1. Show if $f_{1}(n)$ is $O\left(n^{k_{1}}\right)$ and $f_{2}(n)$ is $O\left(n^{k_{2}}\right)$ where $k_{1} \geq k_{2}$ then $f_{1}(n)+f_{2}(n)$ is $O\left(n^{k_{1}}\right)$.
2. The familiar linear search algorithm takes as input a list of values $\left[v_{1}, v_{2}, \ldots v_{n}\right]$ and a search term x and decides if the $x=v_{i}$ for some $1 \leq i \leq n$. In the case that the list is empty and $n=0$, the algorithm can immediately reject. You should recall that linear search has time complexity $f(n)=O(n)$. What is wrong with the following "proof" that linear search has time complexity $f(n)=O(1)$?

Proof. We will show that linear search has time complexity $O(1)$ by induction on the size of the number of input values n. For the base case, $n=0$, there is nothing to check and the algorithm clearly runs in $O(1)$ steps. By the inductive hypothesis, assume that linear search runs in $O(1)$ steps for lists up to some size $k<n$. It clearly holds for $k=0$. For the inductive step, consider the case of a list containing n elements. By the inductive hypothesis, processing the first $n-1$ elements can be done in $O(1)$ time. If x is in the first $n-1$ elements, we accept the input and no further processing is needed. If x is not in the first $n-1$ elements, we spend $O(1)$ time to processes the last element and accept if $x=v_{n}$ and reject otherwise. The total time spent is $O(1)+O(1)=O(1)$ by the result in previous question. Therefore linear search can be done in $O(1)$ time.
3. Prove that the complexity class P is closed under concatenation.
4. Prove that the complexity class P is closed under Kleene star. Hint: you may want to consider a technique similar to how we built a table in lab 6 for determining if a grammar in Chomsky Normal Form could generate a string w. You probably showed decidable or recognizable languages were closed under Kleene star using non-determinism. Languages in P can only use deterministic Turing machines that run in polynomial time.
5. Given a graph $G=(V, E)$ with a set of vertices V and edges E, we say that G has 3 -clique if there exist three vertices $a, b, c \in V$ such that there is an edge $e \in E$ for every pair of unique vertices in $\{a, b, c\}$. In other words, G contains a triangle. Show that the language $L=\{\langle G=(V, E)\rangle \mid G$ contains a 3 -clique $\}$ is in P.

