two pants on
the Swarthmore College canpus, allowing for pref-
erencesfor indoa or outdoor paths

We mapped the outdoor pathson the canpus us-
ing GPStechndogy and edimated the indoa paths

1

basal on ou knowledge of the buildings. Using a
combination of manua and algorithmic techniques
we transformed our raw point data into a graph on
which we perform shortest path routing using Dijk -
stra's algorithm. We dlow indoar and oudoor paths
to be weighted differently, effedively discourting or
penalizing the distancetraveled inside

Our tool is preseited as an interadive GUI tha
allows theuse to sdect points onamgp of Swarth-
more’'s canpus. The taol graphically displays the
shortest path acording to thevalueof the Blahafac-
tor, or weighting of the indoar paths sd by theuse.

2 Reated Work

2.1 Global Positioning System

The NAV STAR Global Positioning System (GPS
provides predse informeation abou locaion by us-
ing signals transmitted by 24saellites in Earth’s or-
bit. Originally desighed for exclusve military use
the gyystem wasopened for civilian use ast becane
fully operational in the ealy 199G. GPSsadllites
transmit ranging signals which encode information
abou the saellite’s locdion at the time the siga
was sat. By combining information recaeved from
severa saellites, this signal allows GPSrecevers to
cdculate thar 3D locaion on Earth's aurface The
acaragy of locaions determined by GPScan range
dramatically depending onthequality of theGPSre-
ceiver. Commaercial quality GPSrecaver units have
typica errors of between 10m to 30m, while more
expensive g/stemscan read an acauracy at the sub-
centimeter level (US, 2003.

Many factas contribute to the overall acaracy
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of measurements teken using GPS These inclule,
in addition to the quality of the recaver, atmo-
spheric condtions, the ewvironment of the use and
theposition of the GPSsaellitesrelative to theuse.
GPS meagurements with commercial recevers can
only be performed oudoors and can be disrupted by
densetree mver or other large obstacles (US, 2003.

2.2 Dijkstra’sAlgorithm

Dijkstra (1959 descibestwo algorithms for find-
ing shortest pathson a graph, one for finding the
minimum spanning tree and the other for finding the
shortest path between two nodes For the purposes
of this project, we were concerned orly with thelat-
ter. The operation of this algorithm is discussel in
sedion 3.3.

3 Methods

3.1 Data Collection

We wllected raw data abou the pathsonthe Swarth-
more College canpus using a Garmin GPMap70
GPS unit. We maked paths by recording pants
manually at regular intervals. Manually rearding
points allowed us to determine thefrequency with
which we recorded pdnts and to ensure thd we
recorded pants at the intersedions and endpants of
paths Each pant we recorded wasgiven a unique
ID, alowing us tokego tradk of which pants started
and ended any given path In total, we ollected
910 pants. In addition to thedata points delimiting
the paths we recorded individual points represent-
ing the doas into the canpus buildings. The sdf-
reported acarracy of the GPSunit averaged around
10m for al of our data collection.

We recorded our data using the UTM coordinate
system. The UTM system breds the globe into
zores or bandsrunning narth to outh. A locaionis
defined by its zone, an easing and a northing. The
easing represants the distance from the alge of the
zone, while the northing gives thedistance from the
equatar.

3.2 Procesing Techniques

Once we had gatheed ou raw data, we needed to
make anumber of additions and changes toprepare
it for saeen display and path wmputation.

3.2.1 Hand Cleanup (Fir st Pas9

Our raw GPSdata was sirprisingly good but it
still contained anumber of erroneous datapoints. At
this paint we had a preliminary GUI that allowed us
to view the data as a ollection of humbered pants
and lines Given this view, it wasrelatively eay to
identify the eroneous data points visualy and then
remove then by hand.

In addition to the eroneous data points, the raw
GPS data is preseited as one unkroken line. The
reallt is long sggments conreding the end d ore
path to thebeginning of anather. Wedivided thedata
into the irdividual paths gainby visual examination
of thedata

3.2.2 Line Intersetion

Our next task was tofind the points at which the
paths irterseded. Becaise thenumber of paintsin
our data sé was sndl, we decideal to do this us-
ing a brute-force algrithm. Ead pathis made up
of a number of straight line-segments, so we sm-
ply chedk ead segment for intersedions with ev-
ery other sggment. If an intersedion is found tha
point is added to bath paths This operationis O(n?)
where n is thenumber of line s@ments.

3.2.3 Hand Cleanup (Semnd Pasg

—

Figure 1. In theraw path data, some paths &d a bit
too soon, while others end a bit too late

While GPSdid avery goodjob of gatheing data
with good relative paositioning (straight paths ae
straight and curved paths arve where they are up-
posed to), it did amuch poaer job at absolute posi-
tioning. As areallt, pathsoften end slightly before
or dightly after they shoud (seefigure 1). We used
our preliminary GUI to visually identify where these
problem areaswere. We then added or removed
points from thedata by hand, as gpropriate



3.2.4 Adding Doors and Indoor Paths

As nated above, we gatheed individua points
making the entrances tobuildings in adition to
our path data. Unfortunately, due to the @&solute
pasitioning problems with the GPS data, many of
thesepaints were significantly wrong Basel on ou
knowledge of thebuildings oncampus, wewere ele
to identify which doa's points were worth keegping
and which we needed to be adjusted manually. GPS
does not work inside so we nealed to add indoor
pathsby hand. We gproximated thesebasel on ou
knowledge of the buildings and the locdions of the
doas.

3.2.5 Creating aGraph

Finally, with al the paths ad intersedions in
place, we nealed to convert our data into a graph
that that we could use to @mpute shortest pathsus-
ing Dijkstra's algorithm. As our data was tha, a
single path ould contain multiple vertices and span
multiple edges We needed to segment it so tha ead
path orregponcded to one alge in thegraph, andead
endpant correponcded to avertex in thegraph. With
thedatain this format, it wasrelatively eay to build
the graph structure in one pass tmoughthe data.

2

Figure 2: A simple graph.

Our graph is implemented as Python dctionary
(essatially a hash table) where thekeys ae vertex
IDs for every vertex in the graph and the valueis
a dictionary where thekeys ae vertex 1Ds for all
conreded vertices and thevalueis theweight of the
corregpondng edge. Becaisehash table lookups can
be dore in constant time, building the graph is an
O(n) operation where n is the number of paths

{*A: {B: 3 'C: 2},
‘B { ‘A: 3, ‘C: 1},
‘C: { ‘A 2 ‘B: 1}}

Figure 3: An example of our graph representation
desaibing thegraph dsplayed in figure 2

3.3 Computing the Path

Now that we have constructed our graph, we can
compute the dortest path between any two vertices
using Dijkstra's algorithm (Dijkstra, 1959. Dijk-
stra’'s algorithm, left to its own devices will com-
pute the entire minimum spanning tree of a graph,
starting at a given noce. Since dl we cae o is
a sirgle shortest path we ca stgp computation as
soonasour dedination vertex is added to thetree

The algorithm is simple, and can be eadly imple-
mented in Python. To begin, the algrithm ses the
distance to the tart vertex as0 and the distance to
al other vertices asco. Initially, the tree @ntains
only the gart vertex. The algorithm proceeds by in-
crementally adding adjacent vertices to thetreeurtil
every reatable vertex is added. The next vertex to
be added to thetreeis always thevertex whose a-
dition will minimize thelength of the Ionged path
Refer to figure 4 for an example.

4 Results
4.1 Raw Data

Figure 5: The raw pathdata from the GPSunit.
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Figure 4: A trivial example of the exeaution of Dijk stra's algorithm.

Figure 5 shows our raw path data. The mgp is
clearly remgnzeale as theSwarthmore campus,
but there ae many flaws tobe correded. We can see
several immediate problems with this data. Some
paths thashoud intersed fall short and do nd meet.
Other linesdointersed, but extend pad the intersec
tion when they shoud end. Ladly, some paoints are
clearly inacaurate by a large margin causing spikes
in afew of thepaths

4.2 GUI

Oncewe had all of theunderlying structure built, we
creaed aGUI to concisely present al of thedataand
provide an eay method for getting use input. The
GUI is comprised of threedistinct areas

Map canvas Thelarged and most important part of
the GUI is the map canvas This is where the
map is displayed and the use can sdect the
start and end pants of thar desred path Once
two padnts are sdected, the $ortest pathis cd-
culated basel onthe arrent Blaha facta and
drawn own the map.

Statusbar Along the bottom of the window, the
status bar displays the arrent x- and y-
coordinates of the mousepointer aswell as the
current Blahafacta.

Input area To theright of theMap canvas the input
area dlows theuse to change theBlahafacta

and resé the map.

5 Discusson

Our final product is an interadive tool for shortest
pathrouting onthe Swarthmore canpus. Thoughit
might seean that the tool would be superfluous given
the familiarity of students with the canpus, anec
dotal evidence $ows thd some shortest paths es
pedally with modified Blaha factas, are urprising
even to Swarthmore students.

Though ou map is creaed from GPSdata, there
are several posside sources of inacairracy which
might affed the sortest path caculations. For one
thing, thelengths of the irdoa paths ae only edi-
mated, and do na take into acourt stairs tha must
be dimbed or doars tha must be opened. We dso do
not conside elevation for the outdoor paths though
this is unlikely to make a sigificant difference

There is a patential to expand ou tool in a vari-
ety of diredions. For instance, we could expand ou
map to cover a greaer portion of Swarthmore Col-
lege and the surroundng areas We oould alow the
use to spedfy which buldings he oould not pass
through dw, for instance to not having a key. We
might also be ale to improve the acaragy of the
doa data points by sanpling several points at the
doas and averaging ther positions.

Though the methods we used for creding a
seachable mgp of the Swarthmore canpus worked



(a) The shortest path with the Blaha fador set to 1. (b) The shortest path with the Blaha fador set to 0.1

Figure 6: The final display given by the GUI, showing the sortest pathsfrom the Science Center to the
McCabe Library with the Blahafacta sd to 1 and 0.1.

for this tesk, they would not be scéable. This isdue
to thelarge anount of hand cleanupinvolved. How-
ever, the anount of error preseit in the GPSdatawe
obtained necesiates ths hand clean-up. It seans
that thetask of creaing amap of the type we present
for alarger areawould require adifferent approach.

6 Conclusion

We present in this paper an interadive pathfinding
tool for the Swarthmore College canpus. The tool
allows for differential treament of indoar and ou-
doa paths allowing the use to pedfy a preference
for travel. Thoughthe methods tha we used for cre-
ating the map and seachable graph would not be
scdable to larger maps, the techniqueswere dfec
tive for our task. Our interadive GUI adlows the
use to discover efficient pathswhich are occasim-
aly surpsising even to individuals familiar with the
area
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Border Patrol

ShingoMurata
Swarthmore College
Swarthmore, PA
19081
smur atal@s. swart hnor e. edu

Abstract

We implement a border patrol program
tha computes ided locations for obsava-
tion towers overlooking a border of inter-
ed. In this particular project, we study
the border of Arizona facing Mexico. We
useGRASSto manipulate elevation rager
data. Our algorithm extrads the border
from arader file andlocates candidate po-
sitions for obseavation towers alang that
border. The viewshed of ead obsava
tion tower is computed with adired line of
sight algorithm. We employ a tawer place
ment algorithm to sdect only the neces
say towers from the s¢ of al candidate
towers. Our algorithm sdected 92 towers
within a 5km zone from the border to pa-
trol the goproximately 680km border.

1 Introduction

Border patrol is a ommma intered involved in na
tional searity. Militaries ae frequently concerned
with detecting threds alongthe extent of a particular
border as @mpletdy and efficiently aspossilde. It
is important tha border searity can be esablished
cost-effedively aswell. We model this problem as
thetask of placing the minimum number of towers
necesse to view the entire border of intereg within
somerange of tha border.

Current GIS techndogy makesit possilde to au-
tomate the processof planning optimal locations for
border obsavation towers. In this paper we develop
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Dan Amato
Swarthmore College
Swarthmore, PA
19081
damat ol@s. swart hnor e. edu

algorithms to automatically extrad a border from a
rager file, find candidate tower locaions nea the
border, and sdect the optimal s of towers thd is
cgpable of obseaving the entire border.

Elevation datafor many areasof intered are read-
ily available ontheInternet. We use theGeographic
Resurces Analyds Suppat System (GRASS for
data manipulation. GRASS:is suited for this project
becaiseit hasfull functionaity in visualizing eleva-
tion, data conversion, and I/O suppat for asdi files
that are compatible with our C programs With an
abundance of digital elevation models in rader for-
ma and the ftware tools to manipulate them, we
can succes$ully apply useful viewshed computation
algorithmsto theproblem of finding the optimal set
of obsevation towers.

The viewshed of aview paint is the sé of points
in theterrain model that can be obseaved from that
point. Viewshed computation is central to the a-
tomaion of these algrithms becauseit is essetial
to know which barder pointsa candidate tower is ca
pable of obsaving. Our tower placement algorithm
involves theiterative sdection of candidate towers
with the greaest contribution of yet unseen barder
points to the arrent optimal sd of observation tow-
ers.

There ae seeral parameers involved in tower
placement. One of our goals isto minimize thenum-
ber of towers we neal to obsave the @tire border.
This number is dependant bath on the height of the
towers and the maximum distance the are dlowed
to be placed from the border. As theheight of the
towers is increase, the number of necessey tow-
ers deaeasesbut the st of eat tower increases
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Finding a ast-minimizing solution would involve
balancing thesefactas. Increasimg thedistancefrom
theborder in which towers can be placed may incor-
porate usgul elevation maxima into the model tha
were previously out of range. The gainsfrom this
are limited by atmaospheric condtions tha limit vis-
ibility and, ultimately, by the arvature of the Earth.

We begin by reviewing the viewshed algorithm
preseaited by David | zradevitz in (1zradevitz, 2003.
We then descibe in detail the three mgor steps in
our project: border extradion, viewshed computa-
tion, and tower placement. Finally, we preseit the
reailts in sedion 4.

2 Reated Work

Several algorithms for computing the viewshed of
a point are preseaited in (Izradevitz, 2003. The
first method presented is dired computation. This
method essatially cheds eat possilde obstruction
on aline from the view point to thetarget point. If
there aeno olstructions alngthis line, then thetar-
get point is considaed visible. This algorithm is
straight forward, but is computationally inefficient,
becauseit requiresO(n) computations for eat grid
point onan n x n field, reslting in an O(n?) algo-
rithm.

The Xdraw algorithm employs theLine of Sight
(LOS) function to compute the viewshed of a view
point. This algorithmis fager than thedired method
becaiseit starespreviousreallts tha can be utilized
at thenext stage of computation alongthe saneline.

The fina algorithm improves the Xdraw algo-
rithm by introduwcing a badktradking method to re-
duce thenumber of interpdations and increase the
acaracy of theLOS cdculations. If any pdnt along
theline between the view paint and the target point
coincideswith a grid data point, tha data paint is
usd to initialize theLOS computation. Otherwise,
the algrithm badtradks a pedfied distance and
initializes the omputation with an interpdated LOS
value

To determine border visibility, we do nd ned
to compute the antire viewshed from a given view
point. We only need to determine whethe target
points ontheborder are visible from a tower’s view
point. It is irrelevant to know whethe the paints be-
tween the obsevation tower and the border are vis-

ible. This negates the benefits of the Xdraw algo-
rithm which are basel onafag incremental compu-
tation. We implement and use thedired algorithm
becaiseits inefficient computation is mitigated due
to thelimited number of points we ae examining.
In addition, its acaragy is superior to Xdraw.

Vincent presaits an dternative viewshed algo-
rithm basel on ray caging in three dimensional
polygoral models in (Vincent, 1999. The algorithm
is basal on a hierarchical partitioning of three di-
mensional space This partition is represented by a
k-d tree The hierarchical partitioning of the gace
continuesuntil the model of the terrain is enclosed
in appropriate boundng boxes This hierarchical
structuring of the gace #lows Vincent to increase
the seach speed for view obstructions. Other opti-
mizations include abadkface wlling mechanism to
remove irrelevant surfacepolygonrs from the seach
space ad aparallelization of the algrithm. Vincent
also sasupan error vs. spedl tradeoff by adaptively
spacirng therays usdl to test for intersedion. As the
number of rays inaeasesacaracy improves d the
cost of increase exeaution time.

3 Methods

Our automated barder patrol algorithm has three
man phases First, the relevant border must be ex-
traded from the data. Semnd, the sé of candidate
towers must be determined, and the viewshed of
these tavers must be computed. Finaly, the tover
placement algorithm must sdect the optimal se of
obsevation towers from the ettire sé¢ of candidate
towers. These skections ae basel onthe visibility
charaderistics of the candidate towers. These $eps
are daborated below.

3.1 Border Extraction

To patrol theborder, wefirst need the mordinates of
ead pant ontheborder. Itis nat trivial because the
digital elevation model contains no information re-
garding theborder. Sincewe ae looking at the Ari-
zona border for this particular experiment, and Ari-
zona has a $raight border facing Mexico, we could
have figured out the equation for theline. However,
this method would severely redrict the type of bor-
der we can patrol. Therefore, we preseant an algo-
rithm to extrad aborder in general.
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Figure 1. Start List Construction

Althoughwe have no informaion abou the bor-
der in the rager file, we do have avecta file that
traces théorder. We begin by conwverting thevecta
file into rager forma using GRASS Rader cdls on
the interior of the border are marked with a1, while
rader cdls exterior to theborder are marked with a
NULL flag. We then output therader to an asdi file,
giving us afile of 1's end NULL’s. Our algorithm
defines aborder canddate to be apoint whoseown
valueis 1, and dso has d lead one neighbar tha is
NULL.

Sincewe aeworking with a setion of theborder,
we nedl to spedfy the gart coordinate and the end
coordinate. The algorithm cheds the8 neighbars of
the dart point. If any of them are border candidates,
thepoints are added to thestart list. It also marks dl
8 neighbars as Visited”. Figure 1 displays the sate
of the algorithm after the dart list hasbeen creaed.
The grey cdls are those tha have been added to the
start list.

For ead pant in the gart list, our algorithm
works asfollows:

1. Dequeue apoint from the gart list. Call it p.

2. Look at the 8 neighbars of p, and find bader
candidates tha have not been marked as ‘vis-
ited” yet. If there ae any such pants, addthem
to awork list. Thework listisimplemented as a
linked-list queue, asis our temporary “border”
descibed below.

3. Dequeue thefirst paint from the work list and
mak it as ‘visited.” Add the paint to thetem-
porary border linked list. Call this point p and

then repea step 2. Continue urtil thework list
bemmes enpty or we hit the “end” point.

4. If the work list has become empty without
reading the end, we sgap tha temporary bor-
der. If we hit the end pant, we have detected
apoatential border. In either casg weredart the
processrom step 1with ancther start point, un-
til we exhaust dl the gart paint possililitie s.

Once dl start points have been expanded, we may
have two valid borders. one for ead of the two
diredions almng the border tha lead from the dart
point to the enxd pdnt. We must determine which
of thetwo pdential bordersis thered border of in-
tered, and which is simply the remaning barder of
theregion which excludes theborder of intereg. For
now, we make this dedsion by simply choasing the
shorter border.

We then copy thelinked list into an array, as a-
rays ae eager to work with for our purpose At this
point, eat barder cdl al hasheight of 1 since thg
were extraded from the1 or NULL rader. It isim-
portant that we gothroughthe actubelevation rager
and sd the devation of theseborder paints to thar
true values

At this paint we have extraded the border be-
tween the gart point and the end pdnt. We dso de-
fine thezone in which towers may be placed. This
zoneis aband d spedfied width alongthe traded
border and inside of the “home’ territory. To find
the points falling in this zone, we essatially per-
form a breadth first seach of the 1 or NULL rader.
We begin with the traded bader points, and add
them into a queue. While the queue is nat empty
andthe gedfied width hasnot been readed, we de-
gueue apoint from the queue. This paint is flagged
as ‘visited,” and all of its unvisited, home territory
neighbas ae alded to thequeue. All of the points
in the Dne ae staed in an array for future use

3.2 Viewshed Computation

The viewshed of a view paint in a terrain model is
the seof al paintsvisible from tha point. To patrol
theborder we do nd need to compute thefull view-
shed of a taver locdion. We only need to compute
thevisibility of points ontheborder. If a sé of tow-
ers can collectively view ead barder point, then the
border is considered to be fully patrolled by tha set.



As we ae not intereded in computing the full
viewshed of potential tower points, but only the
visibility of the border paints, we do nd ned the
optimized approximation algorithms preseited in
(Izradevitz, 2003. We can afford to Smply com-
pute the visibility from the patential tower point to
ead target border point. The relevant points in the
viewshed computation are theview point, p,,, thetar-
get paint, p;, andthepoint of potential view obstruc-
tion, p. The visibility of p; from p, can be deter-
mined with equation 1.

eto(po) > elo(p) + =LA (S(0)~clo(p)) (@)

elv(p,) denotes the devation of point p,.
|pe — po| representsthe Euclidean distance between
two pants, p, and p,. Finaly, S(p,) is the irter-
polated elevation of the terrain model at the (x, y)
coordinates of p,.

This inequality places a onstraint on the height
of the target paint, p;, basal on the devation data
along a sight line between the view point and the
target point. The inequality generates theminimum
elevation at the target location tha is visible from
the view paint given the devation of the patential
obstruction at paint p. If the actuhtarget elevation
is less tha or equal to this minimum, then thetarget
point is nat visible from the view point becaise the
sight lineis obstructed by the obstacle at point p.

To determine the visibility of the target poaint,
equation 1 must be evaluged at eat pant, p, along
the sidt line between the view point and the tar-
get paint. If no pdnt along the sidnt line obstructs
theview, then thetarget is visible. We goproximate
this test by evaluding equation 1 at regular intervals
along the sidt line between the view paint and the
target point. The theoretical sight line will fall be-
tween two gid data paintsin general. The devation
at paint p is the interpolated elevation of thetwo grid
data points on either sideof the sidt line.

The interpolated elevation at point p and the de-
vation of thetarget point are adjusted for the Earth’s
curvature prior to the mmputation of equation 1.
The aurvature adjustment of a point p,'s devation,
Au(pa) IS given by equation 2, where d represents
the quantity [p, — p,|.- The geometry of the gprox-
imation is illu strated in figure 2.

™ alv(Pa)

Figure 2: Geomery of the Earth Curvature Approx-
imation

Aelv(pa) =V REa?“th2 +d? — REgarth (2)

We use ths viewshed computation method to
compute the visibility of ead barder point from a
patential tower location.

3.3 Placement Algorithm

Our gaal is to view the etire border with as few
towers asposside. As noted in sedion 3.1, there
is a zone of spedfied width badk from the border
in which towers may be placed. We baseour tower
placement on the principle that an obsever can see
more if s/heis a a higher elevation. We begin by
locding al of the locd maxima with in the ne.
A locd maximum is defined as arader cdl having
no higher neighbars within the ne. Thesemaxima
save as the cadidate positions of our towers.

Wefirst figure out which candidate towers ae a-
solutely necessgy. A candidate isconsideed neces
say if there ae paints on the border tha can only
by seen by tha candidate position. Therefore, in-
stead of computing which pants ead tower would
be ale to see we cmompute for ead pant on the
border, which towers can seeit (adthoughthey are
computationaly equivalent).



Border Point # [Tower # Tower #|Score
] 0 4
1 o(1 1 4
2 of1]2 2 4
3 of(1]2 3 1
4 1|2
5 2|3

Figure 3: Example of border visibility state

We maintain a table of integers, with ead row
correpondng to apaint onthe border. In ead col-
umn, we keep tradk of a tower identifier that can
see thepaint. For ead pant on the border, we test
whethe tha point can be sea by ead of the can-
didate positions. If the paint is visible from a can-
didate tower locaion, we ald the identifier for that
tower to thepoint’srow in thetable.

Our table may look lik efigure 3, which shows tha
thefirst point ontheborder can be se@ by Tower 0,
the seond by Tower 0 and 1, the third by Tower 0,
1 and 2 and so on Every time a tower is added to
thetable, we inaement the “sare” of tha candidate
tower by 1. The sore crregponds to thenumber of
points the candidate tower could seeif it were built.

After we have aeded the table, we traverse the
table to find the border paoints visible from only one
tower. We know tha the sirgle towers thd can see
thesepoints are aitical. In thetable abowe, for ex-
ample, Tower Ois critical becauseit is theonly tower
that can see thdirst point of theborder.

Every time we find a aitical tower, we ad it to
the permanent tower list. Then we traverse the ite-
ger table to “close” dl border paintstha can be sea
by that tower. We traverse thelist, find ou which
points tha tower can see and, flag tha point as “se
cured” We dso traverse therow for the seared
point, and if any other towers can seeit, we decre
ment the sore of those tavers. By deaementing the
swresof these tovers, we ensure thd the sore rep-
resents only the number of unseared pants view-
able from the candidate tower. This prevents redun
dant towers which can view few new border points
from being sdected asgoodcandidates infutureiter-
ations of the algorithm. The dfea of adding Tower 0
to the permanent list in our example abowe is illus-
trated in figure 4. The swore of Tower 1 is deae
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Border Point #| Towern # Tower #|Score
0 0 0 4
1 o1 1 1
2 o(1]2 2 2
£l o(1]2 3 1
4 1|2
5 2|3

Figure 4: Example of updated barder visibility state

mented by three because three of the border points
it can view are made redundant with the aldition of
Tower 0 to thepermanent list.

Every time we add a tower to thelist, we ched to
seeif the aentire border hasbeen “seaured” yet. The
chances ae, the border canna be secired by just
those citical towers. So we maove on to the seond
phaseof the placement algorithm, in which we sm-
ply pick the candidate tower with the higheg soore
out of the remaining towers (when we put a tover
into the permanent tower list, we sé its score to -
1, so we never look at it again). When we ald the
tower, we “close” thepaintsit can see abefore. We
reped this processurtil the entire border is seared,
or there ae nomore candidate towers to mnside.

4 Resaults

The input rader, which covers the suthern half of
Arizona, has2846 x 5705 dta points at 100m res
olution. When we extrad the border, we find that it
has6768 dita points. Out of the 6768 pants, 1332
are locd maxima, so we begin with 1332candidate
points for the tavers.

We begin by redricting tower placement to points
diredly ontheborder. When we sca for paints vis-
ible from only one tover, we find tha only 6 towers
are aitical. With those6 critical towers, we can view
844/ 6768 bader paints. The next tower we place,
the taver with thehighest soore, can view 619 pants
by itself. After searring 6642/ 6769 pants, our ad-
ditional towers can only see5 nowel points. We dso
neal 15towers thda can only seel unque point. In
total, we need 120towers.

When we expand the 2one, we have many more
points to work with. Within a 5km zone from the
border, we have more than 37Q000 pants, from
which we obtain 8974 maxima. While we have
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Figure 7. Number of Towers vs. Height of Towers
(meters)

abou 50 times asmany total data points, we only
have abou 7 times asmany maxima becaisewe ae
now chedking al 8 neighbars totest if a paint is a
maximum, asoppace to jud cheding the 2 adja-
cent points on the border. For 20m towers, by ex-
panding the border zone to 5km wide we deaease
the number of necessgy towers t092.

5 Discusson

Consideing tha theborder is approximately 680km

long, thenumber of towerswe nedd is relatively low.

With 20m towers in a5km border zone, we need 92
towers. On average, ead tower is regorsible for

rougHy 70 dita points, or 7km of the border. The

number of towers seensto be higher than it could

be due to the cluters tha we can obsave infigure 6.

The cluders sugged tha our algorithm may not be

suited to catain geographical featuesfoundin these
regions.

Still, we can infer some useul information from
thedata. We expeded thenumber of towersrequired
to deaease asve inaease the taver height, but as
we can seefrom figure 7, it seemsto be aymptotic.
In fad, when we tested with kilometer-high towers
(which is absurdly high), we foundtha we would
still need 23 towers. What it tells us is tha after
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Tower Height (m)| Skm Zone | On Border [%Improve
10 106 149 28.86
20 92 120 23.33
30 87 109 20.18
40 78 95 17.89
50 I7 59 13 48
=) 70 G4 16.67
70 63 78 19 23
B0 61 71 14.08
a0 57 &7 14,93
100 L 55 13.85
150 48 62 22.58
200 44 48 8.33

Figure 9: Effed of Zone Size on Number of Neces
say Towers



Figure 5: Tower Locaions Diredly On The Border

Figure 6: Tower Locaions Within A 5km Zone
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Figure 10: Pie Chart Overlay of Zone Point Eleva-
tion, Maxima Elevation, and Tower Elevation

a catan point, we do nd gain asmuch from mak-
ing the tavers taller. By comparing ou data with
the @st of building towers of varying height, we
can theoretically obtain the optimal tower height in
termsof cost.

We can also see thaexpanding the 2one from just
on the border to some distance avay from the bor-
der tends to improve performance. As sea in fig-
ure 9, we can reduce thenumber of towers (ranging
in height from 10 meters to 100 meters) by between
13.85% and 2886% by allowing a 5km zone. The
number is boundto be inmnsistent, becauseit de-
pends on hav many more important maximawe can
gain by bading up, and the definition of an impor-
tant maxima depends on the taver height. We dso
note that this behavior also seensto be aymptotic,
even more © than the tover height. By moving
away from the border, we ae expanding the visible
region, but we ae dso making ouselves sscepti-
ble to more obstacles ontheway. Also, we may lose
somevisible paints due to theEarth’s aurvature. For
20m towers, it looks like 3km away from the border
is the bed distance Still, it seensto be very im-
portant tha we actudly use the bne toimprove our
performancerathe than rely onincreasiry the tover
height. For 20m towers, the 23% improvement due
to the 5km zone is roughy equivalent to improve-
ment tha could be gained by increasimgy the tover
height to 50m.

The distribution graph in figure 10 shows the ¢
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evation distribution of 3 caegories: the outermost
ring corregponds to the atire border zone, the mid-
dle ring is the locd maxima, and the imer ring
shows the actully placed towers. Locd maximaare
distributed fairly evenly across the nne, as irferred
fromthegraph. In contrag, we can tell that the alg-
rithm preferred to place the tovers on higher paints.
Even thoughmgority of theregion is low elevation
(0 - 1000m), dmost half of the tavers ae placed
a elevation 1000m or higher. We had few towers
placed in elevation 2km or higher relative to there-
gion, but it is maostly because d the high elevation
points are clugered nea the easend o the border,
and if we place afew towers in the éevated region
ther visible field shoud be large, negating the ben-
efit of more tawers in thd region.

A mgor problem with our algorithm is its com-
putational complexity. Disregarding the mmplexity
of file 1/0, it first takesO(n) time for locaing the
maxima, where n is thelength of the border. Then
scaning the points on the border costs O(n?) time
(ead bader point x ead candidate point x linea
viewshed computation, thoughwe exped thelinea
viewshed computation na to be aslarge asn). The
addition of critical towers to thepermanent tower
list requires acther O(n?) time, aswe need to tra-
verse thetable to find ead pant visible from the
critical tower. For eath pant found we neal to tra-
verseits row in the table again to “close” thepoint
and ceaement the sore of al other towers tha can
see thepoint. Again, the last step usualy is much
smdler than n, aswe do nd exped al towers to
be ale to see the gae border point. When plac-
ing 20m towers on top of the border, our running
timewas aound 90se®nds dter extrading the bor-
der. Aswe inaease théborder zone, running time
increasesasis the casevhen we inaease the twer
height. This happens due to themethod o our view-
shed computation. Becaisewe ae doing linea line
of sight from a paoint to a point, as onaswe see
an obstacle high enoughto block thetarget point on
thedired line, we can stgp the omputation. When
more towers tend to be visible from the border, the
number of computations required increases



6 Conclusion

We have determined tha the border of Arizona can
feasiblybe patrolled by olsavation towers of rea
sonable height and rea®nable distancefrom thebor-
der. We exped that this algorithm could be success
fully applied to any bader. The exeaution time of
the algrithm for alarge data se wasnat prohibitive,
and we oonclude tha thedired line of sight method
for determining visibility is sufficient for the border
patrol problem. Finaly, we conclude thd there ae
diminishing retuns in terms of visibility as taver
height and dstance from the border are inaease.
Given appropriatecost parameters, themost efficient
means of patrolling the border could be obtained
with our method.
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Parallelized Interpolation: A Quantitative Assesanent

Scott Blaha
Swarthmore Call ege

Abstract

The cnwersion of raw paint-cloud eleva-
tion data to grid DEMs is dore by in-
terpolation. Current interpolation meth-
ods produce dther high quality reaults or
take an accetable amount of time, but
not bath. This paper sedks to reconcile
thesetwo oljectives through praleliz-
ing a high-quality interpolation method,
neaed-neighba averaging. We explore
the geal-up oldained by paralelization
and comparerun-timewith the lowver qual-
ity binning method.

1 Introduction

LIDAR, one of the primary forms of elevation data
collection, yields a claud o €elevation data paints.
However, Geographic Information Systems (GIS)
like GRASSoften reguire datain theform of a dig-
ital elevation model (DEM). One of the smplest
methods to perform this conversion is cdled bin-
ning. Binning simply averages thepoaints in eah
grid cdl of the DEM to yield an elevation for the
grid cdl. However, becauseof the nonuniform na-
ture of the paint cloud, some of thegrid cdls of the
DEM might not contain any pdnts. Thus, it is pos-
sible to have hdes in theDEM after binning.

The slution to this isto useone of a se of meth-
ods known asinterpdation. A typical smple linea
interpolation might take an average of points close
to an empty cdl, weighted by dstancefrom the cdl.
Unfortunately, if there ae n paints, then there ae
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potentially O(n?) interpolation caculations to be
performed. This fad, paired with the typically ex-
tremdy large data sds of intereg in GIS, makes in
terpolation a highly nontrivial task. Infad, in are-
cent 1/0O-efficient point cloud to DEM algorithm (0),
from 52% to 86% of running time was pent inter-
polating depending onthe data se. Clearly, afager
method o interpdation is needed.

The badc trade-off in interpdation is quality
(e.g. representativenesy of thereallting DEM ver-
sus the omputational complexity of the irterpda-
tion. Rathe than ded with reduced DEM quality
in our qued for better interpdation run-times, we
will parallelize the irterpdation of point cloud ele-
vation data. Becaiseof the locdity of reference of
the interpolation task, parallelization can provide an
exporential reduction of thetime to interpolatea se
of paints, basel onthenumber of computers.

2 Methods

2.1 Serial Binning

Our first method is a gmple implementation of se
rial binning. A grid cdl’ s valueis the average of all
points from the paint cloud in that cdl. A grid cdl
cortaining no pants is assiged a “no value” on
stant; in our case this was-99999 Serial binning
will be our baseline for comparison of competing
interpadlation methods, bath in termsof interpolation
quality and run-time efficiency. We hope thd paral-
lelization will speed up creding a DEM, and tha
interpolation will improve thequality of the DEM.
Since it takes ®nstant time to place apaint into
a bin, the run time complexity of binning is O(n),
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where n is thenumber of input points. However, the
constant hidden in this notation was eperimentally
shown to be quite smal.

2.2 Parallelized Binning

Next, we implemented a parallelized binner. This
simply splits the task of binning and averaging
points between several computers. It will produce
the sane interpolation as a sgal binner, but hope-
fully with a dight efficiency bocst. We do nd exped
to seemuch improvement by using this method.

Our pardlel applications use theMessge Passimg
Interface(MPI) standard for distributing and collect-
ing data. MPI providesvarious fadlitie s for passimy
data aroundand synchronizing computation. In our
case we jud nealed to send data badk and forth.
We use theLocd AreaMulti-computer (LAM) im-
plementation of MP, it letsus sé up virtud clugers
using an arbitrary number of nodes in theComputer
Science Department network. Thesemachines ae
al onthe sanesubret, so we exped network band-
with to be high and latencies tobe low.

Initially, we 9lit data into equal size y-intervals.
This led to different hosts creaing owerlapping
grids, which grealy complicates the process of
merging reallts. To amdiorate this, we inaease the
y-interval so it becomes amultiple of the bin height
of thegrid (seeFigure 1). So, the glits in the data
align with the grid, which prevents different hosts
from creding overlapping grids.

2.3 Nearest-Neighbor | nterpolation

We haveimplemented a smple type of interpolation,
neareg-neighba interpoation. In this method, we
first cdculatethecentroid of ead grid cdl, the cea-
ter point of the cdl. Then, we ort points by thar
Euclidean distance from the centroid. Finaly, we
sd the devation of thegrid cdl to be the aerage of
thek pointsneaed to the cetroid. Experimentation
showed that 10is an acceptable valuefor &.

Because ®rting is O(nlogn), if we have g grid
cdls andn paints, then this algorithm has arun-time
complexity of O(g - nlogn). This is becaise we
must sort al the paints basel on dstancefrom ead
cdl's centroid. As we note below, this method is
unacceptably slow. However, it doesnat suffer from
the “hdes” in thegrid tha binning does
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2.4 Parallelized Nearest-Neighbor
Interpolation

Pardlelization of our interpolation algorithm pro-
cedals inmuch the saneway aswith simple binning:
we bred& the grid into a number of approximately
equal sedions, onefor eat host, and send ead host
only the poaints which fall in tha bin. Ead host
then performstheneaeg-neighba interpolation de-
saibed abowve.

The theoretical spead-up we shoud seeis more
than quedratic in the number of hosts. If we have h
hosts, and the points are goproximately evenly dis-
tributed ower the grid, then ead host will get about
§ of the grid and % of the paints. So, eat hcst
will have arurtime complexity of O(f - 2 log i) =
O(931og 7). Our tests have suppated this analy-
sis: wedoin fad get super-quadratic speedups from
adding hasts (seeSedion 3).

2.5 Smocthing Parallelized I nterpolation

Unfortunately, paralelization can reallt in edge -
feds in interpolation reaults. Along the alge of a
sub-grid sent to a host for interpolation, the clos
ed elevation data points to a ceantroid might be in a
different sub-grid, and thus are nat considered du-
ing the interpadlation. This can reault in naticeable
linesor bands in theresultant DEM. We have cdled
our solution to this smocthing. We pass thepoints
belonging to theimmediatdy surroundng sub-grids
along with the paints in the sub-grid we send to
ead haost. This approximately triples thenumber of
points sent to eat haost, but reallts in lessnaticeable
edge dfeds.

3 Resultsand Discusgon

We havefully implemented the algrithmsdescibed
abowve. We ran tests on a 100,000 padnt subse of a
LIDAR-generated 100foot resolution pant cloud.
This subsda was picked by sorting the 2,000,000
points by y-value and picking every twentieth. See
Figure 2 for visudizations of the inerpolated data
sd. Interpdation is the dear winner in the quality
department - there ae no hdes, and the reailtant
DEM looks like a ‘filled-in" version of the binned
DEM (Figure 2(a)). It is hard to natice thediffer-
ence between smoothed and nonrsmoothed DEMs
with the naked eye, but Figure 2(d) shows thereault
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Figure 1. Splitting thegrid into sub-grids for parallelization

of subtrading the two DEMs from ead other. No-
tice thd the difference lies alng the aits between
the sub-grids sent to different hosts. This shows tha
smoothing actudly doeswhat it is suppae to, tha
is, it smoothsout the elge df eds between sub-grids.

The actud running time of ead algorithm was
cdculated several times to test the possilde speed-
ups obtainable by parallelization. Unexpededly,
paralel binning is actudly slower than seial bin-
ning (seeFigure 3). We believe ths in due to the
overhead of passiny dataover the network compared
with the blazing speeal of the smple binning algo-
rithm. In the caseof interpdation, we obseved the
extreme pardlelization spead-ups predicted above.
SeeFigure 4 for a dhart of running time versus num-
ber of hosts - nate tha thetime axis is logarithmic.
So the predicted super-quadratic speed-up deesoc-
cur. As a smple comparison between hinning and
interpdation, with 100,000 pants, 20 hasts, and
a 100 foat resolution, binning takes 1.4 se®nds,
nortsmoothed interpolation takes24.8 seonds, and
smoothed interpadlation takes73.3 seonds. Refer to
Figure 5 for a comparison between the three meth-
ods

4 Conclusion

Parallelization provides an excdlent speed-upfor in-
terpolation methods, but doesnot deaease theun
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ning time of binning. Before parallelization, our in-
terpolation method was intderably slow, but with
20 hdats, its runtime is very rea®nable. Smooth-
ingis also adedrable option when using paralelized
neaed-neighba interpadation, however it approxi-
mately triples therun time of the interpolation. For
casia use paralelized nonsmoothing interpolation
suffices However, if more acairagy is required, then
smoothing provides thawith only a threefold slow-
down.

Future work in this area @uld include paraleliz-
ing the extremdy popuar quad-tree irterpolation al-
gorithm. Also, we can optimize theneaed neighba
interpolation by using a sca-line goproad and orly
sorting a setion of thewhde data sd atime.
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Figure 2: Reallts of interpolating sparsedata at 100fed. () is therealt of binning - note the cdls with no
value (b) is our parallel interpdation algorithm without smoothing, and (c) is with smoothing. (d) is the
difference between (b) and (c).
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Bridge Detectionfrom Elevation Data
Using a Classifier Cascade

Anthony Manfr edi
amanfredl@wart hnor e. edu

Abstract

Bridges and similar non-obstructingfeatures
inhibit correctflow routing on high-resolutbn
digital elevationmodelsbe@usetheir apparat
elevationdoesnotreflecttheelevationatwhich
watermaypassunderneaththem.Ourgoalisto
identify suchfeauresusingthe elevation data
sothatflow-routing algorithmsmay find patts
under them correcty. We use an algorithm
basedon Viola and Jones’object-recognitin
system. Simplefilters areappliedin sequene
to efficiently narrav the searchspacedown to
afinal sd of likely candidatdeatures.This pa-
perpresentasuccessfusystenfor identifying
bridgesthatcanbe fairly easilyintegratedinto
existing GIS systems.

1 Intr oduction

New hi-resterrainscanningtechniques suchaslaseral-
timetry (lidar) have greatly expandedthe accurag of
GIS. Theimproved resoluton hasintroducedmary new
detailsinto digital elevation maps; mary suchfeatures,
however, hinder analysisof the underlying bare-earth
terrain. One of the most important problem features
are bridges. From the air, a bridge appearsas a solid
ridge, but, in reality, water can pas beneathit. While
a raw datadump may containsomepointsthat are visi-
bleunderneattabridge,currentpreprocessingechniques
will tend to remove these,leaving a solid obstacleon
the processedligital elevation model (DEM). This con-
fusesflow-routing algorithms,which mustflood terrain
or searchfor corvoluteddetoursto escapehelocal min-
imum createdby the presenceof the falseridge. Our
goalis to identify bridgesand similar features,suchas
drainageunnelsondigital elevationmodels sothatwa-
ter flow canbe routedthroughthem. Appropriateflow
routing canbe accomplishedvith minimal modification
of existing algorithmsby simply cuttingthrougha bridge
onceit is markedout.

1.1 RelatedWork

SitholeandVosselmarSitholeandVosselman2006)de-
scribea systemfor the geometricrecogrition of bridges
as part ofa geneal systemfor creatingbare-earthdata
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from raw lidar input. Their systen looksfor featureghat
dropoff sharplyon two sidesandfadesmoothlyinto the
surroundingterrain on the others. Calculatingand ana-
lyzing boundingpolygonsfor terrainfeatures however,
is computationallyintensve.

Our algorithmis inspiredby computervision research
by Viola andJoneg(Viola andJones,2002). Their sys-
tem utilizes a “cascade”of simplefilters, eachof which
is sensitve to a specificpattern. The algorithmreliably
recognizedacesin real-timevideo. They alsosuggest
techniquefor fastcomputationof rectange sums,called
theintegralimagemethod.Eachpixel in theintegral im-
ageis the sumof the valuesof the pixels abore andto
theleft of its locationin theoriginalimage,which allows
ary rectanglesumto be computedwith only four addi-
tion operationsf the integral imagealreadyexists. This
techniqueallows usto quickly calculatestatisticor sub-
sectionsf the map. For example finding the averageel-
evationin aten-by-tensquareareacorventionallywould
requireaddingtogetheionehundredvalueswith theinte-
gralimagemethod,we needonly accesgour values(the
cornersof thebox) to get theareasum.

2 Methods

2.1 Algorithm

Our system is animplementatiorof the cascadeoncept
of Viola and Jonesin a novel domain. A sliding win-

dow moves over the map, examning small sectionsof

the terrainin sequence.The windonv may move one or

several pixels at atime: this isthe stepsize of the win-

dow. A larger step size decreasesuntime significantly
but alsodecreaseaccurag. Empirically we determined
thata stepsize of2 pixels did notresultin a significant
decreasén accuray.

Eachwindow is passedhrougha seriesof filters. A
filter is afunctionthatevaluateghepixelswithin thewin-
dow statisticallyor geometricallyand decidego accepor
rejecttheslice. To save storagespacethe algorithmap-
plies all thefilters to eachwindow in orderbeforemov-
ing on to the next; this way, no intermediatecandidate
lists (which could be quite large) are storedin memory
If ary filter rejectsthe slice, it ceasego berelevantand
the window movesto the next target. Like in the Viola-
Jonesalgorithm,the collective actionof thefilters malkes
upfor theirindividualinaccurag. It isimportantfor each

Appeared in: Proceedings of the Class of 2007 Senior Conference, pages 21-24,
Computer Science Department, Swarthmore College



individualfilter to have avery low rateof falsenegatives,
sothatthey do not rejectgoodcandidateprematurely

In orderto accommodatéridgesof varying sizes,we
male several passesver the map, changingthe scale
of the window eachtime. One canreasonablyexpect
bridgesto be at leastone car lane ard no morethana
dozenlaneswide, andfiltersmusttake in someof the suf
roundingareafor compariso aswell. We are currently
usingwindow sizesof 100, 150, 200, 250, 300and400
feetin an attemptto accommodatall reasombly-sized
bridges.

2.2 Filters

We have implementedseveralfilters to detectbridge-like
features. Sincethe overall goal is to aid hydrological
modeling,we focuson discovering terrainelementghat
have astrong effect on existing flow-routing algorithms
andtrying to identify themasbridges.

1. Thehigh gradientfilter acceptsanimageif atleast
ten percentof the pixelsin the filter window have
a gradientabove acertainthreshold.Currentlythis
thresholds 2.4feetof elevationper10feetof trans-
lation (empirically determined)but we may adjust
it in the future and analyzehow it affects our re-
sults. Thisfilter is designedo find the steg edges
of bridges.

2. Thefloodfill filter acceptsanimageif atleastthirty
percenbf thepixelsin thefilter window wereflood-
filled by a flow-routing algorithm. Thisfilter is de-
signedto capitalizeon the factthatbridgesin gen-
eral,andparticularlythe bridgesthatwe wantto re-
move to do correctflow routing, causeflood filling
alongtheirlength.

3. Theminimumfill depthacceptsanimageif thereis
atleastonepixel in thewindow thatwasflood-filled
higherthan8 feet. Thisfilter is designedo focuson
areaghataresignificantlyproblematidor hydrolog-
ical modeling.

4. Thelow gradientfilter acceptsanimageif at least
twenty percentof the window areais low gradient
pixels, wherethe low gradientthresholdis 0.5 feet
of elevation per 10 feet of translation. This filter is
designedo look for theflat areaof the bridgeitself.

5. The minimumelevation differencefilter acceptsan
imageif thedifferencen elevationbetweerary two
pixelsin thewindaw is above 7 feet. Thisfilter capi-
talizesonthefactthatbridgeswill beelevatedabore
thesurroundingerrain.

6. Theheightbridge shapefilter acceptsanimageif a
stripe down the middle third of the imagemaches
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Figurel: A DEM with handfabeledfeatures.

alow:high:low elevation patternwhencomparedo
the averageelevationthe entirewindow. This filter
is rotatedeighttimesat pi/8 radianintervals to catch
varying bridgeorientations. If ary of theserotated
filters match, the imageis accepted. This filter is
designedo find an elevation patternthatlookslike
abridge: highin themiddleand lower onthesides.

7. Much like the height bridge shapefilter, the gra-
dient bridge shapefilter acceptsan image if a
stripe down the middle third of the imagematches
a high:low:high gradient pattern, using the same
thresholdgor low andhigh gradientghatwereused
in the previousgradentfilters. Thisfilter is alsoro-
tatedin the samemannerasfilter 6. This filter is
designedo find a gradientpatternthatlookslike a
bridge:flatin the middleandsharpon bothsides.

3 Results

We focusedourtestingonanareaoutsideDurham where
Interstate85 crosseshighway 70. The combinationof
multiple roadwaysandawinding streamproducenumer
ousinterestingfeaturego analyze.

Figure 1 shovs a DEM of the areawith hand-labeled
featuresNotableelementsn thisimageare:

e Featurel (seenin detailin Figure 2) is a dranage
pipeunderaroadway. While shapedrerydifferently
from a bridge, it senesthe samehydrological pur-
pose allowing waterto passbeneathit.

e Feature®, 3, 4,and5 are,very distinctly, bridges.
Some(particularly2 and5) appeato have beenpre-
cut. While it appeargo belesspronouncedhanthe
othersFeature4 hasnot beencut by the preproces-
sor, soit is of interestto us.



Figure2: A drainagepipe undera roadway, correspond-
ing to Featurel from Figure 1. Picturefrom Google
Maps.

e Featureb is a setof small roadways, possiblywith
bridges.

e Feature? is an elevatedinterchangewith a stream
flowing underneathit. The exact patternof flow is
difficult to discernfrom lidar andsatellitemapsbut
it is clearthatpart ofthis stuctureneedgo becut.

e Feature8 is aroadway over anobvious depresion.
Thesharpnessf thecutoff betweertheroadandthe
surroundinderrainindicateghattheroadis likely to
beraisedabove thegroundpromirently here.

e Feature® and10 represenareaswherea roadway
seemsto have beencompletelywiped out by the
river, probablyin the interpolationstep. Theseare
bridge-like featureshut ouralgorithmshouldignore
themin theend.

Figure3 shaws thereallts of filtering our datasetand
groupingthe seleted locationsusingthe built-in visual-
izationtoolsin the GRASSsoftware package.Thealgo-
rithm clearlylabelsthelarge uncutbridge-like featuresn
theimage,suchastheinterchamge andthedrainagepipe,
and avoids several pre-cutbridges. It correctly identi-
fies the uncutbridge labeled4, above, as a notevorthy
feature,and isolatesseveral small bridgesin the tangle
of elementdabeledhand-labeledisfeature6. Features
9 and 10, alreadydeeplycut, areignored. Overall, the
computefrgenerateadnapseemdo captureall of therele-
vantfeaturesexceptfor a few ambiguougars of areab,
while ignoring already-cutbridgesand generatingairly
little noise.

Performing the feature extraction on this relatively
small (609180cells) maptook 6m 45s. We expectcom-
putational compl«ity to be linear with respectto the
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Figure 3: A comparisonof hand-labeled(dark) and
machine-detecteflight) features.

numberof cells. This bearsout in practice it takes25
minutesto procesa21117520-celgrid with our system.

Figure4: DEM of aroadover aravine in anurbanarea,
demonstratingheshortcoming®f thealgorithm.Seeral
bridge-like structuresarecorrecty labeled,but theseare
alsomary falsepositivescausedby treesin theravine.

Figure 4 shavs a lessfunctionaljob. This time, the
algorithm hasidentified a seriesof noisy-lookingareas
alongwhatlookslike astreamasbeingbridges,aswell.
Analysisof theimagearearevealstha theareaisn't con-
ventionallyfilled with water however: the grairy lumps
thathave beenlabeledasbridge-like objectsthatimpede
theflow of waterareactuallytreesin aravine. While the
imageof all thoseareasbeing selectedasgoodareasis
ratherunsightly mostrepresenterrainartifactsthat can



Figure 5: The bridge detectionalgorithm appliedto a
larger area. Note the tendeng to overselectlow areas
whenthey arenot uniform.

easilybecut; thosethatdon't areactuallymajorfeatures.
Figures5 and6 demonstratsimilar reaults with larger

datasets.There arejuiteafew falsepositivesoverall, but

numerousridgesarecorrecty detected.

4 Conclusionand Futur e Work

Overall, our algorithmseemgjuite effective in detecting
bridgesandsimilar featuresthatimpedeflow routing on
high-resolutiorDEMs.

Experimentingon other datasets, however, revealed
thatthe algorithmis fairly sersitive to input error. While
noisemostly just impairsits ability to detectusefulfea-
tures,errorsthat produceregular patternswill oftenlead
to numerougalsepositives. This problemoccursbecause
our progran is searchingfor regular, mostly-linearfea-
tures,which canbeintroducednto theimageasartifacts
duringthevariousstagef preprocessing theraw data
is sufficiently poor. It shouldbe notedthat, while such
resultsincludea lot of falsepositives, mostof thoseare
clusteredaroundimageartifacts,so cutting throughsuch
areasshouldnt defom the actualmapvery much. Very
few false positives generatedby our algorithm are ac-
tually objectsthat would gredly affect the hydrological
modelif cut.

The computationtime currently leaves somethingto
be desired,however. While the integral image method
speedsup the first few statisticalfiltering steps,we cur-
rently usenawe techniquego find local extrema— these
costus a lot of time spentrescanninghe samepixels
asthe window moves acrossthe map. Finding the ex-
tremevalue for a strip of dataat a time and then sim-
ply taking the extremaof thosecould greatly speedup
the executionof this stage.For the shapefilters, a more
computationally-dfcientwayto performtherequiredro-
tationswould beideal. Overall, the computationabver-
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Figure 6: The bridge detectionalgorithm appliedto a
large area with a very comple roadnetwork. While the
systemis incapableof puzzling out the interchange, it
doesidentify a large numberof bridge-like featuregand
afew falsepositives).

headof runningthe algorithmcould probablybe signifi-
cantly reducedby runningit as part ofanotherwindow-
sweepingalgorithmandreimplementingt in C/C++.

It maybe possibleto getimprovemernsin accurag by
running this algaithm iteratively with a bridge splicer
recalculatinghe flood fill depthafterthe removal of the
currenttargetbridge. Sucha systemwould requirea lot
of repetitive computationhowever.

Sincemostof our falsepositives seemto come from
artifactsin the DEM, we believe that simply cutting the
regionsidentified by our algorithm, evenif the detected
featureis notabridge,will improve flow-routing.
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Abstract

Most current flow routing algorithms use
digital elevation models (DEMs) to con-
struct flow models. In order to success
fully use arrent techniquesfor flow rout-
ing, they floodlocd minimaandthen find
a way of routing the flow aaoss theflat
surfaces In this paper, we examine an a-
ternative method for computing flow rout-
ing on theseflooded surfaces thatakes
into acount the origina elevation data.
Our approach is basel uponDijk stra's sin
gle source hortest path algrithm. We se
the distance between two adjacent cdls to
be the devation of one of the cdls. While
our reallts are not yet ided, atering our
distance formula shows promise for im-
provement.

1 Introduction

A current problem in geographic informaion sys-
tems is the aitomatic extradion of river networks
from a se of elevation data using themethod o flow
acaimulation. Calculating river networks is useul
in determining floodinsurance ones

The badc ideafor solving this problem is rela-
tively ample: for eath elevation pant, route flow to
the neighba with the seepeg downhill slope. This
method s effedive as lmgas thee aenolocd min-
ima. Locd minima will be pits or valleys in which
the water will get trapped. Idedly, all water shoud
flow to someotitlet paint at the aldge of thegrid.
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Current algorithms (Jenson and Domingue, 1988
Garbredht and Martz, 1997 Soille and Colombo,
2003 tendto ded with this problem by floodng the
minimauntil they are dl removed. This approach is
justified by the aseamption that minima are the ae
cidental reault of poar sampling in the original data.
However, this is not always the caseMany minima
are caisal by large-scde terrain featues such as a
bridge over ariver. When theseminima get flooded,
useful informaion abou theunderlying river is lost,
as ca be seain Figure 1.

Thesefloodng algorithms creae large flat sur-
faces which cause anew problem in flow rout-
ing. Without a geepest downslope neighba it is
not immediatdy obvious in which diredion thewa-
ter shoud flow aaoss the srface

Several algorithms have been developed that at-
tempt to olve theproblem of flow routing over flat
terrain. A side défed commam to dl these algrithms
is that they fail to use irformation abou the original
terrainwith ther flat terrain flow routing algorithms
We have developed an algorithm to route flow acoss
flat surfaces thatakes into acourt the origina ter-
rain. This providesriver networks tha more aca-
rately mach redity.

2 Reéated Work

Current algorithms for solving this problem do nd
prodice ide# reaults. Jenson and Domingue (1988
focussal manly on floodng and ther method for
flow routing onflat surfaceswasnaot very involved.
For eadh pant on a flat surface they assiged the
flow to be in thediredion diredly towards theout-
let. This realted in artificial looking river networks
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Figure 1: Original and flooded elevation data

becauseof long stretchesof parallel lines

Garbredht and Martz (1997 improved uponthis
algorithm by nat only routing flow towards theout-
let, but also away from the bordering high terrain.
This provided more natura looking river networks.
However, as theseiver networks do nd take into ac
court the underlying elevations, they do nd always
acarately model thetrue flow of water in theregion.

Soille et a. (2003 proposed the method o carv-
ing as oppada to floodng for removing minima,
which reduces thenumber of flat areas They also
propcsed aflat terrain flow routing algorithm tha is
an improvement on Garbredht and Martz's method.
Although Saille’s algorithm is an improvement, it
has the semefundamental issues as theof Garbredt
and Martz.

3 Methods

Our algorithm focuseson improving flow routing
over flat terrains To acomplish this, we usebath
the flooded terrain information and the original el-
evation data. The flooded terrain indicates the a-
easonwhich to concentrate, and the original terrain
provides the &evation data needed for our method.
We use Dijkstra's algorithm to cdculate the dort-
ed path to the pill points. We vary the metric for
computing the distance between two adjacent cels.
We begin with digital elevation models in the
GRASS ASCII forma: one of the original terrain
and ore with the locd minimaflooded. We find the
spill paints, cdls adjacent to theflooded terrainwith
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lower elevations.

We usd a sirgle source dortest path algrithm
to cdculate flow diredions for flat areas This al-
gorithm treas our grid as a onreded graph where
ead cdl is conreded to its eight neighbas. The
weights of the alges ca be chosen independently
of the algrithm, andwe experiment with seseral op-
tions.

To compute the sirgle source dortest path, we
used Dijkstra’'s algorithm. The algorithm begins by
initializing al thepathlengthsof any cdl to the sill
point to infinity. We aeae apriority queue tha con
tains the @ill points, and sd thdr path lengths to
zero. We oontinue extrading the paint from the pri-
ority queue with the minimum pathlength urtil the
gueue is empty. Ead time we remove apoint, we
look at eadh of its neighbas and updite their paths
if the path throughthe airrent point is shorter than
the stoed path We then add ead updhted neighbar
to thepriority queue.

When the algrithm is finished, thereault is afor-
ed tha spans the aeaof intered, where ead treeis
rooted at a ill point. The leavesof thetrees ae the
points fartheg away from the ill points. The path
from anode to theroat of atreeis the ortest path
to a sill paint.

We can use thesdrees to ckeulateflow acamula-
tion. We imagine tha aunit of water falls onto ead
cdl in the grid. Using the flow diredions of eadh
cdl, we can determine the anount of water that ac
cumulates in eat cdl. Let p be any cdl and F'(p)



Figure 3: River networks and flow diredions using Soille’s algorithm

be the seof cdls flowing into p.

acqp) =1+ Y acdg)

q€F (p)

We cdculate the flow acaumulations of anoce in
thefored as the am of the flows of ead of its chil-
dren plusone. A grid showing cdls whoseflow ac
cumulations are greaer than somethreshold shoud
show the locdions of therivers of theterrain.

Our algorithm outputs GRASS ASCII files with
the flow diredions and the flow acaimulations a
eat cdl of the grid. We represent flow diredion
with numbers 1 through 8 correppondng to the
eight posside diredions of flow. We aede river
networks basal onthe seé of points with flow ac
cumulations over a given threshold.
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3.1 Metrics

Below we preseit theweights used to determine the
distancesbetween cdls for the Dijk stra’s algorithm.
In al caseswe alded an extra weight of /2 to di-
agorally adjacent cdls to acourt for the difference
in Euclidean distance

3.1.1 Euclidean Distance

The smplest method we used was sé#ting the dis-
tancesbetween adjacent cdls to 1. This reallted in
the Single Source Shortest Path (SSSP method, as
used by Jenson and Domingue (1988. In effed this
method just computes the $ortest Euclidean dis-
tance from any pant to the ill points, and routes
flow over that path



Figure 4: River networks and flow diredions using the devation distance metric

Figure 5: River networks and flow diredions using thetranslated elevation distance metric

3.1.2 Soille’s Algorithm

The flat terrain flow routing algorithm introduced
by Soille (2003 is designed to route flow through
the center of the terrain and avoid having straight
paralel lines We cdculate the distance, d(c) from
ead cdl to the border of the flat terrain using a
breadth first seach away from theborder. Let ¢ be a
cdl and C' the s¢ of al cdls.

w(c) =max{d(f)|f e C}+1—d(c)

3.1.3 Elevation

Our first metric that uses theoriginal elevation
data sesthedistancebetween any two adjacent cdls
to the devation of the cdl flowed to. Thus, the to
tal distancefrom a cdl to the ill point is the am
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of the devations of the cdls traversed. This encour-
ages theflow to travel down to lower elevations, as
well astraversing a smal number of cdls between
the urce and the ill paints.

3.1.4 Translated Elevation

To weight more heavily the importance of flow-
ing acoss lawv elevations, asoppadl to traversing
short distances we trandate the devations of all
cdls down by the minimum elevation over the rel-
evant area Thus, the weight of a cdl is the differ-
ence of the devation of the cdl and the minimum
elevation.



Figure 6: River networks and flow diredions using the gjuared translated elevation distance metric

Figure 7: River networks and flow diredions using the fourth power of the trandated elevation distance

metric

3.1.5 Power of Translated Elevation

Raising the trandlated elevation to a positive
power puts a greaer penaty on hgher elevations.
This further encourages flow to follow low eleva-
tions. A greaer power will put more emphads on
traveling onlow elevations.

4 Data

We used rager dataof theNorth Carolinariver basin
at 10foot relution. We used bath theorigina ele-
vation data and elevation data of theterrain with the
sinks flooded.
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5 Resaults

For eadh meric, we show the river networks and
flow diredions. In computing the river networks,
we usal an acamulation threshold of 150 cdls
(150,000 ft?). In the flow diredions figures eadh
color indicates adifferent flow diredion.

Thereaults of using the Euclidean distancemetric
are hown in Figure 2, Saille’s algorithm in Figure
3, the devation metric in Figure 4, the trandated el-
evation meric in Figure 5, the gjuared trandated el-
evation metric in Figure 6, and the fourth power of
thetranslated elevation metric in Figure 7.



6 Discusson

As can be sea in Figures?2 through 7 the resilts
improve with ead alteration of our algorithm, even-
tudly producing natural looking river networks tha
follow the devations of theoriginal terrain.

By comparison, the Euclidean metric (Figure 2
falls to produce natua looking or acairate rivers.
The flow is routed in straight paralel lines and
hugs theboundiries of the region, as the algrithm
seachesfor the $hortest Euclidean distance

Soille’s algorithm (Figure 3), on the other hand,
producesmore natural looking river networks. How-
ever, as ths algorithm fails to take into acourt the
origina €elevation data, therivers do nd follow the
terrainfeatues As an example of this behavior, ob-
save theoxbow nea the center of theregion. Rathe
than following the bend in the river, theriver stays
in the center of theregion.

Eadh of Figures5 through 7shows an improve-
ment on the previous river network. As you can
see inFigure 7, our river network both looks natural
andacairately models theterrain. Our river network
tends to gay in thelighter yellow areas which cor-
regonds to the laves elevations in theregion.

From theriver networks in Figure 7 it can be se@
tha our algorithm tends to perform better on lower
elevations tha on higher ones This is a realt of
trandating the devations by the minimum elevation
of the region. While this trandlation succeals in
appropriatdy weighting elevation againg Euclidean
distance a lower elevations, this balance tm heavily
in favor of Euclidean distance a higher elevations.

7 Future Work

Wewould like todevelop adistancemdric tha does
not have thedrawbadks & higher elevations thd our
current algorithm displays. To accomplish this, we
have experimented with other distance metrics with-
out success We began by taking the exporential of
the devation, but discovered that this this reaulted
in numbers tha overflowed Python's float type. We
would like to experiment with the taking the differ-
encesof elevations of neighbaring cdls.
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Abstract

We present a methodfor finding the over-
lays of a s& of pdygors that usesthe
douby-conreded edge list structure. We
first deted al i ntersedions between pdy-
gors using a brute-force method We
then buld the doully-conreded edge li &,
maintaining information abou the origi-
na paygors, from which we can easly
perform shapefile overlay operations: in-
tersedion, difference, and urion.

Our agarithm runs in O(n?) time. Our
douby-conreded edge list construction
agorithm runs in O(nlog(n)) time,
with the battlenedk being the brute-force
O(n?) line s@ment interse¢ion. Once
that list is built, any given owverlay oper-
ationisO(n).

1 Introduction

Natural disasers auch as floods often occur
swiftly and without warning. It isimperative, there-
fore, that pdliti cd entities sich as ourties and states
be aequately prepared to ded with such disagers.
Often, this level of preparation variesdiredly with
the amount of fundng redeved, which isin and o
itsdf afunction o the percieved threa in that region.
Determining the extent to which regionisin danger
of floodng is difficult to assessr@eaoatally. How-
ever, by combining geographicd data auch aswa-
tershed layouts with pditi cd boundxry data, we can
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Figure 1. Examples of shapefile overlays. (a) The
origina poygorsin sda S Here, we have two over-
lapping squares d different orientations. (b) The
intersedion o the two squares represeinted by the
green region. (c) The difference of the two pdy-
gors, showvn by the blue and yellow regions. (d) The
union d the two pdygors. Note that the interior
segments ae now gore.

use apefile! overlays to assgn an unkbasel value
tothelevel of danger to any region. Thisinformation

A shapefile is a common file format for exchanging pdy-
gon data that does not maintain topdogy
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can then assst in appropriate resource dlocdion, as
well as @mputation o floodinsurance rates

Given a seé of padygors S how can ore dficiently
determine the new se of pdygors P that is defined
by the overlay of the pdygors in S? Polygors in
P can include the intersedion, union, or difference
of members of S Figure 1 shows examplesof these
typesof overlays.

To solve the problem of shapefile overlay, we will
use methods from (de Berg et a., 1998 to buld a
data gructure cdled a douly-conreded edge list
that will alow us to cdculate overlays dficiently.
The more genera problem of shapefile overlay has
spedal caseswhich would be unuwsua in sdtings
such asthe one descibed abowve, such aspadygors
with hdesin them. Still, we mnsider these peda
casedo make our agorithm asgeneral aspossble.

In sed¢ion 3 we presat our methods for build-
ing the douldy-conreded edge list and cdculating
shapefile overlays. In sedion 4, we disaussthe run
time analysis of our agorithms. In sedion 5 we
present reqllts gplying ou agorithms to simple
ted-casepaygors aswell asto red geographicd
data. Finadly, in sedion 6 we disassthe implica
tions of our reaults.

2 Related Work

When bulding topdogicd representations, it isusu-
aly the casehat we wish to redrict the topdogies
to follow a gedfic sa of constraints. (Hodl et d.,
1994 descibe auch a yystem. Their topdogieshave
certain consistency requirements, and as sich must
foll ow an explicit se of rules such asthe foll owing:

e Interiors of paygorsin afeaure dassmust not
overlap

e Polygors must nat have voids within them-
sdves

e Polygors of one fedure dassmust share dl of
their areawith pdygonsin ancther fegure dass

Shapefile overlay is necessey to enforce these
rulesonlarge ses of pdygors. Withou an effedive
shapefile overlay algorithm, the work of (Hoel et dl.,
1994 could na be implemented in an efficient, ro-
bust manner.
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Figure 2: Douly-conreded edge list for two pdy-
gors. Haf-edge e; has anext painter to e; and
aprevi ous pointer to es. The aurrent faceof all
threeof theseis F. Thetwin of e5 iSes, Whose ar-
rent faceis F,. The twins of e¢; and e3 have Nul |

astheir current face

3 Methods

To find the overlays of multiple pdygors, we
must construct the douldy-conreded edge list. Be-
fore we can dothat, we need to know where the say-
ments of ead pdygonintersed the s@ments of the
other paygorsin the se.

3.1 Lineintersedion calculations

This is by far the most straightforward step in cd-
culating shapefile overlays. Because the runtime
of brute-force dgorithms is not significantly slower
than more complex agorithms for the data sds we
are considering (Andrews ¢ al., 1994, it doesnat
cost us ggnificantly to implement a brute-force 4d-
gorithm. For eat segment of a pdygon we chedk
explicitly whether it interseds any segment of any
other paygon and kee a list of al intersedion
points that occur on that segment. This dlows usto
eadly crede dl of the subsggments for the douly-
conreded edgelist, aswell asto keep tradk of which
of the origina paygors a sgment was assciated
with.

3.2 Thedoubly-conneded edge list

A douldy-conreded edge list (de Berg et a., 1998
stores dl of the information regarding the sé of
poygors that is necessgy to cdculate the shape-
file overlays. The basc sd¢up d adouly-conreded



edge list begins with the edges The edgesof eah
padygon are dored as direded half-edges that go
aroundthe paygonin clockwiseorder such that the
facethat is bound bythe half-edgesis dways to the
right of eat half-edge (seefigure 2).

Eadh half-edge doresthe following information:

e Starting pant
e Ending pdnt

e The ID of the facefrom which the haf-edge
originated

e A pointer to the next half-edge on the aurrent
face

e A pointer to the previous half-edge on the aur-
rent face

e A pointer to itstwin half-edge

As we build the half-edgesthat are on the interi-
ors of the original paygons, we can buld their twin
edges Twin edges ae the sane asthe original half-
edge, but with its orientation reversed anditsface sé
tonul | . So, for haf-edge e, t wi n(twi n(e)) =e.

For eat new haf-edge that we ald, we update
adictionary, vDi ct , that contains dl of the neces
say edges ThevDi ct is ahas table keyed on er-
tices ad contains alist of the half-edgesthat start at
that vertex. Thisis aiticd for building the next- and
previous-edge pointers.

3.2.1 Creating next- and previous-pointers

Determining the next and previous pointers for
ead half-edge is nontrivial. For the next pointer of
ead half-edge e, we must find the half-edgeswhase
starting pant is the sane asthe ending pant of e.
Then, we must determine which of thesehalf-edges
makesthe larged clockwise angle with e, and s the
next-pointer of e to that half-edge.

Now that the vDi ct hasbeen updited for eah
half-edge, thistask becomesmuch easer. Usingfig-
ure 3 as an example, let us atempt to find the next-
painter of the half-edge AX. By treaing eat half-
edge as avedor originating at X , we can find the
angle between the half-edge AX and all the other
half-edges by using the aoss product and the dot
product:
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Figure 3: Finding the next-pointer. Here, we aetry-
ing to find the gppropriate half-edge for the next-
painter of half-edge AX. § measiresthe anglesbe-
tween AX and the other half-edgesin the image.
We choosethe half-edge with the larged value of 6,
which in this casds X B.

[ < 5%
sin(@) i P— i —
7] |[Px|

AX -BX
COS(H)ZT
2]} |5

After computing cos(¢) andsin(f), we can cdcu-
late the true angle 6 (where 0 < 6 < 27) between
AX andead of the other threehalf-edgesin the fig-
ure. The candidate half-edge with the larged value
of § can now be seé asthe next-pointer. To com-
plete the example, the next-painter of AX would be
X B, and the previous-painter of X B can be sé to
AX. After walking completely arounda facein this
fadhion, all of the next- andprevious-pointers for the
half-edgesthat boundthat facewill have been sd, so
we do nd need to cdculate the previous painters ex-
plicitly.

3.3 Computing the overlays

Now that we have walked along the half-edges of
every face we have alist for eat new faceof al of
the origina facesfrom which it wasderived. From
here, we can eadly spedfy an overlay by sdeding
the new facesthat med the aiteria of the overlay in
quedion.



3.4 Non-interse¢ing overlays
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Figure 4: Line-Swee Algorithm. The dotted lineis
sweeging rightward. Right before reading the aur-
rent point, there shoud be four edges (A,B,C,E) in
the data dructure, and uponreading this point, two
(B,C) shoud be removed.

Not every overlay of two pdygors will i nvolve
the intesection o their segments. Consider for in-
stance the overlay of the Sahara Deset with Cum-
berland Courty, Pennsylvania. The intersedion o
thesetwo pdygors shoud be null, given that the
two pdygors ae dealy nat spatially coincident and
have nointersedions.

But we caand simply say that a ladk of segment
intersedions implies alad of spatial coincidence
Consider now the overlay of Nebraska with the en-
tire United States While it is not apparent why ore
would chocseto perform this overlay, it shoud be
clea that this is an example of an owerlay that has
no segment intersedions but does have sme over-
lap.

We lve this problem by using a line-sweep al-
gorithm (de Berg et al., 1998. Figure 4 shows
two pdygors, with ore completely interior to the
other. Once our line-intersedion algorithm deter-
mines that there ae no segment intersedions be-
tween thesetwo pdygors, we can move into our
line-sweey algorithm. We rt the verticesin order
of their x-coordinate; we dso store the face assci-
ated with the first vertex in the sorted list. We then
step throughthe sorted verticesin order while main-
taining a list of edges that currently intersed the
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swee line. When a vertex is encourtered that has
an as®ciated facethat differs from the faceof the
first point, we can stop ou line-sweep. If the new
vertex is below an odd number of segments, then
we know that the new faceis completely interior to
the other; otherwise it must be completely exterior.
This methodis robust for concave paygors.

3.5 Polygonswith holes

Figure 5: Polygors with hdes The blue pdygon
has ahdeinits center, which is nat filled in. Where
the yellow pdygon interseds with the hdle, it re-
mains unchanged.

Consider the nations of South Africa and Lesotho.
Lestho is an independent nation completely inte-
rior to the borders of South Africa As such, South
Africamay betreded as apadygonwith ahdeinit.
If we worked for the South African government and
needed to determine overlays, we would surely want
to take Lesotho into acourt.

We can hande this by all owing ead faceto have
a pointer to its inner edges Theseinner edgeswill
form a dosed pdygon The outer half-edgesof this
interior palygon (which runcourter-clockwisg have
the same face aghe origina pdygon while the in-
ner half-edges(which run clockwise have their face
sd to nudl. From here, we can perform our normal
shapefile overlay process starting with segment-
intersedion.

4 Runtimeanalysis

Our brute-force paygon intersedion cdculation is
O(n?). For ead line sgment, we teg al of the
line s@ments in the other paygon for intersecion.
Given that we do nd chedk segments in the same



paygon this upper bound ¢ O(n?) can never be
readied, but is dill t he gopropriate theoreticd upper
bound This assmesthat the paygors ae smple.

Our line-sweg agorithm is O(nlog(n)). For
ead of the n vertices the operations we neel to
perform (seach, insation, and ddletion) can be im-
plemented (with a binary treg for example) to re-
quire O(log(n)) operations to maintain the line-
sweep data dructure.

Once we have the douly-conreded edge list
built, we will have k edges stemming from the n
origina edges To buld the overlay faces we nedd
only gothroughead of the k& edgesonce removing
them from the list of all edgesoncewe asgyn them
to aface So the overlay agorithm itsdf (assiming
that the douldy-conreded edge list has drealy been
built) is O(k). In the worst case k is O(n?), but
in most red-world pdygon intersedions, k£ will be
O(n).

5 Resaults

Figure 6: Example of padygonintersedion. Theblue
areaindicaes aeasthat are only covered by the con
vex paygon (rotated square). The yellow areaswere
only covered by the mncave paygon The green
arearepresaits the intersedion o the two pdygors.
The white drcles $iow points of intersedion be-
tween the s@ments of the two pdygors.

Figure 6 is a sawple run d our intersedion al-
gorithm on two hand-made poygors. The image
was ceded using the Python gaphics library from
(Zelle, 2004. The green pdygon in the center
shows the intersedion pdygon The blue and yel-
low pdygors combine to define the difference of
the pdygors. The eatire daded areais the union
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Figure 7. Interior paygons. Thisimage shows the
effeds of scding the cmncave paygon in figure 6
so that it fits completely inside the concave paly-
gon No area has maintained the yellow coloring
from abowe.

of the two pdygors. The gnall white drcles siow
the paints of intersedion between the two pdygors.

Figure 7 shows the intersedion d two pdygors
where one of the paygors is completely interior to
the other. Degite the ladk of intersedion pants, our
algorithm hashanded this flawlessy.

Figure 8: Intersedion d Cumberland Courty with
watershed 2050305 The red regionis the watershed
only, the blue region is Cumberland Courty only,
and the purple regionisthe intersedion o the two.

Figure 8 shows the intersedion o Cumberland
Courty, Pennsylvania, with watershed 2050305
(USGS Hydrologicd Unit Code). Figure 9 shows
Cumberland County intersedced with watershed
2050306



Polygors Time(ms) Poaints

Intersed time (ms) DElisttime(ms) Overlay time (ms)

CC, WS5 8126 693
CC, WS6 7950 688

6132
6000

238
252

1642
1556

Table 1. Benchmarking onsample wurty and watershed data. The Cumberland County (CC) pdygon red
284 poants; the watershed 2050305 W S5) paygon hed 409 pants; the watershed 2050306WS6) paygon

had 404 ponts.

Figure 9: Intersedion d Cumberland Courty with
watershed 2050306 The yellow regionis the water-
shed only, the blue regions ae Cumberland Courty
only, and the green region is the interse¢ion o the
two.

Table 1 shows benchmarking figuresfor thesetwo
runs. The teds were run onan Intel(R) Pentium(R)
4 runring at 3.00 GHz with 156 MB of RAM.

6 Discusson

The goal of this projed wasto implement shapefile
overlay in an efficient manner. In order to acom-
plish this goal, we implemented a douldy-conreded
edge list that allowed ou agorithms to efficiently
compute overlays. With the exception o our brute-
forceline sgment intersedion, all of our agorithms
are relatively computationally inexpensive. Table
1 shows that the line s@ment intersedion is the
clea bottlenedk. It is posshble to implement fager
line sgment intersedion algarithms, but that is not
within the s@pe of this projed.

Our agorithm works success$ully for most com-
plex casesincluding concave paygors, paygors
inside other paygons, paygors with hdes and up
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to three pdygors, asin figure 10. Our algorithm
can na hande the caseof interseding two pdy-
gorsthat share an edge. This casespathdogicd for
lineintersedion aswell asfor constructing adouldy-
conreded edge list.

Figure 10: Interset¢ion o Three Polygors. This
image shows that our agorithm can be extended to
threepdygors.

7 Conclusions

Shapefile overlay is afundamental building Hock of
computational geometry. It isimperative to thefield
that shapefile overlay can be computed quickly and
corredly. Althoughwe do nd introduce any revo-
lutionary methods to acamplish this tak, we show
that it can be performed with fairly straightforward
algorithms on simple data gructures
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