Demand-Driven Relative Store Fragments for

 Singleton AbstractionLittle Store's Big Journey

Leandro Facchinetti ${ }^{1} \quad$ Zachary Palmer $^{2} \quad$ Scott F. Smith ${ }^{1}$

The Johns Hopkins University ${ }^{1}$
Swarthmore College ${ }^{2}$
September 1st, 2017

Some Program Analyses

Some Program Analyses

Some Program Analyses

First Order
for (int i=0;i<n;i++)

Higher Order
fold ($\lambda \mathrm{a}$ e -> ...)

Some Program Analyses

Demand-Driven Higher-Order Program Analyses

DDPA
 DRSF

Context-sensitive

Flow-sensitive

Path-sensitive

Must-alias

Non-local variables

Demand-Driven Higher-Order Program Analyses

DDPA
 DRSF

Context-sensitive

Flow-sensitive

Path-sensitive
Must-alias

Non-local variables

Demand-Driven Higher-Order Program Analyses

DDPA
 DRSF

Context-sensitive

Flow-sensitive

Path-sensitive
Must-alias

Non-local variables

Demand-Driven Higher-Order Program Analyses

DDPA
 DRSF

Context-sensitive \quad Contours

Flow-sensitive

Path-sensitive

> Must-alias

Non-local variables

Demand-Driven Higher-Order Program Analyses

DDPA
 DRSF

Context-sensitive $\quad \checkmark$ Contours

Flow-sensitive $\quad \checkmark$ Natural

Path-sensitive

Must-alias

Non-local variables

Demand-Driven Higher-Order Program Analyses

DDPA
 DRSF

Context-sensitive \quad Contours

Flow-sensitive $\quad \checkmark$ Natural
Path-sensitive ~ Filters

> Must-alias

Non-local variables

\checkmark

Demand-Driven Higher-Order Program Analyses

DDPA
 DRSF

Context-sensitive $\quad \checkmark$ Contours

Flow-sensitive
\checkmark Natural

Path-sensitive ~ Filters

$$
\text { Must-alias } \sim \text { A Mess }
$$

Non-local variables
\checkmark
\checkmark

Demand-Driven Higher-Order Program Analyses

DDPA
 DRSF

Context-sensitive $\quad \checkmark$ Contours

Flow-sensitive
\checkmark Natural

Path-sensitive ~ Filters

$$
\text { Must-alias } \sim \text { A Mess }
$$

Non-local variables $\quad \checkmark$ Lookup

Demand-Driven Higher-Order Program Analyses

DDPA
 DRSF

Context-sensitive	\checkmark Contours	\checkmark Little Stores
Flow-sensitive	\checkmark Natural	\checkmark Little Stores
Path-sensitive	\sim Filters	\checkmark Little Stores
Must-alias	\sim A Mess	\checkmark Little Stores

Non-local variables \quad Lookup \quad Lookup

DDPA by Example

DDPA by Example

$$
\begin{aligned}
& \text { let } \mathrm{f}=\mathrm{fun} \mathrm{p}-> \\
& \quad \text { let } \mathrm{x}=\mathrm{p} \text { in } \\
& \quad \text { fun } \mathrm{y}->\mathrm{x}+\mathrm{y} \\
& \text { in } \\
& \text { let } \mathrm{g}=\mathrm{f} 4 \text { in } \\
& \text { let } \mathrm{v}=1 \text { in } \\
& \text { let } \mathrm{z}=\mathrm{g} \mathrm{v} \text { in } \mathrm{z}
\end{aligned}
$$

DDPA by Example

Initial CFG

$$
\begin{aligned}
& \text { let } \mathrm{f}=\mathrm{fun} \mathrm{p}-> \\
& \quad \text { let } \mathrm{x}=\mathrm{p} \text { in } \\
& \quad \text { fun } \mathrm{y}-\mathrm{x}+\mathrm{y} \\
& \text { in } \\
& \text { let } \mathrm{g}=\mathrm{f} 4 \text { in } \\
& \text { let } \mathrm{v}=1 \text { in } \\
& \text { let } \mathrm{z}=\mathrm{g} \mathrm{v} \text { in } \mathrm{z}
\end{aligned}
$$

DDPA by Example

Expand function call f 4

$$
\begin{aligned}
& \text { let } \mathrm{f}=\mathrm{fun} \mathrm{p}-> \\
& \quad \text { let } \mathrm{x}=\mathrm{p} \text { in } \\
& \quad \text { fun } \mathrm{y}->\mathrm{x}+\mathrm{y} \\
& \text { in } \\
& \text { let } \mathrm{g}=\mathrm{f} 4 \text { in } \\
& \text { let } \mathrm{v}=1 \text { in } \\
& \text { let } \mathrm{z}=\mathrm{g} \mathrm{v} \text { in } \mathrm{z}
\end{aligned}
$$

DDPA by Example

Expand function call f 4

$$
\begin{aligned}
& \text { let } f=\text { fun } p-> \\
& \\
& \quad \text { let } x=p \text { in } \\
& \\
& \text { fun } y->x+y \\
& \text { in } \\
& \text { let } g=f 4 \text { in } \\
& \text { let } v=1 \text { in } \\
& \text { let } z=g \text { in } z
\end{aligned}
$$

DDPA by Example

Expand function call f 4

```
let f = fun p ->
    let }x=p i
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
    Lookup
let z = g v in z
```


DDPA by Example

Expand function call f 4

$$
\begin{aligned}
& \text { let } f=\text { fun } p-> \\
& \\
& \quad \text { let } x=p \text { in } \\
& \\
& \text { fun } y->x+y \\
& \text { in } \\
& \text { let } g=f 4 \text { in } \\
& \text { let } v=1 \text { in } \\
& \text { let } z=g \text { in } z
\end{aligned}
$$

"Look Pup"

DDPA by Example

Expand function call f 4

```
let f = fun p ->
    let }x=p i
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
    Lookup
let z = g v in z
```


DDPA by Example

Expand function call f 4

$$
\begin{aligned}
& \text { let } f=\text { fun } p-> \\
& \\
& \quad \text { let } x=p \text { in } \\
& \\
& \text { fun } y->x+y \\
& \text { in } \\
& \text { let } g=f 4 \text { in } \\
& \text { let } v=1 \text { in } \\
& \text { let } z=g \text { in } z
\end{aligned}
$$

DDPA by Example

Expand function call f 4

```
let f = fun p ->
    let }x=p i
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
    Lookup
let z = g v in z
```


DDPA by Example

Expand function call f 4

$$
\begin{aligned}
& \text { let } f=\text { fun } p-> \\
& \\
& \quad \text { let } x=p \text { in } \\
& \\
& \text { fun } y->x+y \\
& \text { in } \\
& \text { let } g=f 4 \text { in } \\
& \text { let } v=1 \text { in } \\
& \text { let } z=g \text { in } z
\end{aligned}
$$

DDPA by Example

Wire in function call f 4

$$
\text { let } \begin{aligned}
& \mathrm{f}=\mathrm{fun} \mathrm{p}-> \\
& \text { let } \mathrm{x}=\mathrm{p} \text { in } \\
& \text { fun } \mathrm{y}->\mathrm{x}+\mathrm{y}
\end{aligned}
$$

in
let $\mathrm{g}=\mathrm{f} 4 \mathrm{in}$
let $v=1$ in
let $z=g \mathrm{v}$ in z

DDPA by Example

Wire in function call f 4

$$
\text { let } \begin{aligned}
& f=\text { fun } p-> \\
& \text { let } x=p \text { in } \\
& \text { fun } y->x+y
\end{aligned}
$$

in
let $g=f 4$ in
let $\mathrm{v}=1 \mathrm{in}$
let $z=g \mathrm{v}$ in z

DDPA by Example

Expand function call g v

$$
\text { let } \begin{aligned}
& f=\text { fun } p-> \\
& \text { let } x=p \text { in } \\
& \text { fun } y->x+y
\end{aligned}
$$

in
let $g=f 4$ in
let $\mathrm{v}=1 \mathrm{in}$
let $z=g \mathrm{v}$ in z

DDPA by Example

Expand function call g v

$$
\text { let } \begin{aligned}
& f=\text { fun } p-> \\
& \text { let } x=p \text { in } \\
& \text { fun } y->x+y
\end{aligned}
$$

in
let $g=f 4$ in
let $\mathrm{v}=1 \mathrm{in}$
let $\mathbf{z}=\mathrm{g} v$ in \mathbf{z}

DDPA by Example

Expand function call g v

$$
\text { let } \begin{aligned}
& f=\text { fun } p-> \\
& \text { let } x=p \text { in } \\
& \text { fun } y->x+y
\end{aligned}
$$

in
let $g=f 4$ in
let $\mathrm{v}=1 \mathrm{in}$
let $z=g \mathrm{v}$ in z

DDPA by Example

Expand function call g v

$$
\text { let } \begin{aligned}
& f=\text { fun } p-> \\
& \text { let } x=p \text { in } \\
& \text { fun } y->x+y
\end{aligned}
$$

in
let $g=f 4$ in
let $\mathrm{v}=1 \mathrm{in}$
let $z=g \mathrm{v}$ in z

DDPA by Example

Expand function call g v

$$
\text { let } \begin{aligned}
& f=\text { fun } p-> \\
& \text { let } x=p \text { in } \\
& \text { fun } y->x+y
\end{aligned}
$$

in
let $\mathrm{g}=\mathrm{f} 4 \mathrm{in}$
let $\mathrm{v}=1 \mathrm{in}$
let $z=g \mathrm{v}$ in z

DDPA by Example

Expand function call g v

$$
\text { let } \begin{aligned}
& f=\text { fun } p-> \\
& \text { let } x=p \text { in } \\
& \text { fun } y->x+y
\end{aligned}
$$

in
let $\mathrm{g}=\mathrm{f} 4 \mathrm{in}$
let $\mathrm{v}=1 \mathrm{in}$
Lookup
let $z=g \mathrm{v}$ in z

DDPA by Example

Expand function call g v

$$
\text { let } f=\text { fun } p->
$$

$$
\text { let } x=p \text { in }
$$

$$
\text { fun } y \rightarrow x+y
$$

in
let $g=f 4$ in
let $\mathrm{v}=1 \mathrm{in}$
let $z=g \mathrm{v}$ in z

Lookup

DDPA by Example

Expand function call g v

$$
\text { let } f=\text { fun } p->
$$

$$
\text { let } x=p \text { in }
$$

$$
\text { fun } y \rightarrow x+y
$$

in
let $g=f 4$ in
let $\mathrm{v}=1 \mathrm{in}$
let $z=g \mathrm{v}$ in z

Lookup

DDPA by Example

Wire in function call g v

$$
\text { let } \begin{aligned}
& f=\text { fun } p-> \\
& \text { let } x=p \text { in } \\
& \text { fun } y->x+y
\end{aligned}
$$

in
let $g=f 4$ in
let $\mathrm{v}=1 \mathrm{in}$
let $z=g \mathrm{v}$ in \mathbf{z}

DDPA by Example

Parameter lookup: y

$$
\text { let } f=\text { fun } p->
$$

$$
\text { let } x=p \text { in }
$$

$$
\text { fun } y \rightarrow x+y
$$

in

$$
\text { let } g=f 4 \text { in }
$$

$$
\text { let } \mathrm{v}=1 \text { in }
$$

$$
\text { let } z=g \mathrm{v} \text { in } \mathrm{z}
$$

DDPA by Example

Parameter lookup: y

$$
\begin{aligned}
& \text { let } \mathrm{f}=\mathrm{fun} \mathrm{p}-\mathrm{>} \\
& \quad \text { let } \mathrm{x}=\mathrm{p} \text { in } \\
& \quad \text { fun } \mathrm{y}->\mathrm{x}+\mathrm{y} \\
& \text { in } \\
& \text { let } \mathrm{g}=\mathrm{f} 4 \text { in } \\
& \text { let } \mathrm{v}=1 \text { in } \\
& \text { let } \mathrm{z}=\mathrm{g} \mathrm{v} \text { in } \mathrm{z}
\end{aligned}
$$

DDPA by Example

Parameter lookup: y

$$
\begin{aligned}
& \text { let } \mathrm{f}=\mathrm{fun} \mathrm{p}-\mathrm{p} \\
& \quad \text { let } \mathrm{x}=\mathrm{p} \text { in } \\
& \quad \text { fun } \mathrm{y}->\mathrm{x}+\mathrm{y} \\
& \text { in } \\
& \text { let } \mathrm{g}=\mathrm{f} 4 \text { in } \\
& \text { let } \mathrm{v}=1 \text { in } \\
& \text { let } \mathrm{z}=\mathrm{g} \mathrm{v} \text { in } \mathrm{z}
\end{aligned}
$$

y

Lookup

DDPA by Example

Non-local lookup: x

$$
\begin{aligned}
& \text { let } f=\text { fun } p-> \\
& \quad \text { let } x=p \text { in } \\
& \quad \text { fun } y->x+y \\
& \text { in } \\
& \text { let } g=f 4 \text { in } \\
& \text { let } v=1 \text { in } \\
& \text { let } z=g \text { in } z
\end{aligned}
$$

DDPA by Example

Non-local lookup: x

$$
\text { let } f=\text { fun } p->
$$

$$
\text { let } x=p \text { in }
$$

$$
\text { fun } y \rightarrow x+y
$$

$$
\begin{aligned}
& \text { in } \\
& \text { let } g=f 4 \text { in } \\
& \text { let } v=1 \text { in } \\
& \text { let } z=g \text { in } z
\end{aligned}
$$

DDPA by Example

Non-local lookup: x

$$
\text { let } f=\text { fun } p->
$$

$$
\text { let } x=p \text { in }
$$

$$
\text { fun } y \rightarrow x+y
$$

in

$$
\text { let } g=f 4 \text { in }
$$

$$
\text { let } v=1 \text { in }
$$

$$
\begin{array}{|c|}
\hline \mathrm{x} \\
\text { Lookup }
\end{array}
$$

$$
\text { let } z=g \mathrm{v} \text { in } \mathrm{z}
$$

DDPA by Example

Non-local lookup: x

$$
\begin{aligned}
& \text { let } f=\text { fun } p-> \\
& \quad \text { let } x=p \text { in } \\
& \text { fun } y->x+y \\
& \text { in } \\
& \text { let } g=f 4 \text { in } \\
& \text { let } v=1 \text { in }
\end{aligned}
$$

$$
\mathrm{x}
$$

Lookup

DDPA by Example

Non-local lookup: x

$$
\begin{aligned}
& \text { let } f=\text { fun } p-> \\
& \quad \text { let } x=p \text { in } \\
& \text { fun } y->x+y \\
& \text { in } \\
& \text { let } g=f 4 \text { in } \\
& \text { let } v=1 \text { in }
\end{aligned}
$$

$$
\mathrm{x}
$$

Lookup

DDPA by Example

Non-local lookup: x

$$
\begin{aligned}
& \text { let } \mathrm{f}=\mathrm{fun} \mathrm{p}-> \\
& \quad \text { let } \mathrm{x}=\mathrm{p} \text { in } \\
& \quad \text { fun } \mathrm{y}-\mathrm{x}+\mathrm{y} \\
& \text { in } \\
& \text { let } \mathrm{g}=\mathrm{f} 4 \text { in } \\
& \text { let } \mathrm{v}=1 \text { in } \\
& \text { let } \mathrm{z}=\mathrm{g} \mathrm{v} \text { in } \mathrm{z}
\end{aligned}
$$

$$
\mathrm{g}
$$

$$
\mathrm{x}
$$

Lookup Stack

DDPA by Example

Non-local lookup: x

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
```

Lookup Stack

DDPA by Example

Non-local lookup: x

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
let \(\mathbf{z}=\mathrm{g} v\) in \(\mathbf{z}\)
```


DDPA by Example

Non-local lookup: x

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
```

Lookup Stack

Lookup Stack

DDPA by Example

Non-local lookup: x

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
let \(\mathbf{z}=\mathrm{g} v\) in \(\mathbf{z}\)
```


DDPA by Example

Non-local lookup: x

$$
\begin{aligned}
& \text { let } \mathrm{f}=\mathrm{fun} \mathrm{p}-\mathrm{>} \\
& \quad \text { let } \mathrm{x}=\mathrm{p} \text { in } \\
& \quad \text { fun } \mathrm{y}->\mathrm{x}+\mathrm{y} \\
& \text { in } \\
& \text { let } \mathrm{g}=\mathrm{f} 4 \text { in } \\
& \text { let } \mathrm{v}=1 \text { in } \\
& \text { let } \mathrm{z}=\mathrm{g} \mathrm{v} \text { in } \mathrm{z}
\end{aligned}
$$

Lookup Stack

DDPA by Example

Non-local lookup: x

$$
\begin{aligned}
& \text { let } \mathrm{f}=\mathrm{fun} \mathrm{p}-\mathrm{>} \\
& \quad \text { let } \mathrm{x}=\mathrm{p} \text { in } \\
& \quad \text { fun } \mathrm{y}->\mathrm{x}+\mathrm{y} \\
& \text { in } \\
& \text { let } \mathrm{g}=\mathrm{f} 4 \text { in } \\
& \text { let } \mathrm{v}=1 \text { in } \\
& \text { let } \mathrm{z}=\mathrm{g} \mathrm{v} \text { in } \mathrm{z}
\end{aligned}
$$

Lookup Stack

DDPA by Example

Non-local lookup: x

DDPA by Example

Non-local lookup: x

$$
\text { let } \begin{aligned}
& \mathrm{f}=\mathrm{fun} \mathrm{p}-> \\
& \text { let } \mathrm{x}=\mathrm{p} \text { in } \\
& \text { fun } \mathrm{y}->\mathrm{x}+\mathrm{y}
\end{aligned}
$$

in
let $g=f 4$ in
let $\mathrm{v}=1 \mathrm{in}$
let $\mathrm{z}=\mathrm{g} \mathrm{v}^{2}$ -

Lookup Stack

DDPA by Example

Non-local lookup: x

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 jn
let z =0, in z
```

Lookup Stack

p

DDPA by Example

Non-local lookup: x

DDPA by Example

Non-local lookup: x

DDPA

- Value lookup on demand: no explicit store!

DDPA

- Value lookup on demand: no explicit store!
- Lookup stack: intermediate lookups

DDPA

- Value lookup on demand: no explicit store!
- Lookup stack: intermediate lookups
- Function calls
- Record projections
- Binary operators
- ...

DDPA

- Value lookup on demand: no explicit store!
- Lookup stack: intermediate lookups
- Function calls
- Record projections
- Binary operators
- ...
- Polymorphism via abstract call stack

DDPA

- Value lookup on demand: no explicit store!
- Lookup stack: intermediate lookups
- Function calls
- Record projections
- Binary operators
- ...
- Polymorphism via abstract call stack
- Recursion via pushdown reachability

DDPA

- Value lookup on demand: no explicit store!
- Lookup stack: intermediate lookups
- Function calls
- Record projections
- Binary operators
- ...
- Polymorphism via abstract call stack
- Recursion via pushdown reachability

Connection to forward analyses?

DDPA and Abstract Stores

DDPA and Abstract Stores

DDPA and Abstract Stores

$$
\{p \mapsto 4\}
$$

DDPA and Abstract Stores

$$
\{\mathrm{p} \mapsto 4\}\left\{\begin{array}{l}
\mathrm{p} \mapsto 4 \\
\mathrm{x} \mapsto 4
\end{array}\right\}
$$

\{\}

- "Big stores": complete sets of bindings

DDPA and Abstract Stores

$$
\left\{\begin{array}{l}
\mathrm{p} \mapsto 4 \\
\mathrm{x} \mapsto 4
\end{array}\right\}
$$

- "Big stores": complete sets of bindings
- DDPA: reconstruct big stores with lookups

DDPA and Abstract Stores

$$
\left\{\begin{array}{l}
\mathrm{p} \mapsto 4 \\
\mathrm{x} \mapsto 4
\end{array}\right\}
$$

- "Big stores": complete sets of bindings
- DDPA: reconstruct big stores with lookups

DDPA and Abstract Stores

$$
\left\{\begin{array}{c}
\mathrm{p} \mapsto 4 \\
\mathrm{x} \mapsto 4
\end{array}\right\}
$$

- "Big stores": complete sets of bindings
- DDPA: reconstruct big stores with lookups

- Lookups from a point are independent

DDPA and Abstract Stores

$$
\left\{\begin{array}{c}
\mathrm{p} \mapsto 4 \\
\mathrm{x} \mapsto 4
\end{array}\right\}
$$

- "Big stores": complete sets of bindings
- DDPA: reconstruct big stores with lookups

- Lookups from a point are independent
- Similar to per-point store widening

DDPA and Variable (Mis-)Alignment

```
1 let f = fun p ->
    let x = p in
    fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z
```


DDPA and Variable (Mis-)Alignment

$$
\begin{aligned}
& 1 \text { let } b=\text { coin_flip () in } \\
& 2 \text { let } f=\text { fun } p \text {-> } \\
& 3 \\
& \text { let } x=p \text { in } \\
& 4 \text { fun } y->x+y \\
& 5 \text { in } \\
& 6 \text { let } g=f(b ? 4: " s ") \text { in } \\
& 7 \text { let } v=(b ? 1: " t ") \text { in } \\
& 8 \text { let } z=g ~ v i n ~
\end{aligned}
$$

DDPA and Variable (Mis-)Alignment

1 let $b=$ coin_flip () in
2 let $f=$ fun $p->$
3
4 let $x=p$ in
4 fun $y->x+y$
5 in
6 let $g=f(b ? 4: " s ")$ in
7 let $v=(b ? 1: " t ")$ in
8 let $z=g ~ v i n ~$

DDPA and Variable (Mis-)Alignment

```
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z
```


DDPA and Variable (Mis-)Alignment

```
1 let \(b=\) coin_flip () in Possible values of \(x+y\) ?
2 let \(f=\) fun \(p->\)
\(3 \quad\) let \(x=p\) in
4 fun \(y \rightarrow x+y\)
5 in
6 let \(g=f(b ? 4: " s ")\) in
7 let \(v=(b ? 1: " t ")\) in
8 let \(z=g\) v in \(z\)
```


DDPA and Variable (Mis-)Alignment

```
1 let b = coin_flip () in
2 let f = fun p ->
3 let }x=p\mathrm{ in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z
```


DDPA and Variable (Mis-)Alignment

```
1 let \(b=\) coin_flip () in
2 let \(f=\) fun \(p\)->
3 let \(x=p\) in
4 fun \(y \rightarrow x+y\)
5 in
6 let \(g=f(b ? 4: " s ")\) in
7 let \(v=(b ? 1: " t ")\) in
8 let \(\mathbf{z}=\mathrm{g} v\) in \(\mathbf{z}\)
```


DDPA and Variable (Mis-)Alignment

```
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z
```

Possible values of $x+y$?

O $\mathrm{x} \in\{4$, "s" $\}$
P $\mathrm{y} \in\{1$, "t" $\}$
$x+y=\left\{\begin{array}{c}4+1 \\ 4+" t " \\ " s "+1 \\ " s "+" t "\end{array}\right\}$

DDPA and Variable (Mis-)Alignment

```
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z
```

Possible values of $x+y$?

O $\mathrm{x} \in\{4$, "s" $\}$
P $\mathrm{y} \in\{1$, "t" $\}$
$x+y=\left\{\begin{array}{c}4+1 \\ 4+" t " \\ " s "+1 \\ " s "+" t "\end{array}\right\}$

DRSF

DRSF

DRSF

DRSF

DRSF

$$
\begin{aligned}
& \underset{\text { and }}{\substack{(0)}}=\{\hat{x} @ \Delta \mapsto \hat{v}, \ldots\}
\end{aligned}
$$

DRSF

$$
\begin{aligned}
& \Delta=[\delta, \ldots]
\end{aligned}
$$

DRSF

$$
\begin{aligned}
& \text { 風 }=\{\hat{x} @ \Delta \mapsto \hat{v}, \ldots\} \\
& \Delta=[\delta, \ldots] \quad \delta::=0 \mathrm{x} \mid \mathrm{Dx}
\end{aligned}
$$

DRSF

$$
\begin{aligned}
& \text { 風 }=\{\hat{x} @ \Delta \mapsto \hat{v}, \ldots\} \\
& \Delta=[\delta, \ldots] \quad \delta::=\square \mathrm{x} \mid \mathrm{Dx}
\end{aligned}
$$

- \triangle CFA [POPL 06] (abstract frame strings)
- PDCFA [JFP \#24 (2014)] (stack deltas, reachability)

DRSF

$$
\begin{aligned}
& \text { 風 }=\{\hat{x} @ \Delta \mapsto \hat{v}, \ldots\} \\
& \Delta=[\delta, \ldots] \quad \delta::=0 \mathrm{x} \mid \mathrm{Dx}
\end{aligned}
$$

- \triangle CFA [POPL 06] (abstract frame strings)
- PDCFA [JFP \#24 (2014)] (stack deltas, reachability)
- Little stores are incomplete

DRSF

$$
\begin{aligned}
& \text { 風 }=\{\hat{x} @ \Delta \mapsto \hat{v}, \ldots\} \\
& \Delta=[\delta, \ldots] \quad \delta::=\square \mathrm{x} \mid \mathrm{Dx}
\end{aligned}
$$

- \triangle CFA [POPL 06] (abstract frame strings)
- PDCFA [JFP \#24 (2014)] (stack deltas, reachability)
- Little stores are incomplete
- Relative (vs. DDPA's absolute)

DRSF

- \triangle CFA [POPL 06] (abstract frame strings)
- PDCFA [JFP \#24 (2014)] (stack deltas, reachability)
- Little stores are incomplete
- Relative (vs. DDPA's absolute)

Demand-Driven Higher-Order Program Analyses

DDPA
 DRSF

Context-sensitive
\checkmark Contours
\checkmark Little Stores

Flow-sensitive
\checkmark Natural
\checkmark Little Stores

Path-sensitive
\sim Filters
\checkmark Little Stores

Must-alias
~A Mess
\checkmark Little Stores

Non-local variables \quad Lookup \quad Lookup

DRSF and Variable Alignment

1 let $b=$ coin_flip () in
2 let $f=$ fun $p->$
3
4
4 let $x=p$ in
5 in
6 let $g=f(b ? 4: " s ")$ in
7 let $v=(b ? 1: " t ")$ in
8 let $z=g ~ v i n z$

DRSF and Variable Alignment

```
1 let b = coin_flip () in
2 let f = fun p ->
3 let }x=p\mathrm{ in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z
```


Lookup Stack

DRSF and Variable Alignment

DRSF and Variable Alignment

Lookup Stack

DRSF and Variable Alignment

$$
\begin{aligned}
& 1 \text { let } b=\text { coin_flip () in } \\
& 2 \text { let } f=\text { fun } p-> \\
& 3 \\
& \text { let } x=p \text { in } \\
& 4 \\
& 5 \text { in } y->x+y \\
& 6 \text { let } g=f(b ? 4: " s ") \text { in } \\
& 7 \text { let } v=(b ? 1: " t ") \text { in } \\
& 8 \text { let } z=g \text { in } z
\end{aligned}
$$

DRSF and Variable Alignment

```
1 let b = coin_flip () in
2 let f = fun p ->
3 let }x=p\mathrm{ in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z
```


Lookup Stack

DRSF and Variable Alignment

1 let $b=$ coin_flip () in
2 let $f=$ fun $p->$
3
4
4 let $x=p$ in
5 in $->x+y$
6 let $g=f(b ? 4: " s ")$ in
7 let $v=(b ? 1: " t ")$ in
8 let $z=g ~ v i n z$

$$
\{y @[] \mapsto 1\}
$$

Lookup Stack

DRSF and Variable Alignment

```
1 let b = coin_flip () in
2 let \(f=\) fun \(p->\)
3 let \(x=p\) in
4 fun \(y \rightarrow x+y\)
5 in
6 let \(g=f(b ? 4: " s ")\) in
7 let \(v=(b ? 1: " t ")\) in
8 let \(z=g\) v in \(z\)
```

$$
\begin{gathered}
\mathrm{b} \\
\{\mathrm{y} @[] \mapsto 1\}
\end{gathered}
$$

Lookup Stack

DRSF and Variable Alignment

1 let $b=$ coin_flip () in
2 let $f=$ fun $p->$
3
4
4 let $x=p$ in
5 in
6 let $g=f(b ? 4: " s ")$ in
7 let $v=(b ? 1: " t ")$ in
8 let $z=g ~ v i n z$

Lookup Stack

DRSF and Variable Alignment

```
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z
```


Lookup Stack

DRSF and Variable Alignment

1 let $b=$ coin_flip () in
2 let $f=$ fun $p->$
3
4
4 let $x=p$ in
5 in
6 let $g=f(b ? 4: " s ")$ in
7 let $v=(b ? 1: " t ")$ in
8 let $z=g ~ v i n z$

Lookup Stack

DRSF and Variable Alignment

1 let $b=$ coin_flip () in
2 let $f=$ fun $p->$
3
4
4 let $x=p$ in
5 in
6 let $g=f(b ? 4: " s ")$ in
7 let $v=(b ? 1: " t ")$ in
8 let $z=g ~ v i n z$

$$
\{\mathrm{b} @[] \mapsto \text { true }\}
$$

$$
\{y 巴[] \mapsto 1\}
$$

Lookup Stack

DRSF and Variable Alignment

1 let $b=$ coin_flip () in
2 let $f=$ fun $p->$
3
4
4 let $x=p$ in
5 in
6 let $g=f(b ? 4: " s ")$ in
7 let $v=(b ? 1: " t ")$ in
8 let $z=g ~ v i n z$

$$
\{\mathrm{b} @[] \mapsto \text { true }\}
$$

$$
\{y @[] \mapsto 1\}
$$

Lookup Stack

DRSF and Variable Alignment

```
1 let b = coin_flip () in
2 let \(f=\) fun \(p->\)
3 let \(x=p\) in
4 fun \(y \rightarrow x+y\)
5 in
6 let \(g=f(b ? 4: " s ")\) in
7 let \(v=(b ? 1: " t ")\) in
8 let \(z=g\) v in \(z\)
```


DRSF and Variable Alignment

1 let $b=$ coin_flip () in
2 let $f=$ fun $p->$
3
4
4 let $x=p$ in
5 in
6 let $g=f(b ? 4: " s ")$ in
7 let $v=(b ? 1: " t ")$ in
8 let $z=g ~ v i n z$

$$
\begin{gathered}
\{\mathrm{b} @[\mathrm{z}] \mapsto \text { true }\} \\
\{\mathrm{y} @[] \mapsto 1\}
\end{gathered}
$$

Lookup Stack

DRSF and Variable Alignment

1 let $b=$ coin_flip () in
2 let $f=$ fun $p->$
3
4
4 let $x=p$ in
5 in
6 let $g=f(b ? 4: " s ")$ in
7 let $v=(b ? 1: " t ")$ in
8 let $z=g ~ v i n z$

$$
\frac{\{\mathrm{b} @[\mathrm{z}] \mapsto \text { true }\}}{\{\mathrm{y} @[] \mapsto 1\}}
$$

Lookup Stack

DRSF and Variable Alignment

1 let $b=$ coin_flip () in
2 let $f=$ fun $p->$
3
4
4 let $x=p$ in
5 in $->x+y$
6 let $g=f(b ? 4: " s ")$ in
7 let $v=(b ? 1: " t ")$ in
8 let $z=g ~ v i n z$

$$
\left\{\begin{array}{c}
y @[] \mapsto 1 \\
\mathrm{b@[} \mathrm{\square z]} \mapsto \text { true }
\end{array}\right\}
$$

Lookup Stack

DRSF and Variable Alignment

1 let $b=$ coin_flip () in
2 let $f=$ fun $p->$
3
4
4 let $x=p$ in
5 in
6 let $g=f(b ? 4: " s ")$ in
7 let $v=(b ? 1: " t ")$ in
8 let $z=g ~ v i n z$

$$
\left\{\begin{array}{c}
\mathrm{y} @[] \mapsto 1, \\
\mathrm{~b} @[\mathrm{zz}] \mapsto \text { true }
\end{array}\right\}
$$

Lookup Stack

DRSF and Variable Alignment

DRSF and Variable Alignment

DRSF and Variable Alignment

$$
\begin{aligned}
& 1 \text { let } b=\text { coin_flip () in } \\
& 2 \text { let } f=\text { fun } p-> \\
& 3 \\
& \text { let } x=p \text { in } \\
& 4 \text { fun } y->x+y \\
& 5 \text { in } \\
& 6 \text { let } g=f(b ? 4: " s ") \text { in } \\
& 7 \text { let } v=(b ? 1: " t ") \text { in } \\
& 8 \text { let } z=g \text { in } z
\end{aligned}
$$

DRSF and Variable Alignment

1 let $b=$ coin_flip () in
2 let $f=$ fun $p->$
3
4
4 let $x=p$ in
5 in
6 let $g=f(b ? 4: " s ")$ in
7 let $v=(b ? 1: " t ")$ in
8 let $z=g ~ v i n z$

Lookup Stack

DRSF and Variable Alignment

```
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z
```

$\leftarrow \mathrm{g}$
x
$\square \mathrm{z}$

Lookup Stack

DRSF and Variable Alignment

```
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z
```


Lookup Stack

DRSF and Variable Alignment

Lookup Stack

DRSF and Variable Alignment

DRSF and Variable Alignment

```
1 let b = coin_flip () in
2 let f = fun p ->
3 let }x=p\mathrm{ in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z
```


DRSF and Variable Alignment

DRSF and Variable Alignment

Merging Relative Store Fragments

$$
\left\{\begin{array}{c}
\mathrm{x} @[] \mapsto 4, \\
\mathrm{~b} @[\square \mathrm{z}] \mapsto \text { true }
\end{array}\right\} \oplus\left\{\begin{array}{c}
\mathrm{y} @[] \mapsto 1 \\
\mathrm{~b} @[\square \mathrm{z}] \mapsto \text { true }
\end{array}\right\}=
$$

Merging Relative Store Fragments

$$
\left\{\begin{array}{c}
\mathrm{x} @[] \mapsto 4, \\
\mathrm{~b}[[\mathrm{z}] \mapsto \text { true }
\end{array}\right\} \oplus\left\{\begin{array}{c}
\mathrm{y} @] \mapsto 1, \\
\mathrm{~b}[[\mathrm{cz}] \mapsto \text { true }
\end{array}\right\}=\left\{\begin{array}{c}
\mathrm{x} @] \mapsto 4, \\
\mathrm{y} @] \mapsto 1, \\
\mathrm{~b}[[\mathrm{z}] \mapsto \text { true }
\end{array}\right\}
$$

Merging Relative Store Fragments

$$
\begin{aligned}
& \left\{\begin{array}{c}
x @[] \mapsto 4, \\
b @[0 z] \mapsto \text { true }
\end{array}\right\} \oplus\left\{\begin{array}{c}
y @[] \mapsto 1, \\
b @[0 z] \mapsto \text { true }
\end{array}\right\}=\left\{\begin{array}{c}
x @[] \mapsto 4, \\
y @[] \mapsto 1, \\
b @[\square z] \mapsto \text { true }
\end{array}\right\} \\
& \left\{\begin{array}{c}
x @[] \mapsto \text { "s", } \\
b @[\square z] \mapsto \text { false }
\end{array}\right\} \oplus\left\{\begin{array}{c}
y @[] \mapsto \text { "t", } \\
b @[\square z] \mapsto \text { false }
\end{array}\right\}=
\end{aligned}
$$

Merging Relative Store Fragments

$$
\begin{aligned}
& \left\{\begin{array}{c}
x @[] \mapsto " s ", \\
b @[\square z] \mapsto f a l s e
\end{array}\right\} \oplus\left\{\begin{array}{c}
y @[] \mapsto " t ", \\
b @[\square z] \mapsto f a l s e
\end{array}\right\}=\left\{\begin{array}{c}
x @[] \mapsto " s ", \\
y @[] \mapsto " t ", \\
b @[\neg z] \mapsto \text { false }
\end{array}\right\}
\end{aligned}
$$

Merging Relative Store Fragments

$$
\begin{aligned}
& \left\{\begin{array}{c}
x @[] \mapsto " s ", \\
b @[[z] \mapsto f a l s e
\end{array}\right\} \oplus\left\{\begin{array}{c}
y @[] \mapsto " t ", \\
b @[(z] \mapsto f a l s e
\end{array}\right\}=\left\{\begin{array}{c}
x @[] \mapsto " s ", \\
y @[] \mapsto " t ", \\
b @[\square z] \mapsto \text { false }
\end{array}\right\} \\
& \left\{\begin{array}{c}
x @[] \mapsto 4, \\
b @[\neg z] \mapsto \text { true }
\end{array}\right\} \oplus\left\{\begin{array}{c}
y @[] \mapsto " t ", \\
b @[\Delta z] \mapsto \text { false }
\end{array}\right\}= \\
& \left\{\begin{array}{c}
x @[] \mapsto " s ", \\
b @[\neg z] \mapsto \text { false }
\end{array}\right\} \oplus\left\{\begin{array}{c}
y @[] \mapsto 1, \\
b @[\square z] \mapsto \text { true }
\end{array}\right\}=
\end{aligned}
$$

Merging Relative Store Fragments

$$
\begin{aligned}
& \left\{\begin{array}{c}
x @[] \mapsto 4, \\
b @[0 z] \mapsto \text { true }
\end{array}\right\} \oplus\left\{\begin{array}{c}
y @[] \mapsto 1, \\
b @[\square z] \mapsto \text { true }
\end{array}\right\}=\left\{\begin{array}{c}
x @[] \mapsto 4, \\
y @[] \mapsto 1, \\
b @[\square z] \mapsto \text { true }
\end{array}\right\} \\
& \left\{\begin{array}{c}
x @[] \mapsto \text { "s", } \\
b @[0 z] \mapsto \text { false }
\end{array}\right\} \oplus\left\{\begin{array}{c}
y @[] \mapsto " t ", \\
b @[\subset z] \mapsto \text { false }
\end{array}\right\}=\left\{\begin{array}{c}
x @[] \mapsto " s ", \\
y @[] \mapsto " t ", \\
b @[0 z] \mapsto \text { false }
\end{array}\right\} \\
& \left\{\begin{array}{c}
x @[] \mapsto 4, \\
b @[a z] \mapsto \text { true }
\end{array}\right\} \oplus\left\{\begin{array}{c}
y @[] \mapsto \text { "t", } \\
b @[a z] \mapsto \text { false }
\end{array}\right\}= \\
& \left\{\begin{array}{c}
x @[] \mapsto \text { "s", } \\
b @[\subset z] \mapsto \text { false }
\end{array}\right\} \oplus\left\{\begin{array}{c}
y @[] \mapsto 1, \\
b @[\subset z] \mapsto \text { true }
\end{array}\right\}=
\end{aligned}
$$

Merging Relative Store Fragments

$$
\begin{aligned}
& \left\{\begin{array}{c}
x @[] \mapsto 4, \\
b @[0 z] \mapsto \text { true }
\end{array}\right\} \oplus\left\{\begin{array}{c}
y @[] \mapsto 1, \\
b @[\square z] \mapsto \text { true }
\end{array}\right\}=\left\{\begin{array}{c}
x @[] \mapsto 4, \\
y @[] \mapsto 1, \\
b @[\square z] \mapsto \text { true }
\end{array}\right\} \\
& \left\{\begin{array}{c}
x @[] \mapsto \text { "s", } \\
b @[0 z] \mapsto \text { false }
\end{array}\right\} \oplus\left\{\begin{array}{c}
y @[] \mapsto " t ", \\
b @[\subset z] \mapsto \text { false }
\end{array}\right\}=\left\{\begin{array}{c}
x @[] \mapsto " s ", \\
y @[] \mapsto " t ", \\
b @[0 z] \mapsto \text { false }
\end{array}\right\} \\
& \left\{\begin{array}{c}
x @[] \mapsto 4, \\
b @[a z] \mapsto \text { true }
\end{array}\right\} \oplus\left\{\begin{array}{c}
y @[] \mapsto \text { "t", } \\
b @[\triangle z] \mapsto \text { false }
\end{array}\right\}= \\
& \left\{\begin{array}{c}
x @[] \mapsto \text { "s", } \\
b @[\subset z] \mapsto \text { false }
\end{array}\right\} \oplus\left\{\begin{array}{c}
y @[] \mapsto 1, \\
b @[\subset z] \mapsto \text { true }
\end{array}\right\}=
\end{aligned}
$$

Polymorphism via Δ

1 let $f=$ fun $x \rightarrow x$ in
2 let $a=4$ in
3 let $b=f$ in
4 let $c=4 S^{\prime \prime}$ in
5 let $d=f$ in
60

Polymorphism via Δ

1 let $f=$ fun $x \rightarrow x$ in
2 let $a=4$ in
3 let $b=f$ in
4 let $c=$ "S" in
5 let $d=f$ in
60

Polymorphism via Δ

${ }_{1}$ let $f=$ fun $x \rightarrow x$ in
2 let $a=4$ in
3 let $b=f$ in
4 let $c=4 s^{\prime \prime}$ in
5 let $d=f$ in
60

Polymorphism via Δ

1 let $f=$ fun $x \rightarrow x$ in
2 let $a=4$ in
3 let $b=f$ in
4 let $c=$ "S" in
5 let $d=f$ in
60

Polymorphism via Δ

${ }_{1}$ let $f=$ fun $x \rightarrow x$ in
2 let $a=4$ in
3 let $b=f$ in
4 let $c=4 s^{\prime \prime}$ in
5 let $d=f$ in
60

Polymorphism via Δ

1 let $f=$ fun $x \rightarrow x$ in
2 let $a=4$ in
3 let $b=f$ in
4 let $c=$ "S" in
5 let $d=f$ in
60

Polymorphism via Δ

${ }^{1}$ let $f=$ fun $x \rightarrow x$ in
2 let $a=4$ in
3 let $b=f$ in
4 let $c=" s$ " in
5 let $d=f$ in
60

Polymorphism via Δ

1 let $f=$ fun $x \rightarrow x$ in
2 let $a=4$ in
3 let $b=f$ in
4 let $c=$ "S" in
5 let $d=f$ in
60

Lookup Stack

Polymorphism via Δ

Polymorphism via Δ

1 let $f=$ fun $x \rightarrow x$ in
2 let $a=4$ in
3 let $b=f$ in
4 let $c=$ "S" in
5 let $d=f$ in
60

c
d
Dd
Lookup Stack

Polymorphism via Δ

${ }_{1}$ let $f=$ fun $x \rightarrow x$ in
2 let $a=4$ in
3 let $b=f$ in
4 let $c=4 s^{\prime \prime}$ in
5 let $d=f$ in
60

$\{c @[] \mapsto " s "\}$
(d
Dd
Lookup Stack

Polymorphism via Δ

Polymorphism via Δ

1 let $f=$ fun $x \rightarrow x$ in
2 let $a=4$ in
3 let $b=f$ in
4 let $c=$ "S" in
5 let $d=f$ in
60

$$
\{c @[] \mapsto " s "\}
$$

Lookup Stack

Polymorphism via Δ

Polymorphism via Δ

1 let $f=$ fun $x \rightarrow x$ in
2 let $a=4$ in
3 let $b=f$ in
4 let $c=$ "S" in
5 let $d=f$ in
60

a
Db
Dd
Lookup Stack

Polymorphism via Δ

${ }_{1}$ let $f=$ fun $x \rightarrow x$ in
2 let $a=4$ in
3 let $b=f$ in
4 let $c=4 s^{\prime \prime}$ in
5 let $d=f$ in
60

$\{\mathrm{c} @[] \mapsto 4\}$
b
Dd
Lookup Stack

Polymorphism via Δ

Polymorphism via Δ

1 let $f=$ fun $x \rightarrow x$ in
2 let $a=4$ in
3 let $b=f$ in
4 let $c=$ "S" in
5 let $d=f$ in
60

Singleton Abstractions via Full Traces

- Traces Δ represent relative stack adjustments

Singleton Abstractions via Full Traces

- Traces Δ represent relative stack adjustments
- Decidability? Finitization

Singleton Abstractions via Full Traces

- Traces Δ represent relative stack adjustments
- Decidability? Finitization
- kDRSF: DRSF with max Δ length k

Singleton Abstractions via Full Traces

- Traces Δ represent relative stack adjustments
- Decidability? Finitization
- kDRSF: DRSF with max Δ length k
- Not the same meaning as k in k CFA

Singleton Abstractions via Full Traces

- Traces Δ represent relative stack adjustments
- Decidability? Finitization
- kDRSF: DRSF with max Δ length k
- Not the same meaning as k in k CFA
- Longer Δ truncated to suffix, marked partial

Singleton Abstractions via Full Traces

- Traces Δ represent relative stack adjustments
- Decidability? Finitization
- kDRSF: DRSF with max Δ length k
- Not the same meaning as k in k CFA
- Longer Δ truncated to suffix, marked partial
- $[\mathrm{Da} \bigcirc \mathrm{b}]+\circ \mathrm{c} \Rightarrow(\circ \mathrm{b} \cap \mathrm{c}]$

Singleton Abstractions via Full Traces

- Traces Δ represent relative stack adjustments
- Decidability? Finitization
- kDRSF: DRSF with max Δ length k
- Not the same meaning as k in k CFA
- Longer Δ truncated to suffix, marked partial
- $[\mathrm{Da} \circ \mathrm{b}]+0 \mathrm{c} \Rightarrow(0 \mathrm{~b} \wedge \mathrm{c}]$
- Other models are possible

Singleton Abstractions via Full Traces

- Traces Δ represent relative stack adjustments
- Decidability? Finitization
- kDRSF: DRSF with max Δ length k
- Not the same meaning as k in k CFA
- Longer Δ truncated to suffix, marked partial
- [Da(b] $+0 \mathrm{c} \Rightarrow$ ($\circ \mathrm{b} \cap \mathrm{c}]$
- Other models are possible
- Full traces imply unique allocation/evaluation

Singleton Abstractions via Full Traces

- Traces Δ represent relative stack adjustments
- Decidability? Finitization
- kDRSF: DRSF with max Δ length k
- Not the same meaning as k in k CFA
- Longer Δ truncated to suffix, marked partial
- $[\mathrm{Da} \cap \mathrm{b}]+\bigcirc \mathrm{c} \Rightarrow(\cap \mathrm{b} \cap \mathrm{c}]$
- Other models are possible
- Full traces imply unique allocation/evaluation
- Used to establish shallow singleton abstractions for e.g. must-alias

Singleton Abstractions via Full Traces

- Traces Δ represent relative stack adjustments
- Decidability? Finitization
- kDRSF: DRSF with max Δ length k
- Not the same meaning as k in k CFA
- Longer Δ truncated to suffix, marked partial
- $[\mathrm{Da} \cap \mathrm{b}]+\bigcirc \mathrm{c} \Rightarrow(\cap \mathrm{b} \cap \mathrm{c}]$
- Other models are possible
- Full traces imply unique allocation/evaluation
- Used to establish shallow singleton abstractions for e.g. must-alias
- Partial traces gracefully degrade

Relative Store Fragments

- Partial sets of bindings

Relative Store Fragments

- Partial sets of bindings occurring simultaneously

Relative Store Fragments

- Partial sets of bindings occurring simultaneously
- Merge discards dissonant store fragments

Relative Store Fragments

- Partial sets of bindings occurring simultaneously
- Merge discards dissonant store fragments
- Precision similar to non-store-widening analyses

Relative Store Fragments

- Partial sets of bindings occurring simultaneously
- Merge discards dissonant store fragments
- Precision similar to non-store-widening analyses
- Worst-case complexity, too ($O\left(2^{n}\right)$ vs DDPA's $O\left(n^{k}\right)$)

Relative Store Fragments

- Partial sets of bindings occurring simultaneously
- Merge discards dissonant store fragments
- Precision similar to non-store-widening analyses
- Worst-case complexity, too ($O\left(2^{n}\right)$ vs DDPA's $O\left(n^{k}\right)$)
- Tunable!
- Merges described in algebraic lookup function
- Set complex policies for precision loss

Relative Store Fragments

- Partial sets of bindings occurring simultaneously
- Merge discards dissonant store fragments
- Precision similar to non-store-widening analyses
- Worst-case complexity, too ($O\left(2^{n}\right)$ vs DDPA's $O\left(n^{k}\right)$)
- Tunable!
- Merges described in algebraic lookup function
- Set complex policies for precision loss
- Know needs before deciding what to lose

Relative Store Fragments

- Partial sets of bindings occurring simultaneously
- Merge discards dissonant store fragments
- Precision similar to non-store-widening analyses
- Worst-case complexity, too ($O\left(2^{n}\right)$ vs DDPA's $O\left(n^{k}\right)$)
- Tunable!
- Merges described in algebraic lookup function
- Set complex policies for precision loss
- Know needs before deciding what to lose
- Versatile
- Context-sensitivity
- Flow-sensitivity
- Path-sensitivity
- Must-alias analysis
- Non-local variable alignment

What's Next?

- Performance!

What's Next?

- Performance!

What's Next?

- Performance!

- Worst-case recursion is slow

What's Next?

- Performance!

- Worst-case recursion is slow (in DDPA too)

What's Next?

- Performance!

- Worst-case recursion is slow (in DDPA too)
- Currently retaining too much on merge

What's Next?

- Performance!

- Worst-case recursion is slow (in DDPA too)
- Currently retaining too much on merge
- Extending little store: partial set of bindings

What's Next?

- Performance!

- Worst-case recursion is slow (in DDPA too)
- Currently retaining too much on merge
- Extending little store: partial set of bindings/constraints?

What's Next?

- Performance!

- Worst-case recursion is slow (in DDPA too)
- Currently retaining too much on merge
- Extending little store: partial set of bindings/constraints?/facts?

Questions?

