
Parallelized Interpolation: A Quantitative Assessment

Scott Blaha
Swarthmore College

Mustafa Paksoy
Swarthmore College

Abstract

The conversion of raw point-cloud eleva-
tion data to grid DEMs is done by in-
terpolation. Current interpolation meth-
ods produce either high quality results or
take an acceptable amount of time, but
not both. This paper seeks to reconcile
these two objectives through paralleliz-
ing a high-quality interpolation method,
nearest-neighbor averaging. We explore
the speed-up obtained by parallelization
and compare run-time with the lower qual-
ity binning method.

1 Introduction

LIDAR, one of the primary forms of elevation data
collection, yields a cloud of elevation data points.
However, Geographic Information Systems (GIS)
like GRASS often require data in the form of a dig-
ital elevation model (DEM). One of the simplest
methods to perform this conversion is calledbin-
ning. Binning simply averages the points in each
grid cell of the DEM to yield an elevation for the
grid cell. However, because of the non-uniform na-
ture of the point cloud, some of the grid cells of the
DEM might not contain any points. Thus, it is pos-
sible to have holes in the DEM after binning.

The solution to this is to use one of a set of meth-
ods known asinterpolation. A typical simple linear
interpolation might take an average of points close
to an empty cell, weighted by distance from the cell.
Unfortunately, if there aren points, then there are

potentially O(n2) interpolation calculations to be
performed. This fact, paired with the typically ex-
tremely large data sets of interest in GIS, makes in-
terpolation a highly non-trivial task. In fact, in a re-
cent I/O-efficient point cloud to DEM algorithm (0),
from 52% to 86% of running time was spent inter-
polating depending on the data set. Clearly, a faster
method of interpolation is needed.

The basic trade-off in interpolation is quality
(e.g. representativeness) of the resulting DEM ver-
sus the computational complexity of the interpola-
tion. Rather than deal with reduced DEM quality
in our quest for better interpolation run-times, we
will parallelize the interpolation of point cloud ele-
vation data. Because of the locality of reference of
the interpolation task, parallelization can provide an
exponential reduction of the time to interpolate a set
of points, based on the number of computers.

2 Methods

2.1 Serial Binning

Our first method is a simple implementation of se-
rial binning. A grid cell’s value is the average of all
points from the point cloud in that cell. A grid cell
containing no points is assigned a “no value” con-
stant; in our case, this was -99999. Serial binning
will be our base-line for comparison of competing
interpolation methods, both in terms of interpolation
quality and run-time efficiency. We hope that paral-
lelization will speed up creating a DEM, and that
interpolation will improve the quality of the DEM.
Since it takes constant time to place a point into
a bin, the run time complexity of binning isO(n),

wheren is the number of input points. However, the
constant hidden in this notation was experimentally
shown to be quite small.

2.2 Parallelized Binning

Next, we implemented a parallelized binner. This
simply splits the task of binning and averaging
points between several computers. It will produce
the same interpolation as a serial binner, but hope-
fully with a slight efficiency boost. We do not expect
to see much improvement by using this method.

Our parallel applications use the Message Passing
Interface (MPI) standard for distributing and collect-
ing data. MPI provides various facilities for passing
data around and synchronizing computation. In our
case, we just needed to send data back and forth.
We use the Local Area Multi-computer (LAM) im-
plementation of MPI, it lets us set up virtual clusters
using an arbitrary number of nodes in the Computer
Science Department network. These machines are
all on the same subnet, so we expect network band-
with to be high and latencies to be low.

Initially, we split data into equal size y-intervals.
This led to different hosts creating overlapping
grids, which greatly complicates the process of
merging results. To ameliorate this, we increase the
y-interval so it becomes a multiple of the bin height
of the grid (see Figure 1). So, the splits in the data
align with the grid, which prevents different hosts
from creating overlapping grids.

2.3 Nearest-Neighbor Interpolation

We have implemented a simple type of interpolation,
nearest-neighbor interpolation. In this method, we
first calculate thecentroid of each grid cell, the cen-
ter point of the cell. Then, we sort points by their
Euclidean distance from the centroid. Finally, we
set the elevation of the grid cell to be the average of
thek points nearest to the centroid. Experimentation
showed that 10 is an acceptable value fork.

Because sorting isO(n log n), if we haveg grid
cells andn points, then this algorithm has a run-time
complexity of O(g · n log n). This is because we
must sort all the points based on distance from each
cell’s centroid. As we note below, this method is
unacceptably slow. However, it does not suffer from
the “holes” in the grid that binning does.

2.4 Parallelized Nearest-Neighbor
Interpolation

Parallelization of our interpolation algorithm pro-
ceeds in much the same way as with simple binning:
we break the grid into a number of approximately
equal sections, one for each host, and send each host
only the points which fall in that bin. Each host
then performs the nearest-neighbor interpolation de-
scribed above.

The theoretical speed-up we should see is more
than quadratic in the number of hosts. If we haveh

hosts, and the points are approximately evenly dis-
tributed over the grid, then each host will get about
g
h

of the grid andn
h

of the points. So, each host
will have a runtime complexity ofO(g

h
·

n
h

log n
h
) =

O(gn
h2 log n

h
). Our tests have supported this analy-

sis: we do in fact get super-quadratic speedups from
adding hosts (see Section 3).

2.5 Smoothing Parallelized Interpolation

Unfortunately, parallelization can result in edge ef-
fects in interpolation results. Along the edge of a
sub-grid sent to a host for interpolation, the clos-
est elevation data points to a centroid might be in a
different sub-grid, and thus are not considered dur-
ing the interpolation. This can result in noticeable
lines or bands in the resultant DEM. We have called
our solution to thissmoothing. We pass the points
belonging to the immediately surrounding sub-grids
along with the points in the sub-grid we send to
each host. This approximately triples the number of
points sent to each host, but results in less noticeable
edge effects.

3 Results and Discussion

We have fully implemented the algorithms described
above. We ran tests on a 100,000 point subset of a
LIDAR-generated 100 foot resolution point cloud.
This subset was picked by sorting the 2,000,000
points by y-value, and picking every twentieth. See
Figure 2 for visualizations of the interpolated data
set. Interpolation is the clear winner in the quality
department - there are no holes, and the resultant
DEM looks like a “filled-in” version of the binned
DEM (Figure 2(a)). It is hard to notice the differ-
ence between smoothed and non-smoothed DEMs
with the naked eye, but Figure 2(d) shows the result

y �i nt erval g rid he ig ht

Figure 1: Splitting the grid into sub-grids for parallelization

of subtracting the two DEMs from each other. No-
tice that the difference lies along the cuts between
the sub-grids sent to different hosts. This shows that
smoothing actually does what it is supposed to, that
is, it smooths out the edge effects between sub-grids.

The actual running time of each algorithm was
calculated several times to test the possible speed-
ups obtainable by parallelization. Unexpectedly,
parallel binning is actually slower than serial bin-
ning (see Figure 3). We believe this in due to the
overhead of passing data over the network compared
with the blazing speed of the simple binning algo-
rithm. In the case of interpolation, we observed the
extreme parallelization speed-ups predicted above.
See Figure 4 for a chart of running time versus num-
ber of hosts - note that the time axis is logarithmic.
So the predicted super-quadratic speed-up does oc-
cur. As a simple comparison between binning and
interpolation, with 100,000 points, 20 hosts, and
a 100 foot resolution, binning takes 1.4 seconds,
non-smoothed interpolation takes 24.8 seconds, and
smoothed interpolation takes 73.3 seconds. Refer to
Figure 5 for a comparison between the three meth-
ods

4 Conclusion

Parallelization provides an excellent speed-up for in-
terpolation methods, but does not decrease the run-

ning time of binning. Before parallelization, our in-
terpolation method was intolerably slow, but with
20 hosts, its runtime is very reasonable. Smooth-
ing is also a desirable option when using parallelized
nearest-neighbor interpolation, however it approxi-
mately triples the run time of the interpolation. For
casual use, parallelized non-smoothing interpolation
suffices. However, if more accuracy is required, then
smoothing provides that with only a three-fold slow-
down.

Future work in this area could include paralleliz-
ing the extremely popular quad-tree interpolation al-
gorithm. Also, we can optimize the nearest neighbor
interpolation by using a scan-line approach and only
sorting a section of the whole data set a time.

References

P. K. Agarwal, L. Arge, and A. Danner. From point
cloud to grid DEM: A scalable approach. In Andreas
Riedl, Wolfgang Kainz, and Gregory Elmes, editors,
Progress in Spatial Data Handling. 12th International
Symposium on Spatial Data Handling, pages 771–788.
Springer-Verlag, 2006.

(a) (b)

(c) (d)

Figure 2: Results of interpolating sparse data at 100 feet. (a) is the resultof binning - note the cells with no
value. (b) is our parallel interpolation algorithm without smoothing, and (c) iswith smoothing. (d) is the
difference between (b) and (c).

 1

 10

 100

 1000

525250

T
im

e
(s

)

Resolution (m)

serial
lam5

lam10
lam15
lam20

Figure 3: Comparison of serial and parallel binning running times.

 10

 100

 1000

 10000

 20 15 10 5 1

E
xe

cu
tio

n
tim

e
(s

)

Number of nodes

Parallel execution of interpolation

No smoothing
Smoothing

Figure 4: Comparison of non-smoothed and smoothed interpolation running times, showing super-quadratic
speed-up for adding hosts.

 0.1

 1

 10

 100

 1000

 10000

20101

T
im

e
(s

)

Hosts

Binned
Not smoothed

Smoothed

Figure 5: Comparison of parallel binning, non-smoothed interpolation, andsmoothed interpolation running
times.

