
Big Bang
Designing a Statically-Typed Scripting Language

Pottayil Harisanker Menon Zachary Palmer Alexander Rozenshteyn Scott Smith
The Johns Hopkins University

{pharisa2, zachary.palmer, scott, arozens1}@jhu.edu

Overview
Scripting languages such as Python, Javascript, and Ruby are
here to stay: they are terse, flexible, easy to learn, and can
be used to quickly deploy small to medium-sized applications.
However, scripting language programs run slowly [sho] and are
harder to understand and debug since type information is not
available at compile time. In the last twenty years, several
projects have added static type systems to existing scripting
languages [FAFH09, GJ90, BG93, Age95, FFK+96, THF10],
but this technique has had limited success. The fundamental
problem is that scripting language designs incorporate a number
of decisions made without regard for static typing; adding typ-
ing or engineering optimizations retroactively without breaking
compatibility is challenging. We believe that by starting fresh
and designing a new statically-typed language, a cleaner system
for “scripting-style” programming can be engineered.

This is a position paper outlining Big Bang, a new statically-
typed scripting language. Static typing is feasible because we
design the language and type system around a new, highly-
flexible record-like data structure that we call the onion. Onions
aim to unify imperative, object-oriented, and functional pro-
gramming patterns without making artificial distinctions be-
tween these language paradigms. A subtype constraint infer-
ence type system is used [AW93, Hei94, EST95b, WS01], with
improvements added to increase expressiveness, and to make
the system more intuitively understandable for programmers.

The remainder of this paper describes the onion data com-
binator, the process of typechecking Big Bang, and some prac-
tical considerations involved in its implementation.

Onion-Oriented Programming
At the core of Big Bang is the extremely flexible onion data
combinator. We introduce onions with some simple examples.

At first glance, onions often look like extensible records:
‘name "Sue" & ‘age 27 & ‘height 68 is an onion which simply
combines labeled data items. We call the & operator action
onioning, the combination of data. The only other non-primitive
data constructor needed (beyond arrays) is the ability to label
data (e.g., ‘age 27 ). The combination of onions, labels,
and functions allows all other data structures to be succinctly
expressed. Onion concatenation, &, is a left-associative operator
which gives rightmost precedence; ‘with 4 & ‘with 5 & ‘and
10 is equivalent to ‘with 5 & ‘and 10 since the ‘with 4
has been overridden.

In Big Bang, every datum is an onion: labeled data (e.g.
‘age 27 ) is a 1-ary onion and is how a record of one field would
be represented. But unlike records, labels are not required on
data placed in an onion. 5 can be viewed as a 1-ary onion of type
int; 5 & ‘with 4 and "Two" & 2 are also onions. Operators

that have a sensible meaning simply work: for example, (5 &
‘with 4) + 2 returns 7 since addition implicitly projects the
integer from the onion. The case expression is the only explicit
data destructor; for example, case (5 & ‘with 4) in { ‘with
x -> x + 7 } evaluates to 11 because x is bound to the contents
of the ‘with label in the onion. We use (5 & ‘with 4).with
+ 7 as sugar for a single-branch case expression. case is also
used for typecasing; case x of { int -> 4; unit -> 5 }
evaluates to 4 if x is an int and 5 if x is a unit.

The underlying labeled data is mutable, but at the top
level onions are immutable; this key restriction enables flexible
subtyping. So, we can assign to x in the above examples, but we
cannot change or remove the ‘with from the onion in the case
expression. This is in contrast with modern scripting languages
in which object extension is accomplished by mutation. New
onions can, however, be constructed by functional extension.
For instance, consider the following Big Bang code:

def o = ‘x 3 in def o’ = o & ‘y 5 in o’.x + o’.y

Here, o contains only x while o’ contains both x and y.

Objects as onions Onions are additionally self-aware in the
manner of primitive objects [AC96]. Objects are therefore easily
encoded as onions. For example,

def point = ‘x 0 & ‘y 0 &
‘isZero λ_. (self.x == 0 and self.y == 0)

defines a Big Bang point object: the keyword self in a function
in an onion refers to the onion enclosing that function.

Object extension can be modeled through onion extension;
this allows the trivial definition of a mixin object. For instance,

def magMixin = ‘magnitude (λ_. self.x + self.y) in
def mpoint = point & magMixin in mpoint.magnitude ()

would typecheck correctly and evaluate to 0. self is late bound
as is traditional in inheritance and so the self in magMixin will
be all of mpoint when the method is invoked.

Other programming constructs can also be expressed suc-
cinctly with onions. Classes, for instance, are simply syntactic
sugar for objects which contain factory methods for other ob-
jects. Both single and multiple inheritance are modeled simply
as object extension. We also plan to construct modules from
onions, giving Big Bang a simple, lightweight module system.

Typing Big Bang

The Big Bang type system must be extremely expressive to
capture the flexibility of onions and of duck typing. To meet this
requirement, we start with a polymorphic subtype constraint-
based type system and add several novel extensions to improve
expressiveness, usability, and efficiency. The type system is
entirely inference-driven; users are never required to write type
annotations or look at particularly confusing types.



One improvement to existing constraint systems is how
onion concatenation can be flexibly typed – any two onions can
be concatenated and it is fully tracked by the type system. Ex-
isting works on record concatenation [AWL94, Hei94, Pot00] fo-
cus on symmetric concatenation which requires complex “field
absence” information, destroying desirable monotonicity prop-
erties and increasing complexity. Concretely, we conjecture the
monomorphic variant of our inference algorithm is polynomial,
whereas the best known algorithm for concatenation with sub-
typing is NP-complete [PZ04, MW05]. We take a right prece-
dence approach to the case of overlap simply because it is the
way modern languages work: subclasses can override methods
inherited from the superclass. This also resolves the multiple
inheritance diamond problem in the manner of e.g. Python and
Scala by making it asymmetric. Despite keeping only positive
type information, we can also type an onion subtraction op-
eration: Big Bang syntax (‘with 4 & ‘and 5) &- ‘and is
typeable and returns ‘with 4, removing the ‘and label.

In Big Bang, every function is inferred a polymorphic type
(following [WS01, LS08, KLS10], work in turn inspired by
[Shi91, Age95]). Polymorphic function types are then instanti-
ated at the application site. This is done globally, so every po-
tential use of a function is taken into account. The key question
in such an approach is when to stop generating fresh instantia-
tions for the universal quantifier; in face of recursion, the naïve
algorithm will not terminate. Consider the following:
(‘f λn. if n-1 = 0 then 0 else self.f (n-1 & ‘z n)).f 10

Note that self in the function body refers to the full 1-
ary onion containing the label ‘f; thus, the call to self.f is
recursive. This toy example returns 0 at runtime, but it is called
with ten different type parameters: int; int & ‘z int; int & ‘z
(int & ‘z int); and so on. This is termed a polymorphically
recursive function. A standard solution to dealing with such
unbounded cases in program analyses is to simply chop them
off at some fixed point; nCFA is an early example of such an
arbitrary cutoff [Shi91]. While arbitrary cutoffs may work for
program analyses, they make type systems hard for users to
understand and potentially brittle to small refactorings. For Big
Bang we have developed a method extending [LS08, KLS10]
which discovers and naturally merges exactly and only these
recursive contours; there is no fixed bound n.

Lastly, we have developed case constraints, a new form of
conditional type constraints, to accurately follow case branches
when the parameter is statically known; this leads to more
precise and more efficient typing. Case constraints are an
extension of constraint types [Hei94, AWL94, Pot00] but are
also path-sensitive w.r.t. side-effects in case branches. It is well
known that polymorphic subtype constraint systems naturally
encode positive union types via multiple lower bounds; negative
union types are easily encoded by these case constraints.
Gradual tracking in Big Bang The Big Bang type system
is, of course, a conservative approximation and will sometimes
produce false positives. In these cases, a programmer should
add explicit dynamic tracking. Unlike gradual typing, which
starts with dynamic tags on all data and removes tags wherever
possible, gradual tracking starts with no dynamic information
and permits the programmer to incrementally add dynamic tags
as necessary. For example, given a piece of code recursively
iterating over the Big Bang list [1,(),2,(),3,()] , the type
system may not statically know that, e.g., odd elements are
always ints. A Big Bang programmer can still effectively use
this list in two ways, depending the list’s invariant. If the list
simply contains values which are either integers or units, a case
expression can be used to typecase on each element. But if
the list always contains an integer followed by a unit and the

programmer iterates over two elements at a time, the int/unit
alternation will be statically inferred due to the particularly
precise nature of our polyvariant inference algorithm.

The Big Bang type system is also capable of internally rep-
resenting what is traditionally considered dynamic type infor-
mation. For example, consider annotating strings to indicate
that they are safe (such as is done by Django for HTML san-
itization) by for example writing "big" & ‘safe() . Any use
of that onion as a string will implicitly project the string value;
that is, concat ("big" & ‘safe()) "bang" will evaluate
to "bigbang" . We also expect concatenation to handle two
safe strings properly; that is, safeConcat ("big" & ‘safe())
("bang" & ‘safe()) computes to "bigbang" & ‘safe() .
The safeConcat function can check if a string is safe by using
a case expression with a ‘safe x pattern.

Helping programmers understand types Unfortunately,
constraint sets produced by polymorphic subtype constraint-
based type systems are difficult to read and understand; at-
tempts to simplify the constraints [EST95a, Pot01] or to graph-
ically render inferred constraints [FFK+96] have met with only
limited success. We believe these approaches do not abstract
enough information from the underlying constraint sets. To
show the programmer what type of data could be in a vari-
able ob, we provide a shallow view of its possible onion(s); if
ob is a method parameter which is passed either a point or
mpoint (defined above), we show the top-level slice of the set
of disjuncts: {(‘x & ‘y & ‘isZero), (‘x & ‘y & ‘isZero
& ‘magnitude)} . Programmers are then free to interactively
“drill in” to see deeper type structure when needed. Likewise,
type errors are explained interactively; the compiler presents an
error (e.g., “function cannot accept argument of type int”),
the programmer asks for further information about the reason-
ing (either “show why that function cannot accept an int”
or “show how the argument could be an int”), the compiler
responds, and so forth.

Whole program typechecking Because programmers do not
write type annotations in Big Bang, software modules cannot
be coded to a type interface alone. But coding to a type
interface is a shallow notion; many aspects of runtime behavior
cannot be decidably encoded in a type system. Instead of
relying on module boundaries, Big Bang uses a whole-program
typechecking model. This does imply limitations on separate
compilation of modules, although some analysis can still be
done in isolation. Also, type errors will not be caught if no
code activates the program flow on which the type error is
found. But complete unit test coverage is critical in modern
software development and unit tests activate these code paths.
A Big Bang testing tool can statically verify complete unit test
code coverage by checking for unused type constraints (which
imply untested code). This way, code which has not been fully
tested will generate type safety warnings.

Implementing Big Bang To test the Big Bang language de-
sign, we have implemented a typechecker and interpreter in
Haskell. We are now starting on a full compiler implementation
using the LLVM toolchain [LA04]. One particularly challeng-
ing task in compiling Big Bang is the optimization of memory
layout; we must avoid runtime hashing to compute method off-
sets, but the flexibility and incremental construction of onions
makes the static layout problem complex. We intend to build
upon previous work in the area of flexible structure compilation
[Oho95, WDMT02].



References
[AC96] M. Abadi and L. Cardelli. A Theory of Objects. Springer-

Verlag, 1996.
[Age95] Ole Agesen. The cartesian product algorithm. In

Proceedings ECOOP’95, volume 952 of Lecture Notes
in Computer Science, 1995.

[AW93] A. Aiken and E. L. Wimmers. Type inclusion constraints
and type inference. In Proceedings of the International
Conference on Functional Programming Languages and
Computer Architecture, pages 31–41, 1993.

[AWL94] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft
typing with conditional types. In Conference Record of
the Twenty-First Annual ACM Symposium on Principles
of Programming Languages, pages 163–173, 1994.

[BG93] Gilad Bracha and David Griswold. Strongtalk: type-
checking smalltalk in a production environment. In Pro-
ceedings of the eighth annual conference on Object-
oriented programming systems, languages, and appli-
cations, OOPSLA ’93, pages 215–230, New York, NY,
USA, 1993. ACM.

[EST95a] J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic
type inference for objects. In OOPSLA ’95 Conference
Proceedings, volume 30(10), pages 169–184, 1995.

[EST95b] Jonathan Eifrig, Scott Smith, and Valery Tri-
fonov. Type inference for recursively constrained
types and its application to OOP. In Math-
ematical Foundations of Programming Seman-
tics, New Orleans, volume 1 of Electronic Notes
in Theoretical Computer Science. Elsevier, 1995.
http://www.elsevier.nl/locate/entcs/volume1.html.

[FAFH09] Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster,
and Michael Hicks. Static type inference for Ruby. In
Proceedings of the 2009 ACM symposium on Applied
Computing, SAC ’09, pages 1859–1866, New York, NY,
USA, 2009. ACM.

[FFK+96] Cormac Flanagan, Matthew Flatt, Shriram Krishna-
murthi, Stephanie Weirich, and Matthias Felleisen.
Catching bugs in the web of program invariants. In Pro-
ceedings of the ACM SIGPLAN 1996 conference on Pro-
gramming language design and implementation, PLDI
’96, pages 23–32, New York, NY, USA, 1996. ACM.

[GJ90] Justin O. Graver and Ralph E. Johnson. A type system
for smalltalk. In In Seventeenth Symposium on Princi-
ples of Programming Languages, pages 136–150. ACM
Press, 1990.

[Hei94] Nevin Heintze. Set-based analysis of ML programs. In
Proceedings of the 1994 ACM conference on LISP and
functional programming, LFP ’94, pages 306–317, New
York, NY, USA, 1994. ACM.

[KLS10] Aditya Kulkarni, Yu David Liu, and Scott F. Smith. Task
types for pervasive atomicity. In Proceedings of the ACM
international conference on Object oriented program-
ming systems languages and applications, OOPSLA ’10,
pages 671–690, New York, NY, USA, 2010. ACM.

[LA04] C. Lattner and V. Adve. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In
International Symposium on Code Generation and Op-
timization, pages 75–86. IEEE, 2004.

[LS08] Y. D. Liu and S. Smith. Pedigree types. In International
Workshop on Aliasing, Confinement and Ownership in
object-oriented programming (IWACO), 2008.

[MW05] Henning Makholm and J. B. Wells. Type inference,
principal typings, and let-polymorphism for first-class
mixin modules. In Proceedings of the tenth ACM SIG-
PLAN international conference on Functional program-
ming, ICFP ’05, pages 156–167, New York, NY, USA,
2005. ACM.

[Oho95] Atsushi Ohori. A polymorphic record calculus and
its compilation. ACM Trans. Program. Lang. Syst.,
17(6):844–895, November 1995.

[Pot00] François Pottier. A 3-part type inference engine. In
Gert Smolka, editor, Proceedings of the 2000 European
Symposium on Programming (ESOP’00), volume 1782
of Lecture Notes in Computer Science, pages 320–335.
Springer Verlag, March 2000.

[Pot01] François Pottier. Simplifying subtyping constraints: a
theory. Inf. Comput., 170:153–183, November 2001.

[PZ04] Jens Palsberg and Tian Zhao. Type inference for record
concatenation and subtyping. Information and Compu-
tation, 189(1):54 – 86, 2004.

[Shi91] Olin Shivers. Control-Flow Analysis of Higher-Order
Languages. PhD thesis, Carnegie-Mellon University,
1991. Available as CMU Technical Report CMU-CS-
91-145.

[sho] shootout.debian.org. The computer language bench-
marks game. http://shootout.alioth.debian.org/.

[THF10] Sam Tobin-Hochstadt and Matthias Felleisen. Logical
types for untyped languages. In Proceedings of the 15th
ACM SIGPLAN international conference on Functional
programming, ICFP ’10, pages 117–128, New York, NY,
USA, 2010. ACM.

[WDMT02] J. B. Wells, Allyn Dimock, Robert Muller, and Franklyn
Turbak. A calculus with polymorphic and polyvariant
flow types. J. Funct. Programming, 200, 2002.

[WS01] Tiejun Wang and Scott F. Smith. Precise constraint-
based type inference for Java. In ECOOP’01, pages
99–117, 2001.


