
A Schematic Pushdown Reachability Language

Zachary Palmer
Swarthmore College

zachary.palmer@swarthmore.edu

Charlotte Raty
Swarthmore College

ratycharlotte@gmail.com

Abstract
Reachability in pushdown automata has a variety of applications in
program analysis. As analyses grow more complex, so do the au-
tomata they use. While mathematically elegant, the implementation
of reachability for complex automata is an engineering-intensive
process. We present a DSL designed to simplify the specification of
complex pushdown automata and aid in the development of more
sophisticated program analyses.

1. Pushdown Reachability in Program Analysis
In a pushdown automaton, one node is said to reach another if there
is a path between them with a valid series of stack operations.
In program analyses, this notion of pushdown reachability and
the equivalent notion of context-free language (CFL) reachability
are useful in addressing stack validation problems. Early first-
order demand-driven analyses [1, 4, 8, 9] use CFL reachability to
model the program’s call stack to achieve context sensitivity. More
recent higher-order analyses [2, 5] use more sophisticated models
of pushdown automata to improve performance through an abstract
form of garbage collection. Pushdown reachability has also been
applied to achieve structure-transmitted data dependence analysis
by modeling data flow as a stack of lookup operations[3, 7].

As these program analyses have become more complex, so have
the automata they use. In higher-order analyses like PDCFA [5], it
is infeasible for the implementation to conduct reachability over
a full automaton; instead, the automaton’s states are constructed
lazily so only relevant states are explored. The implementations of
DDPA and DRSF [3, 7] additionally represent bundles of similar
transitions abstractly, only adding to the graph those transitions
which affect the analysis’s result.

While these techniques make their respective analyses computa-
tionally feasible, they require significant engineering effort and the
resulting source code bears little resemblance to the original theory.
In the implementation of DDPA, for instance, the aforementioned
transition bundles would be natural to represent as functions. How-
ever, the bundles must be added as edges to the automaton’s graph
and so must be subject to comparison and deduplication. In prac-
tice, this requires a manual defunctionalization [10] of the code, a
tedious and error-prone process.

2. A DSL for Schematic Pushdown Reachability
We ease the process of specifying complex automata for pushdown
reachability queries by introducing a DSL to represent such au-
tomata schematically[6]. Given such a schema, the programmer can
then compute reachability via existing libraries. This DSL is imple-
mented in the form of a series of OCaml PreProcessing eXtension
(PPX) tools which allow the user to define reachability schema in
terms of simple nondeterministic operations.

Reachability schema are written as functions accepting a state
and producing the legal transitions for that state. Figure 1 gives

let%continuation_fn lookup state =
[%pick_lazy

(* Record Projection rule *)
(let%require Assign((x1:variable),

Record(rcd:record)) = state in
let%require Lookup x1’ = [%pop] in
let%require true = equal_var x1 x1’ in
let%require Project(lbl) = [%pop] in
let x2 = get_field lbl rcd in
[Lookup x2]

);
(* Capture rule *)
(let%require Value(v:value) = [%pop] in

let%require Capture2 = [%pop] in
let (se1:stack_element) = [%pop] in
let (se2:stack_element) = [%pop] in
[value; se2; se1]

); ...
];;

Figure 1. Schematic Lookup Code

a = {l=b};
Project("l") Lookup "a"

Lookup "b"

Figure 2. Record Projection: Graph Summarization

a simplified partial schema for the aforementioned DDPA lookup
function, which uses states to represent program points and stack
elements to represent lookup tasks. Each expression given within
the pick_lazy extension is executed nondeterministically. Let us
consider the Record Projection rule.

The first let binding in this rule requires that the state represent
a program point which assigns a record to a variable; the require

extension ensures that computation stops for this rule (and the PDS
is unaffected) if its pattern does not match. The rule then pops the
topmost element of the stack and verifies that it is a lookup for the
variable at this assignment. Finally, we pop the next element of the
stack and use it to project the appropriate field from the record. In
DDPA, records are shallow; this leaves us with the task of looking
up the variable used to define that field.

The code in Figure 1 is written operationally as if we are work-
ing with an actual stack. In practice, such an algorithm is not vi-
able: the automata used in program analysis commonly include
stack-modifying cycles and so a simple all-paths walk of the graph
will not terminate. Pushdown reachability is typically computed by
graph summarization as depicted in Figure 2. As per the rule above,
we have two pushed stack elements – a lookup and a projection –
arriving at a node which defines a record. We can summarize these
two edges with another edge which simplifies the task at hand.

Analysis of more complex language features demands summa-
rizations that span many stack elements; for instance, the Capture
rule in Figure 1 includes four pops. But the best runtime complex-

1 2018/8/17

let%require Assign((x1:variable),
Record(rcd:record)) = state in ◊

let%require Lookup x1’ = O in
let%require true = equal_var x1 x1’ in ◊

let%require Project(lbl) = O in
let x2 = get_field lbl rcd in
[Lookup x2]

Figure 3. Record Projection: Fragment Set

ity is achieved by summarizations which operate on pairs of edges,
so rules such as Capture must be completed in multiple steps, with
each step recording its progress as a continuation within the graph.
The transformation of complex rule into multi-step processes oc-
curs when the DSL’s macros are expanded.

3. Macro Expansion
To translate a reachability schema into a series of pairwise opera-
tions, we must:

1. Break the schema into a set of fragments around pop operations

2. Define a continuation for each fragment in the schema

3. Defunctionalize the continuations to store them in graph edges

4. Encode nondeterministic semantics into OCaml code

This translation process involves two steps: a global step which
addresses the first three points above and a local step which ad-
dresses the fourth. The bulk of theoretical development in the
global step centers around the representation of code fragments.
A code fragment in this model is an AST decorated with

• A series of indexed evaluation holes: result expressions which
must be transformed to produce appropriate continuation values

• A series of indexed extension holes: points in the AST where a
pop is expected and so no value yet exists

• An input hole, present on all fragments except the first, which
evaluates to the most recently evaluated pop or result value

The global step consists of mapping each traditional AST con-
structor (e.g. for let expressions) to a corresponding fragment set
constructor (e.g. building a let fragments). Figure 3 shows the frag-
ment set for the previous Record Projection rule; ◊ denotes an ex-
tension hole, O denotes an input hole, and a shaded background
denotes an evaluation hole. The construction of fragments also pro-
duces metadata regarding free and bound variables; this metadata
is then used to define the continuations that retain evaluation state
between pops.

The continuation type defined in part by the Record Projection
rule appears in Figure 4; the remainder of the type and the generated
code is omitted for brevity. Continuation15 carries the variable x1

and the record rcd so that they are available when an element is
available to be popped. Continuation16 only carries rcd; x1 is
not used after the second pop. These continuations represent the
second and third fragments appearing in Figure 3.

4. Performance and Utility
We experimented with this DSL by reimplementing DDPA’s lookup
function. DDPA’s implementation includes a collection of mi-
crobenchmarks used in related higher-order program analyses, so

type continuation =
| ...
| Continuation15 of variable * record
| Continuation16 of record
| ...

Figure 4. Continuation Type

we evaluated performance and correctness using those programs.
The translation performed by the DSL was correct: it achieved the
same result on those benchmark programs as the original analysis.
The lookup function written in this DSL incurred an average 9%
performance overhead. However, while the original implementa-
tion of DDPA’s lookup function is ∼1300 lines of code and took
multiple weeks to develop from a specification, the reachability
DSL implementation of that lookup function is ∼900 lines of code
with a development time of one day. This suggests that, at present,
a hand-tuned implementation may be desirable for performance
purposes but that the DSL is useful for explorative research.

As a next step, an examination of the performance overhead
is warranted; we have not yet profiled the resulting code. In prin-
ciple, the DSL implementation should run at least as fast as the
hand-written implementation: there is no information hidden from
the DSL and the automated defunctionalization makes available a
range of optimizations (such as continuation sharing) which may
not be evident in or desirable for manually maintained code.

Additionally, a deeper exploration of the tool’s utility is war-
ranted. Our experience suggests that the DSL eases pushdown
reachability specification, but this evidence is presently anecdotal.

5. Broader Applications
The need for the continuation passing, defunctionalizing approach
described above stems from a key property of this problem domain:
the continuations must be subject to comparison and deduplication.
In particular, the functions represented by continuations are known
to be idempotent on the graph to which they add edges and we
must take advantage of this idempotency to guarantee termination
of the summarization algorithm. It is this constraint that prevents
the task from being completed by a simpler tool or even at runtime
by e.g. a monad. For this reason, we suspect that this translation
process (and the artifact which implements it) may be reapplied in
a domain which can make use of a similar idempotency guarantee.

References
[1] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. A practi-

cal framework for demand-driven interprocedural data flow analysis.
TOPLAS, November 1997.

[2] Christopher Earl, Ilya Sergey, Matthew Might, and David Van Horn.
Introspective pushdown analysis of higher-order programs. ICFP
2012.

[3] Leandro Facchinetti, Zachary Palmer, and Scott F. Smith. Relative
store fragments for singleton abstraction. In SAS 2017.

[4] Susan Horwitz, Thomas Reps, and Mooly Sagiv. Demand interproce-
dural dataflow analysis. SIGSOFT ’95.

[5] J. Ian Johnson, Ilya Sergey, Christopher Earl, Matthew Might, and
David Van Horn. Pushdown flow analysis with abstract garbage
collection. Journal of Functional Programming, 24(2-3), 2014.

[6] Zachary Palmer and Charlotte Raty. Pushdown reachability DSL.
https://github.com/JHU-PL-Lab/pdr-programming, 2018.

[7] Zachary Palmer and Scott F. Smith. Higher-order demand-driven
program analysis. In ECOOP 2016.

[8] Thomas Reps. Shape analysis as a generalized path problem. PEPM
’95.

[9] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interproce-
dural dataflow analysis via graph reachability. POPL ’95.

[10] John C. Reynolds. Definitional interpreters for higher-order program-
ming languages. In Proceedings of the ACM Annual Conference -
Volume 2, ACM ’72.

2 2018/8/17

