Demand-Driven Relative Store Fragments for
Singleton Abstraction
Little Store's Big Journey

GV
g
Leandro Facchinettil Zachary Palmer? Scott F. Smith?!

The Johns Hopkins University!

Swarthmore College?

September 1st, 2017

Some Program Analyses

push forward reverse lookup
classic abs. interp. CFL-reachability
first order
data flow analysis reverse data flow analysis
kCFA CFA2
higher order
PDCFA rCFA

2/20

Some Program Analyses

push forward reverse lookup
classic abs. interp. CFL-reachability
first order
data flow analysis reverse data flow analysis
kCFA CFA2
higher order
PDCFA rCFA

2/20

Some Program Analyses

First Order Higher Order
for (int i=0;i<n;i++) fold (Ada e > ...)

(CFG)—D(Data Flow)

3/20

Some Program Analyses

v v
push forward reverse lookup
classic abs. interp. CFL-reachability
first order
data flow analysis reverse data flow analysis
kCFA CFA2
higher order
PDCFA rCFA

4/20

Some Program Analyses

push forward reverse lookup
classic abs. interp. CFL-reachability
first order
data flow analysis reverse data flow analysis
kCFA CFA2
higher order
PDCFA rCFA

4/20

Some Program Analyses

push forward reverse lookup
classic abs. interp. CFL-reachability
first order
data flow analysis reverse data flow analysis
DDPA
kCFA CFA2
higher order
PDCFA rCFA

4/20

Some Program Analyses

push forward reverse lookup
classic abs. interp. CFL-reachability
first order
data flow analysis reverse data flow analysis
DDPA
kCFA CFA2
higher order DRSF
PDCFA rCFA

4/20

Some Program Analyses

push forward reverse lookup
classic abs. interp. CFL-reachability
first order
data flow analysis reverse data flow analysis
DDPA
kCFA CFA2
higher order DRSF
PDCFA rCFA POLYFLOW e,
(weak non-locals)

4/20

Demand-Driven Higher-Order Program Analyses

Context-sensitive

Flow-sensitive

Path-sensitive

Must-alias

Non-local variables

DDPA

DRSF

5/20

Demand-Driven Higher-Order Program Analyses

Context-sensitive

Flow-sensitive

Path-sensitive

Must-alias

Non-local variables

DDPA

DRSF

5/20

Demand-Driven Higher-Order Program Analyses

DDPA DRSF
Context-sensitive v v
Flow-sensitive v 4
Path-sensitive v
Must-alias 4
Non-local variables 4 4

5/20

Demand-Driven Higher-Order Program Analyses

Context-sensitive

Flow-sensitive

Path-sensitive

Must-alias

Non-local variables

DDPA

v~ Contours

v

DRSF

v

AN N N

5/20

Demand-Driven Higher-Order Program Analyses

Context-sensitive

Flow-sensitive

Path-sensitive

Must-alias

Non-local variables

DDPA

v~ Contours

v/ Natural

DRSF

v

SN N S SN

5/20

Demand-Driven Higher-Order Program Analyses

Context-sensitive

Flow-sensitive

Path-sensitive

Must-alias

Non-local variables

DDPA

v~ Contours

v/ Natural

Filters

DRSF

v

SN N S SN

5/20

Demand-Driven Higher-Order Program Analyses

Context-sensitive

Flow-sensitive

Path-sensitive

Must-alias

Non-local variables

v~ Contours

v

v

DDPA

Natural

Filters

A Mess

DRSF

v

SN N S SN

5/20

Demand-Driven Higher-Order Program Analyses

Context-sensitive

Flow-sensitive

Path-sensitive

Must-alias

Non-local variables

DDPA

v/ Contours

v Natural
Filters
A Mess

v Lookup

DRSF

v

5/20

Demand-Driven Higher-Order Program Analyses

Context-sensitive

Flow-sensitive

Path-sensitive

Must-alias

Non-local variables

DDPA

v/ Contours

v Natural
Filters
A Mess

v Lookup

DRSF

v/ Little Stores
v/ Little Stores
v/ Little Stores
v/ Little Stores

v/ Lookup

5/20

DDPA by Example

DDPA by Example

let £ = fun p —>
let x = p in
funy >x +y

in

let g=f 4 in

let v =1 in

let z =g v in z

7/20

DDPA by Example
Initial CFG

let £ = fun p —>

let x = p in

funy >x +y
in
let g=f 4 in
let v =1 in
let z =g v in z

7/20

DDPA by Example
Expand function call £ 4
f =funp —>
let x = p in
funy >x +y

g=1f4 in
v=11n
Z =g vVvin z

7/20

DDPA by Example
Expand function call £ 4
let £ = fun p —>
let x = p in
funy >x +y

in £
let g=f 4 in
let v =1 in Lookup

let z =g v in z

7/20

DDPA by Example
Expand function call £ 4

let £ = fun p —>
let x = p in
funy >x +y

in

let g=f 4 in

let v =1 in

let z =g v in z

.

Lookup

7/20

DDPA by Example
Expand function call £ 4
let £ = fun p —>
let x = p in
funy >x +y

in £
let g=f 4 in
let v =1 in Lookup

let z =g v in z

“Look Pup”
N

,“"y

7/20

DDPA by Example
Expand function call £ 4

let £ = fun p —>
let x = p in
funy >x +y

in

let g=f 4 in

let v =1 in

let z =g v in z

.

Lookup

7/20

DDPA by Example
Expand function call £ 4
let £ = fun p —>
let x = p in
funy ->x +y

in £
let g=f 4 in
let v =1 in Lookup

let z =g v in z

7/20

DDPA by Example
Expand function call £ 4
let £ = fun p —>
let x = p in
funy >x +y

in £
let g=f 4 in
let v =1 in Lookup

let z =g v in z

‘O

7/20

DDPA by Example
Expand function call £ 4

let £ = fun p —>
let x = p in
funy >x +y

in

let g=f 4 in

let v =1 in

let z =g v in z

£
=Y

Lookup

[+]

f)Elr v

7/20

DDPA by Example

Wire in function call £ 4

let £ = fun p —>

let x = p in

funy >x +y
in
let g=f 4 in
let v =1 in
let z =g v in z

-f X fun y

7/20

DDPA by Example
Wire in function call £ 4
let £ = fun p —>
let x = p in
funy ->x +y

let g=f 4 in
let v =1 in
let z =g v in z

7/20

DDPA by Example
Expand function call g v
let £ = fun p —>
let x = p in
funy ->x +y

let g=f 4 in
let v =1 in
let z =g v in z

7/20

DDPA by Example
Expand function call g v
let £ = fun p —>
let x = p in
funy ->x +y

in g
let g=f 4 in
let v =1 in Lookup

let z =g v in z

7/20

DDPA by Example
Expand function call g v
let £ = fun p —>
let x = p in
funy ->x +y

in g
let g=f 4 in
let v =1 in Lookup

let z =g v in z

7/20

DDPA by Example
Expand function call g v
let £ = fun p —>
let x = p in
funy ->x +y

in g
let g=f 4 in
let v =1 in Lookup

let z =g v in z

7/20

DDPA by Example
Expand function call g v
let £ = fun p —>
let x = p in
funy ->x +y

in g
let g=f 4 in
let v =1 in Lookup

let z =g v in z

7/20

DDPA by Example
Expand function call g v
let £ = fun p —>
let x = p in
funy ->x +y

in g
let g=f 4 in
let v =1 in Lookup

let z =g v in z

7/20

DDPA by Example
Expand function call g v
let £ = fun p —>
let x = p in
funy ->x +y

in g
let g=f 4 in
let v =1 in Lookup

let z =g v in z

7/20

DDPA by Example
Expand function call g v
let £ = fun p —>
let x = p in
funy ->x +y

in g
let g=f 4 in
let v =1 in Lookup

let z =g v in z

7/20

DDPA by Example
Wire in function call g v
let £ = fun p —>
let x = p in
funy ->x +y

in

let g=f 4 in
let v =1 in

let z =g v in z

7/20

DDPA by Example
Parameter lookup: y
let £ = fun p —>
let x = p in
funy ->x +y
in

let g=f 4 in y
let v =1 in Lookup
let z =g v in z ®

1Y
~f X fun y —f- g X +y /g7
‘ D&Iyﬂl

7/20

DDPA by Example

Parameter lookup: y

let £ = fun p —>

let x = p in

funy ->x +y
in
let g=f 4 in
let v =1 in P Lookup
let z =g v in z

~f X fun y —f- g X +y /g7
‘ D Q<Iy=1 |

7/20

DDPA by Example

Parameter lookup: y
let £ = fun p —>
let x = p in
funy ->x +y
in
let g=f 4 in
let v =1 in Lookup

let z =g v in z

- X fun y —f+ g'g‘—> X +y —ig

7/20

let

in

let
let
let

DDPA by Example

Non-local lookup: x

y —>x+y

7/20

DDPA by Example

Non-local lookup: x
let £ = fun p —>

funy ->x +y
in

X
let g=f 4 in
let v = 1 in Lookup
let z =g v in z ®

1Y
B g x t+y
D&Iyﬂl

7/20

let

in

let
let
let

=g v in z

DDPA by Example

Non-local lookup: x

fun p >
X = p in
y —>x+y
X
f 4 in
=1 in P Lookup
e

7/20

DDPA by Example
Non-local lookup: x
let £ = fun p —>
let x = p in
funy ->x +y

in x
let g=f 4 in
let v =1 in Lookup

let z =g v in z

B g ‘—)x+y>—g-
D&Iyll

7/20

let

in

let
let
let

DDPA by Example

Non-local lookup: x

fun p >
X = p in
y —>x+y
X
f 4 in
=1 in Lookup

=g v in z

7/20

DDPA by Example

Non-local lookup: x
let £ = fun p —>

fun y > x +y g
in N
let g=f 4 in
let v = 1 in Lookup Stack

let z =g v in z

Aleeaiy

7/20

let

in

let
let
let

DDPA by Example

Non-local lookup: x

fun p >
X = p in
y >x+y g
X
f 4 in
=1 in Lookup Stack

7/20

let

in

let
let
let

DDPA by Example

Non-local lookup: x

fun p >
X = p in
y >x+y g
X
f 4 in
=1 in Lookup Stack

7/20

let

in

let
let
let

DDPA by Example

Non-local lookup: x

fun p >
X = p in
y >x+y g
X
f 4 in
=1 in Lookup Stack

7/20

DDPA by Example

Non-local lookup: x
let £ = fun p —>

fun y > x +y g
in N
let g=f 4 in
let v = 1 in Lookup Stack

let z =g v in z

g x t+y
)\

7/20

DDPA by Example

Non-local lookup: x
let £ = fun p —>
funy ->x +y
in
let g=f 4 in
let v = 1 in Lookup Stack

g x t+y
)\

X

let z =g v in z

7/20

DDPA by Example

Non-local lookup: x
let £ = fun p —>

funy ->x +y
in
let g=f 4 in
let v =1 in {& Lookup Stack

let z =g v in z
P g x t+y
D&Iyﬂl

X

7/20

DDPA by Example

Non-local lookup: x
let £ = fun p —>

in
let g=f 4 in
let v = 1 in Lookup Stack

let z = g v in 7,(«
I g x ty
N

X

7/20

DDPA by Example

Non-local lookup: x
let £ = fun p —>

funy ->x +y
in

X
let g=f 4 in
let v =1 il} Lookup Stack
let z = gxﬁ4!‘¢

f g x t+y
W\

7/20

DDPA by Example

Non-local lookup: x
let £ = fun p —>
let x = p in
funy ->x +y
in
let g=f 4 in P

let v = n Lookup Stack
let z =(&in z
e
1 X B g x t+y
D Q<i y=1]

7/20

DDPA by Example

Non-local lookup: x
let £ = fun p —>

in
let g=f 4 in
let v = 1 in Lookup Stack

let z =i§ v in z

p

7/20

DDPA by Example

Non-local lookup: x

let £ = fun p —>

funy ->x +y

p

Lookup Stack

7/20

DDPA

o Value lookup on demand: no explicit store!

8/20

DDPA

o Value lookup on demand: no explicit store!
o Lookup stack: intermediate lookups

8/20

DDPA

o Value lookup on demand: no explicit store!
o Lookup stack: intermediate lookups

o Function calls

e Record projections
o Binary operators
o

8/20

DDPA

o Value lookup on demand: no explicit store!
o Lookup stack: intermediate lookups

o Function calls

e Record projections
o Binary operators
o ...

@ Polymorphism via abstract call stack

8/20

DDPA

o Value lookup on demand: no explicit store!
o Lookup stack: intermediate lookups

o Function calls

e Record projections
o Binary operators
o ...

@ Polymorphism via abstract call stack

@ Recursion via pushdown reachability

8/20

DDPA

o Value lookup on demand: no explicit store!
o Lookup stack: intermediate lookups

o Function calls

e Record projections
o Binary operators
o ...

@ Polymorphism via abstract call stack

@ Recursion via pushdown reachability

Connection to forward analyses?

8/20

DDPA and Abstract Stores

9/20

DDPA and Abstract Stores

9/20

DDPA and Abstract Stores

{p— 4}

9/20

DDPA and Abstract Stores

e 323

9/20

o "Big stores”: complete sets of bindings

9/20

DDPA and Abstract Stores

p—4
x4

fun y —f- g x +y —g
E=) =
II!I.

o "Big stores”: complete sets of bindings

o DDPA: reconstruct big stores with lookups

9/20

DDPA and Abstract Stores

p—4
x4

fun y —f- g x +y —g
E=) =
Ial.

o "Big stores”: complete sets of bindings

o DDPA: reconstruct big stores with lookups

‘@

° + ...+

~

Q. _ @{ 3 }@

9/20

DDPA and Abstract Stores

p—4
x4

fun y —f- g x +y —g
E=) =
II!I.

o "Big stores”: complete sets of bindings

o DDPA: reconstruct big stores with lookups

‘@

° + ...+
@ Lookups from a point are independent

~

Q. _ @{\" }@

9/20

DDPA and Abstract Stores

p—4
x4

fun y —f- g x +y —g
E=) =
II!I.

o "Big stores”: complete sets of bindings

o DDPA: reconstruct big stores with lookups

‘@

° + ...+
@ Lookups from a point are independent

s

‘N _ @{@ }@

@ Similar to per-point store widening

9/20

6

7

DDPA and Variable (Mis-)Alignment

let f

let
fun

in

let g
let v
let z

fun p ->
X = p in
y->x+y

f 4 in
1 in
g v in z

10/20

let
let

in

s let

let
let

DDPA and Variable (Mis-)Alignment

b
f

let
funy >x +y

g
v

z

coin_flip () in
fun p ->
X =p in

f (b74:"s") in
(b?71:"t") in
g v in z

10/20

DDPA and Variable (Mis-)Alignment

let b = coin_flip () in
let £ fun p ->

let x = p in

funy >x +y

in

let g = £ (b?74:"s") in
let v = (b?1:"t") in
let z =g v in z

-f X » fun y —— £+ g

10/20

DDPA and Variable (Mis-)Alignment

1 let b = coin_flip () in
2> let £ = fun p >
3 let x = p in
4 funy >x +y
5 in
s let g = f (b?74:"s") in
7 let v = (b?71:"t") in
s let z =g v in z

-f X » fun y —— £+

| e

10/20

DDPA and Variable (Mis-)Alignment

1 let b = coin_flip () in Possible values of x + y?
2> let £ = fun p >
3 let x = p in
4 funy >x +y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?71:"t") in
s let z =g v in z

-f X » fun y —— £+

| =)

10/20

DDPA and Variable (Mis-)Alignment

1 let b = coin_flip () in Possible values of x + y?
> let £ = fun p -> g,’ x €{4,"s"}
3 let x = p in
4 funy >x +y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?71:"t") in
s let z =g v in z

-f X » fun y —— £+

| =)

10/20

DDPA and Variable (Mis-)Alignment

1 let b = coin_flip () in Possible values of x + y?
> let £ = fun p -> g,’ x €{4,"s"}
3 let x = p in
6 1 "tll
4 funy > x +y g”y{’ }
5 in
6 let g = f (b?4:"s") in
7 let v = (b?71:"t") in
s let z =g v in z
-f X ¥ fun y —— 1
< =

10/20

DDPA and Variable (Mis-)Alignment

1 let b = coin_flip () in Possible values of x + y?
> let £ = fun p -> g,’ x €{4,"s"}
3 let x = p in
1 "tll
4 funy > x +y g,’ye{, }
5 in 4 4+ 1
6 let g = f (b?4:"s") in 4y 4 4+ "g"
;let v = (b?1:"t") in Y= s+ 1
s let z =g v in z "s'" 4"t
-f X ¥ fun y —— 1
| =

10/20

DDPA and Variable (Mis-)Alignment

1 let b = coin_flip () in Possible values of x + y?
> let £ = fun p -> g,’ x €{4,"s"}
3 let x = p in
6 1 "tll
4 funy > x +y g”y{’ }
5 in 4 4+ 1
6 let g = f (b?4:"s") in . 4 +"g"
X =
7 let v = (b?71:"t") in Y "s"+ 1
s let z =g v in z "s'" 4"t
-f X ¥ fun y —— 1
< =

10/20

DRSF

11111

DRSF

U

\8((

DRSF

}@ — Z o)

¥
A

12/20

DRSF

Ul b =xm 2 4

13
(S

DRSF
U :t}@) Oy 7& @{,%i}@
4 ={%0A — 0,..)

N
S

DRSF
% o
U s s}® =) N 7& @{a%i}

4 ={%0A — 0,..)
A=[5..]

N
S

22222

DRSF
2 ¥
U =Sm £ 4

4 ={%0A — 0,..)
A=][)..] 6 :=axpx

N
S

22222

DRSF

U =xm £ &
& ={%0A —7,...}
A=1)...] 6:=ax|Dx

o ACFA [POPL 06] (abstract frame strings)
o PDCFA [JFP #24 (2014)] (stack deltas, reachability)

13U

12/20

DRSF

U =xm £ &
& ={%0A —7,...}
A=1)...] 6:=ax|Dx

o ACFA [POPL 06] (abstract frame strings)
o PDCFA [JFP #24 (2014)] (stack deltas, reachability)
o Little stores are incomplete

13U

12/20

DRSF

U =xm £ &
& ={%0A —7,...}
A=1)...] 6:=ax|Dx

o ACFA [POPL 06] (abstract frame strings)

o PDCFA [JFP #24 (2014)] (stack deltas, reachability)
o Little stores are incomplete

o Relative (vs. DDPA's absolute)

13U

12/20

DRSF

Ud b =sm £ &
& ={0A —0,...)
A=15...] 6::=ax|Dx

o ACFA [POPL 06] (abstract frame strings)

o PDCFA [JFP #24 (2014)] (stack deltas, reachability)
o Little stores are incomplete

o Relative (vs. DDPA's absolute)

13U

12/20

Demand-Driven Higher-Order Program Analyses

Context-sensitive

Flow-sensitive

Path-sensitive

Must-alias

Non-local variables

DDPA

v/ Contours

v Natural
Filters
A Mess

v Lookup

DRSF

v/ Little Stores
v/ Little Stores
v/ Little Stores
v/ Little Stores

v/ Lookup

13/20

1 let
> let

DRSF and Variable Alignment

b = coin_flip () in
£ fun p ->

let x = p in

funy >x +y

5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
s let z =g v in z
-f X » fun y —— £+
[g=fun YD

14/20

DRSF and Variable Alignment

1 let b = coin_flip () in
2> let £ = fun p >
3 let x = p in
4 funy >x +y
5 in
6 let g = f (b?4:"s") in y
7 let v = (b?71:"t") in Lookup Stack
s let z =g v in z
-f X » fun y —— £+

|g=fun y

14/20

DRSF and Variable Alignment

1 let b = coin_flip () in

2> let £ = fun p >

3 let x = p in

4 funy >x +y

5 in

6 let g = f (b?4:"s") in y

7 let v = (b?71:"t") in Lookup Stack

s let z =g v in z J;\
B

-f X ¥ fun y —— 1

|g=fun y

14/20

DRSF and Variable Alignment

1 let b = coin_flip () in
2> let £ = fun p >
3 let x = p in
4 funy >x +y
5 in
6 let g = f (b?4:"s") in y
7 let v = (b?71:"t") in Lookup Stack
s let z =g v in z [(
Q
-f X ¥ fun y —f5 g X +y

|g=fun y

14/20

DRSF and Variable Alignment

1 let b = coin_flip () in
2> let £ = fun p >
3 let x = p in
4 funy >x +y
5 in
6 let g = f (b?4:"s") in y
7 let v = (b?1:"t") in Lookup Stack
s let z =g v in z d
-f X ¥ fun y —— 1 -g—\‘j-—> X +y /g

|g=fun y

14/20

DRSF and Variable Alignment

1 let b = coin_flip () in
2> let £ = fun p >
3 let x = p in
4 funy >x +y
5 in
s let g = f (b?74:"s") in y
7 let v = (b?71:"t") in Lookup Stack
s let z =g v in z
-f X » fun y —— £+ -g'z‘—> X +y /g
15y
< N

14/20

let
let

in

let
let
let

DRSF and Variable Alignment

b = coin_flip () in
£ fun p ->

let x = p in

funy >x +y

g =1 (b?4:"s") in
v = (b?71:"t") in
Z=gvVvin z

{y@[] = 1}

Lookup Stack

14/20

let
let

in

let
let
let

DRSF and Variable Alignment

b = coin_flip () in
£ fun p ->

let x = p in

funy >x +y

g =1 (b?4:"s") in
v = (b?71:"t") in
Z=gvVvin z

b

{yell - 1}

Lookup Stack

14/20

let
let

in

let
let
let

DRSF and Variable Alignment

b = coin_flip () in
f =fun p >

let x = p in

funy >x +y

g = f (b?4:"s") in
v = (b?71:"t") in
Z=gvVvin z

» fun y —— £+
|g=fm1y ;

b

{yell - 1}

Lookup Stack

Badi

14/20

let
let

in

let
let
let

DRSF and Variable Alignment

b = coin_flip () in
f =fun p >

let x = p in

funy >x +y

g = f (b?4:"s") in
v = (b?71:"t") in
Z=gvVvin z

» fun y —— £+
|g=fm1y ;

b
Jz
{yO[] — 1}

Lookup Stack

Badi

14/20

DRSF and Variable Alignment

1 let b = coin_flip () in

2> let £ = fun p > b

3 let x = p in

4 funy > x +y (z

5 in

o let g = £ (b?4:"s") in {ye[] — 1}
7 let v = (b?71:"t") in Lookup Stack
s let z =g v in z

o -

14/20

let
let

in

let
let
let

DRSF and Variable Alignment

b = coin_flip () in
f =fun p >

let x = p in

funy >x +y

g = f (b?4:"s") in
v = (b?71:"t") in
Z=gvVvin z

» fun y —— £+
|g=fm1y ;

-

{b@[] — true}
dz

{yell - 1}

Lookup Stack

14/20

DRSF and Variable Alignment

1 let b = coin_flip () in
2> let £ = fun p >

. {b@[] — true}
3 let x = p in
4 funy > x +y (qz
5 in
o let g = £ (b?4:"s") in {ye[] — 1}
7 let v = (b?71:"t") in Lookup Stack
s let z =g v in z

-

» fun y —— £+
| g=fun y |:

14/20

let
let

in

let
let
let

b
£

let
funy >x +y

g
v

DRSF and Variable Alignment

coin_flip () in
fun p ->
X =p in

f (b?4:"s") in
(b?71:"t") in
g v in z

{b@[] — true}
dz
{y@[] = 1}

Lookup Stack

14/20

let
let

in

let
let
let

b
£

let
funy >x +y

g
v

DRSF and Variable Alignment

coin_flip () in
fun p ->
X =p in

f (b?4:"s") in
(b?71:"t") in
g v in z

{b@[dz] — true}

{yell - 1}

Lookup Stack

14/20

let
let

in

let
let
let

DRSF and Variable Alignment

b = coin_flip () in

f =funp >

let x = p in

fun y -> x + y {b@[az] > true}
g = £ (b?4:"s") in {yef— 1}

v = (b?j-:"t“) in Lookup Stack
Z=gvVvin z

==

14/20

let
let

in

let
let
let

DRSF and Variable Alignment

b = coin_flip () in
£ fun p ->

let x = p in

funy >x +y

g =1 (b?4:"s") in
v = (b?71:"t") in
Z=gvVvin z

yO[l = 1,
bQ[dz] — true

Lookup Stack

}

14/20

let
let

in

let
let
let

DRSF and Variable Alignment

b = coin_flip () in
£ fun p ->

let x = p in

funy >x +y

g =1 (b?4:"s") in
v = (b?71:"t") in
Z=gvVvin z

ye[] — 1,
b@[dz] — true

Lookup Stack

14/20

DRSF and Variable Alignment

1 let b = coin_flip () in
2> let £ = fun p >
3 let x = p in
fun -> x +
. d d yo[- 1,
i b@[dz] — true
6 let g = f (b?4:"s") in
7 let v = (b?71:"t") in Stack
s let z =g v in z {‘@@
-f X » fun y —— £+

|g=fun y

14/20

DRSF and Variable Alignment

1 let b = coin_flip () in
2 let £ = fun p ->
3 let x = p in
4 funy >x +y
. in { ye[= "t }
s let g = £ (b?4:"s") in b@[QZ] — false
¢ let vo= (b71:"") in Looku,
s let z =g v in z g@
°f x » fun y ——f

|g=fun y

14/20

DRSF and Variable Alignment

1 let b = coin_flip () in

2> let £ = fun p >

3 let x = p in

4 funy >x +y

5 in

6 let g = f (b?4:"s") in X

7 let v = (b?71:"t") in Lookup Stack

s let z =g v in z i:‘
-f X » fun y —— £+

|g=fun y

14/20

DRSF and Variable Alignment

1 let b = coin_flip () in

2> let £ = fun p >

3 let x = p in

4 funy >x +y e

5 in X

s let g = f (b?74:"s") in Qz

7 let v = (b?71:"t") in Lookup Stack
s let z =g v in z

-

-f X > fun y >—f-D

14/20

let
let

in

let
let
let

DRSF and Variable Alignment

b = coin_flip () in
£ fun p ->

let x = p in

funy >x +y

g =1 (b?4:"s") in
v = (b?71:"t") in
Z=gvVvin z

g
b'd
Jz

Lookup Stack

14/20

let
let

in

let
let
let

DRSF and Variable Alignment

b = coin_flip () in
£ fun p ->

let x = p in

funy >x +y

g =1 (b?4:"s") in
v = (b?71:"t") in
Z=gvVvin z

> fun y)_g’”y iy

X
Dg
Jz

Lookup Stack

|g=fm1y

y

14/20

DRSF and Variable Alignment

1 let b = coin_flip () in
2> let £ = fun p >
3 let x = p in
4 funy >x +y P
5 in Dg
s let g = f (b?74:"s") in (z
7 let v = (b?71:"t") in Lookup Stack
s let z —-{'Win z
-f X » fun y —— £+

|g=fun y

14/20

let
let

DRSF and Variable Alignment

b = coin_flip () in
£ fun p ->

let x = p in

funy >x +y

g =1 (b?4:"s") in
v = (b?71:"t") in
Z=gvVvin z

{pQ[] — 4}
bg
Jz

Lookup Stack

14/20

let
let

DRSF and Variable Alignment

b = coin_flip () in
£ fun p ->

let x = p in

funy >x +y

g =1 (b?4:"s") in
v = (b?71:"t") in
Z=gvVvin z

b
{pQ[] — 4}
bg
Jz

Lookup Stack

14/20

let
let

b
f
let
fun

N < 0”
nonon

DRSF and Variable Alignment

coin_flip () in

fun p ->
X =p in
y->x+y

f (b?4:"s") in
(b?71:"t") in
g v in z

b

dg
{rQ[] — 4}

bg

dz

Lookup Stack

14/20

let
let

b
f
let
fun

N < 0”
nonon

DRSF and Variable Alignment

coin_flip () in

fun p ->
X =p in
y->x+y

f (b?4:"s") in
(b?71:"t") in
g v in z

{b@[] — true}
dg
{p@[] — 4}
bg
(z

Lookup Stack

14/20

DRSF and Variable Alignment

1 let b = coin_flip () in

> let £ = fun p -> {b@[dg] — true}
3 let x = p in

. fumy->x 4y {p@[] — 4}

5 in Dg

6 let g = f (b?4:"s") in Jz

7 let v = (b?l."t“) in Lookup Stack

8 =gvin z

@@@.}%%_’ fun 3 _f_

|g funy

14/20

DRSF and Variable Alignment

1 let b = coin_flip () in

2> let £ = fun p >

3 let x = i in { pCll — 4, }
b@[Jg] — true

4 funy >x +y

5 in Dg

s let g = f (b?74:"s") in (z

7 let v = (b?71:"t") in Lookup Stack

s let z =g v in z

|g=fun y

V» fun y >—f-D

14/20

let
let

in

let
let
let

b
£

let
funy >x +y

g
v

DRSF and Variable Alignment

coin_flip () in
fun p ->
X =p in

f (b?4:"s") in
(b?71:"t") in
g v in z

{

pC[Dg] — 4,
bQ[] — true

Jz

Lookup Stack

}

14/20

DRSF and Variable Alignment

1 let b = coin_flip () in
2> let £ = fun p >
3 let x = p in
4 funy >x +y
5 in pO[Dglz| — 4,
s let g = £ (b?74:"s") in b@[dz] — true
7 let v = (b?71:"t") in Stack
s let z =g v in z {'@@

-f b > fun y ———if-

|g=fun y

14/20

DRSF and Variable Alignment

1 let b = coin_flip () in
2> let £ = fun p >
3 let x = p in
4 funy >x +y
5 in pO[Dglz]| — "s",
s let g = £ (b?74:"s") in b@[dz] — false
7 let v = (b?71:"t") in Looku
s let z =g v in z gw
-f b > fun y ———if-

|g=fun y

14/20

Merging Relative Store Fragments

xQ[] — 4, yO[] — 1, B
b@[dz] — true ® b@[(z] — true[

15/20

Merging Relative Store Fragments

xQ[] — 4,
xQ[] — 4, Q[] — 1, B
{b@[@z]»—m:rue} ® {b@ﬁ[fqz]Htrue} = { yO[] — 1, }

b@[(z] — true

15/20

Merging Relative Store Fragments

xQ[] — 4,
xQ[] — 4, Q[] — 1, B
{b@[@z]»—m:rue} ® {b@ﬁ[fqz]Htrue} = { yO[] — 1, }

b@[dz] — true

{ xQ[] > "s", } o { yo[| — "t } _
bQ[(z] — false bQ[(z] — false

15/20

Merging Relative Store Fragments

xQ[] — 4,
xQ[] — 4, Q[] — 1, B
{b@[@z]»—m:rue} ® {b@ﬁ[fqz]Htrue} = { yO[] — 1, }

b@[(z] — true

%[] 1> "s",
x@[] — "s", O — "t", | _ s
e ft -0

15/20

Merging Relative Store Fragments
xQ[] — 4,
xQ[] — 4 yo[l —1, | _
e b - L)
xQ[] — "s",
xQ[] — "s" O — "t", | _ =
{b@[(lz] — false} @ {bcg[gz] — false} = { yo[| — "t", }

b@[dz] — false
xQ[] — 4, yoO[] — "t
b@[dz] — true @ b@[dz] — false

{ xQ[] > "s" }@{ yo[] > 1, }
b@[dz] false b@[(z] — true

15/20

Merging Relative Store Fragments
xQ[] — 4,
xQ[] — 4 yO[] — 1, B
{bQ[GZ] ~ true} {b@[ﬂz] ~ true} B {b@{ig] 5 tll,'ue}
xQ[] > "s",
xQ[] — "s", O — "t", | _ s
e ft -0
xQ[] — 4, yO[] — "t"
b@[dz] — true @ b@[dz] — false

X
{ xQ[] — "s" }@{ yO[1, } X

b@[dz] false b@[(z] — true

15/20

Merging Relative Store Fragments
xQ[] — 4,
xQ[] — 4 yO[] — 1, B
{b©[GZ] ~ tr“e} {b@[ﬂz] ~ true} B {b@{ig] 5 tll,'ue}
xQ[] > "s",
xQ[] — "s", O — "t", | _ s
e ft -0
xQ[] — 4, yO[] — "t"
bQ[(z] — true © b@KB]F+false

X
{ xQ[] — "s" }@{ yO[1, } X

b@[dz] — false b@[dz] — true

15/20

Polymorphism via A

let £ = fun x -> x in
let a =4 in
let b =f a in
let ¢ = "g" in
s let d = f ¢ in

16/20

Polymorphism via A

let £ = fun x -> x in
let a =4 in
let b =f a in
let ¢ = "g" in
s let d = f ¢ in
0

16/20

Polymorphism via A

let £ = fun x -> x in
let a =4 in

let b =f a in

let ¢ "s" in

let d =f c in

0

16/20

Polymorphism via A

let £ = fun x -> x in
let a =4 in

let b =f a in

let ¢ "s" in

let d =f c in

0

16/20

Polymorphism via A

let £ = fun x -> x in
let a =4 in

let b =f a in

let ¢ "s" in

let d =f c in

0

16/20

Polymorphism via A

let £ = fun x -> x in

let a =4 in

let b =f a in

let ¢ "s" in

let d =f c in

0 d

Lookup Stack

16/20

Polymorphism via A

let £ = fun x -> x in

let a =4 in

let b =f a in

let ¢ "s" in

let d =f c in

0 d

Lookup Stack

16/20

Polymorphism via A

let £ = fun x -> x in

let a =4 in

let b =f a in

let ¢ "s" in Pe
let d =f c in

0 Dd

Lookup Stack

16/20

Polymorphism via A

let £ = fun x -> x in

let a =4 in

let b =f a in

let ¢ "s" in x
let d =f c in

0 Dd

8/
e Lookup Stack

16/20

Polymorphism via A

let £ = fun x -> x in

let a =4 in

let b=f a in c
let ¢ "s" in qd
let d =f c in

0 Dd

Lookup Stack

d=x Dd

16/20

Polymorphism via A

let £ = fun x -> x in

let a = 4 in " "}
let b = f a in {°©[]H S
let ¢ "s" in qd

let d = f c in

0 Dd

Lookup Stack

~f X £
'CO}“; d=x Dd
8
c Elr 0

16/20

Polymorphism via A

let £ = fun x -> x in

let a =4 in

let b =f a in

let ¢ = "s" in {C©km]k+nsn}
let d =f c in

0 Dd

&0 \Y
~ 2 Lookup Stack
3 X f_

d=x Dd

16/20

Polymorphism via A

let £ = fun x -> x in

let a = 4 in

let b =f a in

let ¢ "s" in

let d =f c in

0 {c@“%%"s"}

Lookup Stack

16/20

Polymorphism via A

let £ = fun x -> x in

let a =4 in

let b =f a in

let ¢ "s" in x
let d =f c in

0 Dd

z"% Lookup Stack

16/20

Polymorphism via A

let £ = fun x -> x in

let a =4 in

let b=f a in a
let ¢ "s" in b
let d =f c in

0 Dd

Lookup Stack

b4 £

d=x Dd

16/20

Polymorphism via A

let £ = fun x -> x in
let a = 4 in

1
let b = f a in {°©[] =
let ¢ "s" in b
let d = f c in
0 Dd

Lookup Stack

b4 £

d=x Dd

16/20

Polymorphism via A

let £ = fun x -> x in

let a =4 in

let b =f a in

let ¢ "s" in {c@Mb]H+4}
let d =f c in

0 Dd

&0 \Y
~ 2 Lookup Stack
3 X f_

d=x Dd

16/20

Polymorphism via A

let £ = fun x -> x in

let a =4 in

let b =f a in

let ¢ "s" in

let d =f c in

0 X

Lookup Stack

16/20

Singleton Abstractions via Full Traces

o Traces A represent relative stack adjustments

17/20

Singleton Abstractions via Full Traces

o Traces A represent relative stack adjustments
o Decidability? Finitization

17/20

Singleton Abstractions via Full Traces

o Traces A represent relative stack adjustments
o Decidability? Finitization
o kDRSF: DRSF with max A length k

17/20

Singleton Abstractions via Full Traces

o Traces A represent relative stack adjustments
o Decidability? Finitization

o kDRSF: DRSF with max A length k

o Not the same meaning as k in kCFA

17/20

Singleton Abstractions via Full Traces

o Traces A represent relative stack adjustments
o Decidability? Finitization
o kDRSF: DRSF with max A length k

o Not the same meaning as k in kCFA
o Longer A truncated to suffix, marked partial

17/20

Singleton Abstractions via Full Traces

o Traces A represent relative stack adjustments
o Decidability? Finitization
o kDRSF: DRSF with max A length k

o Not the same meaning as k in kCFA
o Longer A truncated to suffix, marked partial

o [padb] 4 dc = ((bdc]

17/20

Singleton Abstractions via Full Traces

o Traces A represent relative stack adjustments
o Decidability? Finitization
o kDRSF: DRSF with max A length k

o Not the same meaning as k in kCFA
o Longer A truncated to suffix, marked partial

o [padb] 4 dc = ((bdc]
o Other models are possible

17/20

Singleton Abstractions via Full Traces

o Traces A represent relative stack adjustments
o Decidability? Finitization
o kDRSF: DRSF with max A length k

o Not the same meaning as k in kCFA
o Longer A truncated to suffix, marked partial

o [padb] 4 dc = ((bdc]
o Other models are possible

o Full traces imply unique allocation/evaluation

17/20

Singleton Abstractions via Full Traces

o Traces A represent relative stack adjustments
o Decidability? Finitization
o kDRSF: DRSF with max A length k

o Not the same meaning as k in kCFA
o Longer A truncated to suffix, marked partial

o [padb] 4 dc = ((bdc]
o Other models are possible
o Full traces imply unique allocation/evaluation

o Used to establish shallow singleton abstractions for e.g.
must-alias

17/20

Singleton Abstractions via Full Traces

o Traces A represent relative stack adjustments
o Decidability? Finitization
o kDRSF: DRSF with max A length k

o Not the same meaning as k in kCFA
o Longer A truncated to suffix, marked partial

o [padb] 4 dc = ((bdc]
o Other models are possible

o Full traces imply unique allocation/evaluation

o Used to establish shallow singleton abstractions for e.g.
must-alias
o Partial traces gracefully degrade

17/20

Relative Store Fragments

o Partial sets of bindings

18/20

Relative Store Fragments

o Partial sets of bindings occurring simultaneously

18/20

Relative Store Fragments

o Partial sets of bindings occurring simultaneously

o Merge discards dissonant store fragments

18/20

Relative Store Fragments
o Partial sets of bindings occurring simultaneously

o Merge discards dissonant store fragments
o Precision similar to non-store-widening analyses

18/20

Relative Store Fragments

o Partial sets of bindings occurring simultaneously

o Merge discards dissonant store fragments

o Precision similar to non-store-widening analyses
o Worst-case complexity, too (O(2") vs DDPA's O(n*))

18/20

(4]

(7]

(]

(]

Relative Store Fragments

Partial sets of bindings occurring simultaneously

Merge discards dissonant store fragments

Precision similar to non-store-widening analyses
o Worst-case complexity, too (O(2") vs DDPA's O(n*))

Tunable!

o Merges described in algebraic lookup function
o Set complex policies for precision loss

18/20

(4]

(7]

(]

(]

Relative Store Fragments

Partial sets of bindings occurring simultaneously

Merge discards dissonant store fragments

Precision similar to non-store-widening analyses
o Worst-case complexity, too (O(2") vs DDPA's O(n*))

Tunable!

o Merges described in algebraic lookup function
o Set complex policies for precision loss
o Know needs before deciding what to lose

18/20

(4]

(7]

(]

(]

Relative Store Fragments

Partial sets of bindings occurring simultaneously

Merge discards dissonant store fragments

Precision similar to non-store-widening analyses
o Worst-case complexity, too (O(2") vs DDPA's O(n*))

Tunable!

o Merges described in algebraic lookup function
o Set complex policies for precision loss
o Know needs before deciding what to lose

Versatile

Context-sensitivity
Flow-sensitivity
Path-sensitivity

Must-alias analysis
Non-local variable alignment

®© 6 6 o o

18/20

What’s Next?

@ Performance!

19/20

What’s Next?

Performance!
L k=0
= 1,000 DRSF
g 800 flmpoPA
5 600
2@ 400
£ 200 + o R O
& 0f=— -

19/20

What’s Next?

Performance!
L k=0
= 1,000 5 prsF
g 800 |HmpDPA
£ 600
2@ 400
£ 200 + o o o o B
& 0 = —

o Worst-case recursion is slow

19/20

What’s Next?

Performance!
L k=0
& 1,000 [{y5 pRrsF
2 800 |HmDDPA
£ 600
2@ 400
E 200 . ot
& 0 =—

o Worst-case recursion is slow (in DDPA too)

19/20

What’s Next?

Performance!
L k=0
= 1,000 5 prsF
g 800 |HmDDPA
£ 600
2@ 400
£ 200 + o o o o B
& 0 = — C

o Worst-case recursion is slow (in DDPA too)
o Currently retaining too much on merge

19/20

What’s Next?

@ Performance!

L k=0 k= | k=4
= 1,000 5 prsF
g 800 |HmDDPA
£ 600
2@ 400 g
§2°°’ﬂmﬂﬁxﬂﬂl~:m,“mm o fls o
& 0 = — - -5 _fm — - . -

o Worst-case recursion is slow (in DDPA too)
o Currently retaining too much on merge

o Extending little store: partial set of
bindings

19/20

What’s Next?

@ Performance!

L k=0 k= | k=4
= 1,000 5 prsF
g 800 |HmDDPA
£ 600
2@ 400 g
§2°°’ﬂmﬂﬁxﬂﬂl~:m,“mm o fls o
& 0 = — - -5 _fm — - . -

o Worst-case recursion is slow (in DDPA too)
o Currently retaining too much on merge

o Extending little store: partial set of
bindings/constraints?

19/20

What’s Next?

Performance!
L k=0

& 1,000 [{y5 pRrsF

g 800 |HmDDPA

£ 600

2@ 400

£ 200 + o o o o B
& 0 = — C

o Worst-case recursion is slow (in DDPA too)

o Currently retaining too much on merge
Extending little store: partial set of
bindings/constraints? /facts?

19/20

Questions?

A
iRy

22222

