
Demand-Driven Relative Store Fragments for
Singleton Abstraction
Little Store’s Big Journey

Leandro Facchinetti1 Zachary Palmer2 Scott F. Smith1

The Johns Hopkins University1

Swarthmore College2

September 1st, 2017



Some Program Analyses

first order

higher order

push forward reverse lookup

classic abs. interp.

data flow analysis

CFL-reachability

reverse data flow analysis

kCFA CFA2

ΓCFAPDCFA

DDPA

DRSF

POLYFLOWCFL
(weak non-locals)

2/20



Some Program Analyses

first order

higher order

push forward reverse lookup

classic abs. interp.

data flow analysis

CFL-reachability

reverse data flow analysis

kCFA CFA2

ΓCFAPDCFA

DDPA

DRSF

POLYFLOWCFL
(weak non-locals)

2/20



Some Program Analyses

First Order Higher Order
for (int i=0;i<n;i++) fold (λa e -> ...)

CFG Data Flow CFG Data Flow

3/20



Some Program Analyses

first order

higher order

push forward reverse lookup

classic abs. interp.

data flow analysis

CFL-reachability

reverse data flow analysis

kCFA CFA2

ΓCFAPDCFA

DDPA

DRSF

POLYFLOWCFL
(weak non-locals)

4/20



Some Program Analyses

first order

higher order

push forward reverse lookup

classic abs. interp.

data flow analysis

CFL-reachability

reverse data flow analysis

kCFA CFA2

ΓCFAPDCFA

DDPA

DRSF

POLYFLOWCFL
(weak non-locals)

4/20



Some Program Analyses

first order

higher order

push forward reverse lookup

classic abs. interp.

data flow analysis

CFL-reachability

reverse data flow analysis

kCFA CFA2

ΓCFAPDCFA

DDPA

DRSF

POLYFLOWCFL
(weak non-locals)

4/20



Some Program Analyses

first order

higher order

push forward reverse lookup

classic abs. interp.

data flow analysis

CFL-reachability

reverse data flow analysis

kCFA CFA2

ΓCFAPDCFA

DDPA

DRSF

POLYFLOWCFL
(weak non-locals)

4/20



Some Program Analyses

first order

higher order

push forward reverse lookup

classic abs. interp.

data flow analysis

CFL-reachability

reverse data flow analysis

kCFA CFA2

ΓCFAPDCFA

DDPA

DRSF

POLYFLOWCFL
(weak non-locals)

4/20



Demand-Driven Higher-Order Program Analyses

DDPA DRSF

Context-sensitive

3 Contours 3 Little Stores

Flow-sensitive

3 Natural 3 Little Stores

Path-sensitive

Filters 3 Little Stores

Must-alias

A Mess 3 Little Stores

Non-local variables

3 Lookup 3 Lookup

5/20



Demand-Driven Higher-Order Program Analyses

DDPA DRSF

Context-sensitive 3

Contours 3 Little Stores

Flow-sensitive 3

Natural 3 Little Stores

Path-sensitive

Filters 3 Little Stores

Must-alias

A Mess 3 Little Stores

Non-local variables 3

Lookup 3 Lookup

5/20



Demand-Driven Higher-Order Program Analyses

DDPA DRSF

Context-sensitive 3

Contours

3

Little Stores

Flow-sensitive 3

Natural

3

Little Stores

Path-sensitive

Filters

3

Little Stores

Must-alias

A Mess

3

Little Stores

Non-local variables 3

Lookup

3

Lookup

5/20



Demand-Driven Higher-Order Program Analyses

DDPA DRSF

Context-sensitive 3 Contours 3

Little Stores

Flow-sensitive 3

Natural

3

Little Stores

Path-sensitive

Filters

3

Little Stores

Must-alias

A Mess

3

Little Stores

Non-local variables 3

Lookup

3

Lookup

5/20



Demand-Driven Higher-Order Program Analyses

DDPA DRSF

Context-sensitive 3 Contours 3

Little Stores

Flow-sensitive 3 Natural 3

Little Stores

Path-sensitive

Filters

3

Little Stores

Must-alias

A Mess

3

Little Stores

Non-local variables 3

Lookup

3

Lookup

5/20



Demand-Driven Higher-Order Program Analyses

DDPA DRSF

Context-sensitive 3 Contours 3

Little Stores

Flow-sensitive 3 Natural 3

Little Stores

Path-sensitive Filters 3

Little Stores

Must-alias

A Mess

3

Little Stores

Non-local variables 3

Lookup

3

Lookup

5/20



Demand-Driven Higher-Order Program Analyses

DDPA DRSF

Context-sensitive 3 Contours 3

Little Stores

Flow-sensitive 3 Natural 3

Little Stores

Path-sensitive Filters 3

Little Stores

Must-alias A Mess 3

Little Stores

Non-local variables 3

Lookup

3

Lookup

5/20



Demand-Driven Higher-Order Program Analyses

DDPA DRSF

Context-sensitive 3 Contours 3

Little Stores

Flow-sensitive 3 Natural 3

Little Stores

Path-sensitive Filters 3

Little Stores

Must-alias A Mess 3

Little Stores

Non-local variables 3 Lookup 3

Lookup

5/20



Demand-Driven Higher-Order Program Analyses

DDPA DRSF

Context-sensitive 3 Contours 3 Little Stores

Flow-sensitive 3 Natural 3 Little Stores

Path-sensitive Filters 3 Little Stores

Must-alias A Mess 3 Little Stores

Non-local variables 3 Lookup 3 Lookup

5/20



DDPA by Example

6/20



DDPA by Example

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

7/20



DDPA by Example
Initial CFG

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

f g v z z

7/20



DDPA by Example
Expand function call f 4

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

f g v z z

7/20



DDPA by Example
Expand function call f 4

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

f

f g v z z

7/20



DDPA by Example
Expand function call f 4

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

f

f g v z z

7/20



DDPA by Example
Expand function call f 4

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

f

f g v z z

“Look Pup”

7/20



DDPA by Example
Expand function call f 4

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

f

f g v z z

7/20



DDPA by Example
Expand function call f 4

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

f

f g v z z

7/20



DDPA by Example
Expand function call f 4

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

f

f g v z z

7/20



DDPA by Example
Expand function call f 4

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

f

f g v z z

7/20



DDPA by Example
Wire in function call f 4

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

f g v z z

ff x fun y ff

7/20



DDPA by Example
Wire in function call f 4

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

f g v z z

ff x fun y ff

p = 4 g = fun y

7/20



DDPA by Example
Expand function call g v

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

f g v z z

ff x fun y ff

p = 4 g = fun y

7/20



DDPA by Example
Expand function call g v

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

g

f g v z z

ff x fun y ff

p = 4 g = fun y

7/20



DDPA by Example
Expand function call g v

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

g

f g v z z

ff x fun y ff

p = 4 g = fun y

7/20



DDPA by Example
Expand function call g v

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

g

f g v z z

ff x fun y ff

p = 4 g = fun y

7/20



DDPA by Example
Expand function call g v

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

g

f g v z z

ff x fun y ff

p = 4 g = fun y

7/20



DDPA by Example
Expand function call g v

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

g

f g v z z

ff x fun y ff

p = 4 g = fun y

7/20



DDPA by Example
Expand function call g v

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

g

f g v z z

ff x fun y ff

p = 4 g = fun y

7/20



DDPA by Example
Expand function call g v

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

g

f g v z z

ff x fun y ff

p = 4 g = fun y

7/20



DDPA by Example
Wire in function call g v

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Parameter lookup: y

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

y

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Parameter lookup: y

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

y

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Parameter lookup: y

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

y

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Non-local lookup: x

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Non-local lookup: x

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

x

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Non-local lookup: x

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

x

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Non-local lookup: x

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

x

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Non-local lookup: x

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup

x

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Non-local lookup: x

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup Stack

x

g

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Non-local lookup: x

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup Stack

x

g

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Non-local lookup: x

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup Stack

x

g

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Non-local lookup: x

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup Stack

x

g

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Non-local lookup: x

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup Stack

x

g

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Non-local lookup: x

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup Stack

x

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Non-local lookup: x

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup Stack

x

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Non-local lookup: x

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup Stack

x

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Non-local lookup: x

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup Stack

x

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Non-local lookup: x

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup Stack

p

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Non-local lookup: x

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup Stack

p

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA by Example
Non-local lookup: x

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

Lookup Stack

p

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

7/20



DDPA

Value lookup on demand: no explicit store!

Lookup stack: intermediate lookups

Function calls
Record projections
Binary operators
...

Polymorphism via abstract call stack
Recursion via pushdown reachability

Connection to forward analyses?

8/20



DDPA

Value lookup on demand: no explicit store!
Lookup stack: intermediate lookups

Function calls
Record projections
Binary operators
...

Polymorphism via abstract call stack
Recursion via pushdown reachability

Connection to forward analyses?

8/20



DDPA

Value lookup on demand: no explicit store!
Lookup stack: intermediate lookups

Function calls
Record projections
Binary operators
...

Polymorphism via abstract call stack
Recursion via pushdown reachability

Connection to forward analyses?

8/20



DDPA

Value lookup on demand: no explicit store!
Lookup stack: intermediate lookups

Function calls
Record projections
Binary operators
...

Polymorphism via abstract call stack

Recursion via pushdown reachability

Connection to forward analyses?

8/20



DDPA

Value lookup on demand: no explicit store!
Lookup stack: intermediate lookups

Function calls
Record projections
Binary operators
...

Polymorphism via abstract call stack
Recursion via pushdown reachability

Connection to forward analyses?

8/20



DDPA

Value lookup on demand: no explicit store!
Lookup stack: intermediate lookups

Function calls
Record projections
Binary operators
...

Polymorphism via abstract call stack
Recursion via pushdown reachability

Connection to forward analyses?

8/20



DDPA and Abstract Stores

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

{}

{p 7→ 4}
{

p 7→ 4
x 7→ 4

}

“Big stores”: complete sets of bindings
DDPA: reconstruct big stores with lookups

+ . . .+ =

Lookups from a point are independent
Similar to per-point store widening

9/20



DDPA and Abstract Stores

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

{}

{p 7→ 4}
{

p 7→ 4
x 7→ 4

}

“Big stores”: complete sets of bindings
DDPA: reconstruct big stores with lookups

+ . . .+ =

Lookups from a point are independent
Similar to per-point store widening

9/20



DDPA and Abstract Stores

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

{}

{p 7→ 4}

{
p 7→ 4
x 7→ 4

}

“Big stores”: complete sets of bindings
DDPA: reconstruct big stores with lookups

+ . . .+ =

Lookups from a point are independent
Similar to per-point store widening

9/20



DDPA and Abstract Stores

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

{}

{p 7→ 4}
{

p 7→ 4
x 7→ 4

}

“Big stores”: complete sets of bindings
DDPA: reconstruct big stores with lookups

+ . . .+ =

Lookups from a point are independent
Similar to per-point store widening

9/20



f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

{}

{p 7→ 4}
{

p 7→ 4
x 7→ 4

}

“Big stores”: complete sets of bindings

DDPA: reconstruct big stores with lookups

+ . . .+ =

Lookups from a point are independent
Similar to per-point store widening

9/20



DDPA and Abstract Stores

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

{}

{p 7→ 4}

{
p 7→ 4
x 7→ 4

}

“Big stores”: complete sets of bindings
DDPA: reconstruct big stores with lookups

+ . . .+ =
Lookups from a point are independent
Similar to per-point store widening

9/20



DDPA and Abstract Stores

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

{}

{p 7→ 4}

{
p 7→ 4
x 7→ 4

}

“Big stores”: complete sets of bindings
DDPA: reconstruct big stores with lookups

+ . . .+ =

Lookups from a point are independent
Similar to per-point store widening

9/20



DDPA and Abstract Stores

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

{}

{p 7→ 4}

{
p 7→ 4
x 7→ 4

}

“Big stores”: complete sets of bindings
DDPA: reconstruct big stores with lookups

+ . . .+ =
Lookups from a point are independent

Similar to per-point store widening

9/20



DDPA and Abstract Stores

f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

{}

{p 7→ 4}

{
p 7→ 4
x 7→ 4

}

“Big stores”: complete sets of bindings
DDPA: reconstruct big stores with lookups

+ . . .+ =
Lookups from a point are independent
Similar to per-point store widening

9/20



DDPA and Variable (Mis-)Alignment

1 let f = fun p ->
2 let x = p in
3 fun y -> x + y
4 in
5 let g = f 4 in
6 let v = 1 in
7 let z = g v in z

10/20



DDPA and Variable (Mis-)Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

10/20



DDPA and Variable (Mis-)Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

10/20



DDPA and Variable (Mis-)Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

10/20



DDPA and Variable (Mis-)Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Possible values of x + y?

x ∈ {4, "s"}

y ∈ {1, "t"}

x + y =


4 + 1
4 + "t"

"s" + 1
"s" + "t"



10/20



DDPA and Variable (Mis-)Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Possible values of x + y?
x ∈ {4, "s"}

y ∈ {1, "t"}

x + y =


4 + 1
4 + "t"

"s" + 1
"s" + "t"



10/20



DDPA and Variable (Mis-)Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Possible values of x + y?
x ∈ {4, "s"}

y ∈ {1, "t"}

x + y =


4 + 1
4 + "t"

"s" + 1
"s" + "t"



10/20



DDPA and Variable (Mis-)Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Possible values of x + y?
x ∈ {4, "s"}

y ∈ {1, "t"}

x + y =


4 + 1
4 + "t"

"s" + 1
"s" + "t"



10/20



DDPA and Variable (Mis-)Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Possible values of x + y?
x ∈ {4, "s"}

y ∈ {1, "t"}

x + y =


4 + 1
4 + "t"

"s" + 1
"s" + "t"



10/20



DRSF

11/20



DRSF⋃
=

∑

6=

= {x̂@∆ 7→ v̂ , . . .}
∆ = [δ, . . .] δ ::= Ix|Jx
∆CFA [POPL 06] (abstract frame strings)
PDCFA [JFP #24 (2014)] (stack deltas, reachability)
Little stores are incomplete
Relative (vs. DDPA’s absolute)

12/20



DRSF⋃
=

∑

6=

= {x̂@∆ 7→ v̂ , . . .}
∆ = [δ, . . .] δ ::= Ix|Jx
∆CFA [POPL 06] (abstract frame strings)
PDCFA [JFP #24 (2014)] (stack deltas, reachability)
Little stores are incomplete
Relative (vs. DDPA’s absolute)

12/20



DRSF⋃
=

∑
6=

= {x̂@∆ 7→ v̂ , . . .}
∆ = [δ, . . .] δ ::= Ix|Jx
∆CFA [POPL 06] (abstract frame strings)
PDCFA [JFP #24 (2014)] (stack deltas, reachability)
Little stores are incomplete
Relative (vs. DDPA’s absolute)

12/20



DRSF⋃
=

∑
6=

= {x̂@∆ 7→ v̂ , . . .}

∆ = [δ, . . .] δ ::= Ix|Jx
∆CFA [POPL 06] (abstract frame strings)
PDCFA [JFP #24 (2014)] (stack deltas, reachability)
Little stores are incomplete
Relative (vs. DDPA’s absolute)

12/20



DRSF⋃
=

∑
6=

= {x̂@∆ 7→ v̂ , . . .}
∆ = [δ, . . .]

δ ::= Ix|Jx
∆CFA [POPL 06] (abstract frame strings)
PDCFA [JFP #24 (2014)] (stack deltas, reachability)
Little stores are incomplete
Relative (vs. DDPA’s absolute)

12/20



DRSF⋃
=

∑
6=

= {x̂@∆ 7→ v̂ , . . .}
∆ = [δ, . . .] δ ::= Ix|Jx

∆CFA [POPL 06] (abstract frame strings)
PDCFA [JFP #24 (2014)] (stack deltas, reachability)
Little stores are incomplete
Relative (vs. DDPA’s absolute)

12/20



DRSF⋃
=

∑
6=

= {x̂@∆ 7→ v̂ , . . .}
∆ = [δ, . . .] δ ::= Ix|Jx
∆CFA [POPL 06] (abstract frame strings)
PDCFA [JFP #24 (2014)] (stack deltas, reachability)

Little stores are incomplete
Relative (vs. DDPA’s absolute)

12/20



DRSF⋃
=

∑
6=

= {x̂@∆ 7→ v̂ , . . .}
∆ = [δ, . . .] δ ::= Ix|Jx
∆CFA [POPL 06] (abstract frame strings)
PDCFA [JFP #24 (2014)] (stack deltas, reachability)
Little stores are incomplete

Relative (vs. DDPA’s absolute)

12/20



DRSF⋃
=

∑
6=

= {x̂@∆ 7→ v̂ , . . .}
∆ = [δ, . . .] δ ::= Ix|Jx
∆CFA [POPL 06] (abstract frame strings)
PDCFA [JFP #24 (2014)] (stack deltas, reachability)
Little stores are incomplete
Relative (vs. DDPA’s absolute)

12/20



DRSF⋃
=

∑
6=

= {x̂@ ∆ 7→ v̂ , . . .}
∆ = [δ, . . .] δ ::= Ix|Jx
∆CFA [POPL 06] (abstract frame strings)
PDCFA [JFP #24 (2014)] (stack deltas, reachability)
Little stores are incomplete
Relative (vs. DDPA’s absolute)

12/20



Demand-Driven Higher-Order Program Analyses

DDPA DRSF

Context-sensitive 3 Contours 3 Little Stores

Flow-sensitive 3 Natural 3 Little Stores

Path-sensitive Filters 3 Little Stores

Must-alias A Mess 3 Little Stores

Non-local variables 3 Lookup 3 Lookup

13/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

y

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

y

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

y

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

y

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

y

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

{y@[] 7→ 1}

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

{y@[] 7→ 1}

b

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

{y@[] 7→ 1}

b

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

{y@[] 7→ 1}

Iz

b

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

{y@[] 7→ 1}

Iz

b

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

{y@[] 7→ 1}

Iz

{b@[] 7→ true}

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

{y@[] 7→ 1}

Iz

{b@[] 7→ true}

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

{y@[] 7→ 1}

Iz

{b@[] 7→ true}

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

{y@[] 7→ 1}

{b@[Iz] 7→ true}

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

{y@[] 7→ 1}

{b@[Iz] 7→ true}

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

{
y@[] 7→ 1,

b@[Iz] 7→ true

}

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

{
y@[] 7→ 1,

b@[Iz] 7→ true

}

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

{
y@[] 7→ 1,

b@[Iz] 7→ true

}

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

{
y@[] 7→ "t",

b@[Iz] 7→ false

}

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

x

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

Iz

x

←g

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

Iz

x

←g

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

Iz

Jg

x

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

Iz

Jg

p

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

Iz

Jg

{p@[] 7→ 4}

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

Iz

Jg

{p@[] 7→ 4}
b

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

Iz

Jg

{p@[] 7→ 4}
Ig

b

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

Iz

Jg

{p@[] 7→ 4}
Ig

{b@[] 7→ true}

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

Iz

Jg

{p@[] 7→ 4}
{b@[Ig] 7→ true}

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

Iz

Jg

{
p@[] 7→ 4,

b@[Ig] 7→ true

}

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

Iz

{
p@[Jg] 7→ 4,
b@[] 7→ true

}

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

{
p@[JgIz] 7→ 4,
b@[Iz] 7→ true

}

14/20



DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"

Lookup Stack

{
p@[JgIz] 7→ "s",
b@[Iz] 7→ false

}

14/20



Merging Relative Store Fragments
{

x@[] 7→ 4,
b@[Iz] 7→ true

}
⊕

{
y@[] 7→ 1,

b@[Iz] 7→ true

}
=


x@[] 7→ 4,
y@[] 7→ 1,

b@[Iz] 7→ true


{

x@[] 7→ "s",
b@[Iz] 7→ false

}
⊕

{
y@[] 7→ "t",

b@[Iz] 7→ false

}
=


x@[] 7→ "s",
y@[] 7→ "t",

b@[Iz] 7→ false



{
x@[] 7→ 4,

b@[Iz] 7→ true

}
⊕

{
y@[] 7→ "t",

b@[Iz] 7→ false

}
=

7

{
x@[] 7→ "s",

b@[Iz] 7→ false

}
⊕

{
y@[] 7→ 1,

b@[Iz] 7→ true

}
=

7

15/20



Merging Relative Store Fragments
{

x@[] 7→ 4,
b@[Iz] 7→ true

}
⊕

{
y@[] 7→ 1,

b@[Iz] 7→ true

}
=


x@[] 7→ 4,
y@[] 7→ 1,

b@[Iz] 7→ true



{
x@[] 7→ "s",

b@[Iz] 7→ false

}
⊕

{
y@[] 7→ "t",

b@[Iz] 7→ false

}
=


x@[] 7→ "s",
y@[] 7→ "t",

b@[Iz] 7→ false



{
x@[] 7→ 4,

b@[Iz] 7→ true

}
⊕

{
y@[] 7→ "t",

b@[Iz] 7→ false

}
=

7

{
x@[] 7→ "s",

b@[Iz] 7→ false

}
⊕

{
y@[] 7→ 1,

b@[Iz] 7→ true

}
=

7

15/20



Merging Relative Store Fragments
{

x@[] 7→ 4,
b@[Iz] 7→ true

}
⊕

{
y@[] 7→ 1,

b@[Iz] 7→ true

}
=


x@[] 7→ 4,
y@[] 7→ 1,

b@[Iz] 7→ true


{

x@[] 7→ "s",
b@[Iz] 7→ false

}
⊕

{
y@[] 7→ "t",

b@[Iz] 7→ false

}
=


x@[] 7→ "s",
y@[] 7→ "t",

b@[Iz] 7→ false


{

x@[] 7→ 4,
b@[Iz] 7→ true

}
⊕

{
y@[] 7→ "t",

b@[Iz] 7→ false

}
=

7

{
x@[] 7→ "s",

b@[Iz] 7→ false

}
⊕

{
y@[] 7→ 1,

b@[Iz] 7→ true

}
=

7

15/20



Merging Relative Store Fragments
{

x@[] 7→ 4,
b@[Iz] 7→ true

}
⊕

{
y@[] 7→ 1,

b@[Iz] 7→ true

}
=


x@[] 7→ 4,
y@[] 7→ 1,

b@[Iz] 7→ true


{

x@[] 7→ "s",
b@[Iz] 7→ false

}
⊕

{
y@[] 7→ "t",

b@[Iz] 7→ false

}
=


x@[] 7→ "s",
y@[] 7→ "t",

b@[Iz] 7→ false



{
x@[] 7→ 4,

b@[Iz] 7→ true

}
⊕

{
y@[] 7→ "t",

b@[Iz] 7→ false

}
=

7

{
x@[] 7→ "s",

b@[Iz] 7→ false

}
⊕

{
y@[] 7→ 1,

b@[Iz] 7→ true

}
=

7

15/20



Merging Relative Store Fragments
{

x@[] 7→ 4,
b@[Iz] 7→ true

}
⊕

{
y@[] 7→ 1,

b@[Iz] 7→ true

}
=


x@[] 7→ 4,
y@[] 7→ 1,

b@[Iz] 7→ true


{

x@[] 7→ "s",
b@[Iz] 7→ false

}
⊕

{
y@[] 7→ "t",

b@[Iz] 7→ false

}
=


x@[] 7→ "s",
y@[] 7→ "t",

b@[Iz] 7→ false


{

x@[] 7→ 4,
b@[Iz] 7→ true

}
⊕

{
y@[] 7→ "t",

b@[Iz] 7→ false

}
=

7

{
x@[] 7→ "s",

b@[Iz] 7→ false

}
⊕

{
y@[] 7→ 1,

b@[Iz] 7→ true

}
=

7

15/20



Merging Relative Store Fragments
{

x@[] 7→ 4,
b@[Iz] 7→ true

}
⊕

{
y@[] 7→ 1,

b@[Iz] 7→ true

}
=


x@[] 7→ 4,
y@[] 7→ 1,

b@[Iz] 7→ true


{

x@[] 7→ "s",
b@[Iz] 7→ false

}
⊕

{
y@[] 7→ "t",

b@[Iz] 7→ false

}
=


x@[] 7→ "s",
y@[] 7→ "t",

b@[Iz] 7→ false


{

x@[] 7→ 4,
b@[Iz] 7→ true

}
⊕

{
y@[] 7→ "t",

b@[Iz] 7→ false

}
= 7

{
x@[] 7→ "s",

b@[Iz] 7→ false

}
⊕

{
y@[] 7→ 1,

b@[Iz] 7→ true

}
= 7

15/20



Merging Relative Store Fragments
{

x@[] 7→ 4,
b@[Iz] 7→ true

}
⊕

{
y@[] 7→ 1,

b@[Iz] 7→ true

}
=


x@[] 7→ 4,
y@[] 7→ 1,

b@[Iz] 7→ true


{

x@[] 7→ "s",
b@[Iz] 7→ false

}
⊕

{
y@[] 7→ "t",

b@[Iz] 7→ false

}
=


x@[] 7→ "s",
y@[] 7→ "t",

b@[Iz] 7→ false


{

x@[] 7→ 4,
b@[Iz] 7→ true

}
⊕

{
y@[] 7→ "t",

b@[Iz] 7→ false

}
= 7

{
x@[] 7→ "s",

b@[Iz] 7→ false

}
⊕

{
y@[] 7→ 1,

b@[Iz] 7→ true

}
= 7

15/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

16/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

f a b c d 0

ff x ff

16/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

f a b c d 0

ff x ff

x = a b = x

16/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

f a b c d 0

ff x ff

x = a b = x

x = c

d = x

16/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

f a b c d 0

ff x ff

x=a Ib b=x Jb

x=c Id

d=x Jd

16/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

f a b c d 0

ff x ff

x=a Ib b=x Jb

x=c Id

d=x Jd

Lookup Stack

d

16/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

f a b c d 0

ff x ff

x=a Ib b=x Jb

x=c Id

d=x Jd

Lookup Stack

d

16/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

f a b c d 0

ff x ff

x=a Ib b=x Jb

x=c Id

d=x Jd

Lookup Stack

Jd

x

16/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

f a b c d 0

ff x ff

x=a Ib b=x Jb

x=c Id

d=x Jd

Lookup Stack

Jd

x

16/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

f a b c d 0

ff x ff

x=a Ib b=x Jb

x=c Id

d=x Jd

Lookup Stack

Jd

Id

c

16/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

f a b c d 0

ff x ff

x=a Ib b=x Jb

x=c Id

d=x Jd

Lookup Stack

Jd

Id

{
c@[] 7→ "s"

}

16/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

f a b c d 0

ff x ff

x=a Ib b=x Jb

x=c Id

d=x Jd

Lookup Stack

Jd

{
c@[Id] 7→ "s"

}

16/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

f a b c d 0

ff x ff

x=a Ib b=x Jb

x=c Id

d=x Jd

Lookup Stack

{
c@[] 7→ "s"

}

16/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

f a b c d 0

ff x ff

x=a Ib b=x Jb

x=c Id

d=x Jd

Lookup Stack

Jd

x

16/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

f a b c d 0

ff x ff

x=a Ib b=x Jb

x=c Id

d=x Jd

Lookup Stack

Jd

Ib

a

16/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

f a b c d 0

ff x ff

x=a Ib b=x Jb

x=c Id

d=x Jd

Lookup Stack

Jd

Ib

{
c@[] 7→ 4

}

16/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

f a b c d 0

ff x ff

x=a Ib b=x Jb

x=c Id

d=x Jd

Lookup Stack

Jd

{
c@[Ib] 7→ 4

}

16/20



Polymorphism via ∆

1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0

f a b c d 0

ff x ff

x=a Ib b=x Jb

x=c Id

d=x Jd

Lookup Stack

7

16/20



Singleton Abstractions via Full Traces

Traces ∆ represent relative stack adjustments

Decidability? Finitization

kDRSF: DRSF with max ∆ length k
Not the same meaning as k in kCFA
Longer ∆ truncated to suffix, marked partial

[JaIb] + Ic ⇒ (IbIc]

Other models are possible

Full traces imply unique allocation/evaluation

Used to establish shallow singleton abstractions for e.g.
must-alias
Partial traces gracefully degrade

17/20



Singleton Abstractions via Full Traces

Traces ∆ represent relative stack adjustments
Decidability? Finitization

kDRSF: DRSF with max ∆ length k
Not the same meaning as k in kCFA
Longer ∆ truncated to suffix, marked partial

[JaIb] + Ic ⇒ (IbIc]

Other models are possible
Full traces imply unique allocation/evaluation

Used to establish shallow singleton abstractions for e.g.
must-alias
Partial traces gracefully degrade

17/20



Singleton Abstractions via Full Traces

Traces ∆ represent relative stack adjustments
Decidability? Finitization

kDRSF: DRSF with max ∆ length k

Not the same meaning as k in kCFA
Longer ∆ truncated to suffix, marked partial

[JaIb] + Ic ⇒ (IbIc]

Other models are possible
Full traces imply unique allocation/evaluation

Used to establish shallow singleton abstractions for e.g.
must-alias
Partial traces gracefully degrade

17/20



Singleton Abstractions via Full Traces

Traces ∆ represent relative stack adjustments
Decidability? Finitization

kDRSF: DRSF with max ∆ length k
Not the same meaning as k in kCFA

Longer ∆ truncated to suffix, marked partial

[JaIb] + Ic ⇒ (IbIc]

Other models are possible
Full traces imply unique allocation/evaluation

Used to establish shallow singleton abstractions for e.g.
must-alias
Partial traces gracefully degrade

17/20



Singleton Abstractions via Full Traces

Traces ∆ represent relative stack adjustments
Decidability? Finitization

kDRSF: DRSF with max ∆ length k
Not the same meaning as k in kCFA
Longer ∆ truncated to suffix, marked partial

[JaIb] + Ic ⇒ (IbIc]
Other models are possible

Full traces imply unique allocation/evaluation

Used to establish shallow singleton abstractions for e.g.
must-alias
Partial traces gracefully degrade

17/20



Singleton Abstractions via Full Traces

Traces ∆ represent relative stack adjustments
Decidability? Finitization

kDRSF: DRSF with max ∆ length k
Not the same meaning as k in kCFA
Longer ∆ truncated to suffix, marked partial

[JaIb] + Ic ⇒ (IbIc]

Other models are possible
Full traces imply unique allocation/evaluation

Used to establish shallow singleton abstractions for e.g.
must-alias
Partial traces gracefully degrade

17/20



Singleton Abstractions via Full Traces

Traces ∆ represent relative stack adjustments
Decidability? Finitization

kDRSF: DRSF with max ∆ length k
Not the same meaning as k in kCFA
Longer ∆ truncated to suffix, marked partial

[JaIb] + Ic ⇒ (IbIc]
Other models are possible

Full traces imply unique allocation/evaluation

Used to establish shallow singleton abstractions for e.g.
must-alias
Partial traces gracefully degrade

17/20



Singleton Abstractions via Full Traces

Traces ∆ represent relative stack adjustments
Decidability? Finitization

kDRSF: DRSF with max ∆ length k
Not the same meaning as k in kCFA
Longer ∆ truncated to suffix, marked partial

[JaIb] + Ic ⇒ (IbIc]
Other models are possible

Full traces imply unique allocation/evaluation

Used to establish shallow singleton abstractions for e.g.
must-alias
Partial traces gracefully degrade

17/20



Singleton Abstractions via Full Traces

Traces ∆ represent relative stack adjustments
Decidability? Finitization

kDRSF: DRSF with max ∆ length k
Not the same meaning as k in kCFA
Longer ∆ truncated to suffix, marked partial

[JaIb] + Ic ⇒ (IbIc]
Other models are possible

Full traces imply unique allocation/evaluation
Used to establish shallow singleton abstractions for e.g.
must-alias

Partial traces gracefully degrade

17/20



Singleton Abstractions via Full Traces

Traces ∆ represent relative stack adjustments
Decidability? Finitization

kDRSF: DRSF with max ∆ length k
Not the same meaning as k in kCFA
Longer ∆ truncated to suffix, marked partial

[JaIb] + Ic ⇒ (IbIc]
Other models are possible

Full traces imply unique allocation/evaluation
Used to establish shallow singleton abstractions for e.g.
must-alias
Partial traces gracefully degrade

17/20



Relative Store Fragments

Partial sets of bindings

Merge discards dissonant store fragments
Precision similar to non-store-widening analyses

Worst-case complexity, too (O(2n) vs DDPA’s O(nk))

Tunable!

Merges described in algebraic lookup function
Set complex policies for precision loss
Know needs before deciding what to lose

Versatile

Context-sensitivity
Flow-sensitivity
Path-sensitivity
Must-alias analysis
Non-local variable alignment

18/20



Relative Store Fragments

Partial sets of bindings occurring simultaneously

Merge discards dissonant store fragments
Precision similar to non-store-widening analyses

Worst-case complexity, too (O(2n) vs DDPA’s O(nk))

Tunable!

Merges described in algebraic lookup function
Set complex policies for precision loss
Know needs before deciding what to lose

Versatile

Context-sensitivity
Flow-sensitivity
Path-sensitivity
Must-alias analysis
Non-local variable alignment

18/20



Relative Store Fragments

Partial sets of bindings occurring simultaneously
Merge discards dissonant store fragments

Precision similar to non-store-widening analyses

Worst-case complexity, too (O(2n) vs DDPA’s O(nk))

Tunable!

Merges described in algebraic lookup function
Set complex policies for precision loss
Know needs before deciding what to lose

Versatile

Context-sensitivity
Flow-sensitivity
Path-sensitivity
Must-alias analysis
Non-local variable alignment

18/20



Relative Store Fragments

Partial sets of bindings occurring simultaneously
Merge discards dissonant store fragments
Precision similar to non-store-widening analyses

Worst-case complexity, too (O(2n) vs DDPA’s O(nk))
Tunable!

Merges described in algebraic lookup function
Set complex policies for precision loss
Know needs before deciding what to lose

Versatile

Context-sensitivity
Flow-sensitivity
Path-sensitivity
Must-alias analysis
Non-local variable alignment

18/20



Relative Store Fragments

Partial sets of bindings occurring simultaneously
Merge discards dissonant store fragments
Precision similar to non-store-widening analyses

Worst-case complexity, too (O(2n) vs DDPA’s O(nk))

Tunable!

Merges described in algebraic lookup function
Set complex policies for precision loss
Know needs before deciding what to lose

Versatile

Context-sensitivity
Flow-sensitivity
Path-sensitivity
Must-alias analysis
Non-local variable alignment

18/20



Relative Store Fragments

Partial sets of bindings occurring simultaneously
Merge discards dissonant store fragments
Precision similar to non-store-widening analyses

Worst-case complexity, too (O(2n) vs DDPA’s O(nk))
Tunable!

Merges described in algebraic lookup function
Set complex policies for precision loss

Know needs before deciding what to lose
Versatile

Context-sensitivity
Flow-sensitivity
Path-sensitivity
Must-alias analysis
Non-local variable alignment

18/20



Relative Store Fragments

Partial sets of bindings occurring simultaneously
Merge discards dissonant store fragments
Precision similar to non-store-widening analyses

Worst-case complexity, too (O(2n) vs DDPA’s O(nk))
Tunable!

Merges described in algebraic lookup function
Set complex policies for precision loss
Know needs before deciding what to lose

Versatile

Context-sensitivity
Flow-sensitivity
Path-sensitivity
Must-alias analysis
Non-local variable alignment

18/20



Relative Store Fragments

Partial sets of bindings occurring simultaneously
Merge discards dissonant store fragments
Precision similar to non-store-widening analyses

Worst-case complexity, too (O(2n) vs DDPA’s O(nk))
Tunable!

Merges described in algebraic lookup function
Set complex policies for precision loss
Know needs before deciding what to lose

Versatile
Context-sensitivity
Flow-sensitivity
Path-sensitivity
Must-alias analysis
Non-local variable alignment

18/20



What’s Next?

Performance!

re
ge

x
(3

07
)

de
riv

(1
90

)
pr

im
te

st
(1

28
)

rs
a

(1
26

)
ch

ur
ch

(7
9)

sa
t

(7
4)

cp
st

ak
(4

0)

0
200
400
600
800

1,000

3 8 0 0 53 2 035 5 1 1 8 1 1

Ru
nn

in
g
tim

e
(s
)

k = 0
DRSF
DDPA

re
ge

x
(3

07
)

de
riv

(1
90

)
pr

im
te

st
(1

28
)

rs
a

(1
26

)
ch

ur
ch

(7
9)

sa
t

(7
4)

cp
st

ak
(4

0)

1

10
1

3

22
5

19 5 4

77

3 8

k = 2

re
ge

x
(3

07
)

de
riv

(1
90

)
pr

im
te

st
(1

28
)

rs
a

(1
26

)
ch

ur
ch

(7
9)

sa
t

(7
4)

cp
st

ak
(4

0)

27 3446 56 42 17 11 36

k = 4

Worst-case recursion is slow

(in DDPA too)

Currently retaining too much on merge
Extending little store: partial set of
bindings

/constraints?/facts?

19/20



What’s Next?

Performance!
re

ge
x

(3
07

)
de

riv
(1

90
)

pr
im

te
st

(1
28

)
rs

a
(1

26
)

ch
ur

ch
(7

9)
sa

t
(7

4)
cp

st
ak

(4
0)

0
200
400
600
800

1,000

3 8 0 0 53 2 035 5 1 1 8 1 1

Ru
nn

in
g
tim

e
(s
)

k = 0
DRSF
DDPA

re
ge

x
(3

07
)

de
riv

(1
90

)
pr

im
te

st
(1

28
)

rs
a

(1
26

)
ch

ur
ch

(7
9)

sa
t

(7
4)

cp
st

ak
(4

0)

1

10
1

3

22
5

19 5 4

77

3 8

k = 2

re
ge

x
(3

07
)

de
riv

(1
90

)
pr

im
te

st
(1

28
)

rs
a

(1
26

)
ch

ur
ch

(7
9)

sa
t

(7
4)

cp
st

ak
(4

0)

27 3446 56 42 17 11 36

k = 4

Worst-case recursion is slow

(in DDPA too)

Currently retaining too much on merge
Extending little store: partial set of
bindings

/constraints?/facts?

19/20



What’s Next?

Performance!
re

ge
x

(3
07

)
de

riv
(1

90
)

pr
im

te
st

(1
28

)
rs

a
(1

26
)

ch
ur

ch
(7

9)
sa

t
(7

4)
cp

st
ak

(4
0)

0
200
400
600
800

1,000

3 8 0 0 53 2 035 5 1 1 8 1 1

Ru
nn

in
g
tim

e
(s
)

k = 0
DRSF
DDPA

re
ge

x
(3

07
)

de
riv

(1
90

)
pr

im
te

st
(1

28
)

rs
a

(1
26

)
ch

ur
ch

(7
9)

sa
t

(7
4)

cp
st

ak
(4

0)

1

10
1

3

22
5

19 5 4

77

3 8

k = 2

re
ge

x
(3

07
)

de
riv

(1
90

)
pr

im
te

st
(1

28
)

rs
a

(1
26

)
ch

ur
ch

(7
9)

sa
t

(7
4)

cp
st

ak
(4

0)

27 3446 56 42 17 11 36

k = 4

Worst-case recursion is slow

(in DDPA too)
Currently retaining too much on merge

Extending little store: partial set of
bindings

/constraints?/facts?

19/20



What’s Next?

Performance!
re

ge
x

(3
07

)
de

riv
(1

90
)

pr
im

te
st

(1
28

)
rs

a
(1

26
)

ch
ur

ch
(7

9)
sa

t
(7

4)
cp

st
ak

(4
0)

0
200
400
600
800

1,000

3 8 0 0 53 2 035 5 1 1 8 1 1

Ru
nn

in
g
tim

e
(s
)

k = 0
DRSF
DDPA

re
ge

x
(3

07
)

de
riv

(1
90

)
pr

im
te

st
(1

28
)

rs
a

(1
26

)
ch

ur
ch

(7
9)

sa
t

(7
4)

cp
st

ak
(4

0)

1

10
1

3

22
5

19 5 4

77

3 8

k = 2

re
ge

x
(3

07
)

de
riv

(1
90

)
pr

im
te

st
(1

28
)

rs
a

(1
26

)
ch

ur
ch

(7
9)

sa
t

(7
4)

cp
st

ak
(4

0)

27 3446 56 42 17 11 36

k = 4

Worst-case recursion is slow (in DDPA too)

Currently retaining too much on merge
Extending little store: partial set of
bindings

/constraints?/facts?

19/20



What’s Next?

Performance!
re

ge
x

(3
07

)
de

riv
(1

90
)

pr
im

te
st

(1
28

)
rs

a
(1

26
)

ch
ur

ch
(7

9)
sa

t
(7

4)
cp

st
ak

(4
0)

0
200
400
600
800

1,000

3 8 0 0 53 2 035 5 1 1 8 1 1

Ru
nn

in
g
tim

e
(s
)

k = 0
DRSF
DDPA

re
ge

x
(3

07
)

de
riv

(1
90

)
pr

im
te

st
(1

28
)

rs
a

(1
26

)
ch

ur
ch

(7
9)

sa
t

(7
4)

cp
st

ak
(4

0)

1

10
1

3

22
5

19 5 4

77

3 8

k = 2

re
ge

x
(3

07
)

de
riv

(1
90

)
pr

im
te

st
(1

28
)

rs
a

(1
26

)
ch

ur
ch

(7
9)

sa
t

(7
4)

cp
st

ak
(4

0)

27 3446 56 42 17 11 36

k = 4

Worst-case recursion is slow (in DDPA too)
Currently retaining too much on merge

Extending little store: partial set of
bindings

/constraints?/facts?

19/20



What’s Next?

Performance!
re

ge
x

(3
07

)
de

riv
(1

90
)

pr
im

te
st

(1
28

)
rs

a
(1

26
)

ch
ur

ch
(7

9)
sa

t
(7

4)
cp

st
ak

(4
0)

0
200
400
600
800

1,000

3 8 0 0 53 2 035 5 1 1 8 1 1

Ru
nn

in
g
tim

e
(s
)

k = 0
DRSF
DDPA

re
ge

x
(3

07
)

de
riv

(1
90

)
pr

im
te

st
(1

28
)

rs
a

(1
26

)
ch

ur
ch

(7
9)

sa
t

(7
4)

cp
st

ak
(4

0)

1

10
1

3

22
5

19 5 4

77

3 8

k = 2

re
ge

x
(3

07
)

de
riv

(1
90

)
pr

im
te

st
(1

28
)

rs
a

(1
26

)
ch

ur
ch

(7
9)

sa
t

(7
4)

cp
st

ak
(4

0)

27 3446 56 42 17 11 36

k = 4

Worst-case recursion is slow (in DDPA too)
Currently retaining too much on merge

Extending little store: partial set of
bindings

/constraints?/facts?

19/20



What’s Next?

Performance!
re

ge
x

(3
07

)
de

riv
(1

90
)

pr
im

te
st

(1
28

)
rs

a
(1

26
)

ch
ur

ch
(7

9)
sa

t
(7

4)
cp

st
ak

(4
0)

0
200
400
600
800

1,000

3 8 0 0 53 2 035 5 1 1 8 1 1

Ru
nn

in
g
tim

e
(s
)

k = 0
DRSF
DDPA

re
ge

x
(3

07
)

de
riv

(1
90

)
pr

im
te

st
(1

28
)

rs
a

(1
26

)
ch

ur
ch

(7
9)

sa
t

(7
4)

cp
st

ak
(4

0)

1

10
1

3

22
5

19 5 4

77

3 8

k = 2

re
ge

x
(3

07
)

de
riv

(1
90

)
pr

im
te

st
(1

28
)

rs
a

(1
26

)
ch

ur
ch

(7
9)

sa
t

(7
4)

cp
st

ak
(4

0)

27 3446 56 42 17 11 36

k = 4

Worst-case recursion is slow (in DDPA too)
Currently retaining too much on merge

Extending little store: partial set of
bindings/constraints?

/facts?

19/20



What’s Next?

Performance!
re

ge
x

(3
07

)
de

riv
(1

90
)

pr
im

te
st

(1
28

)
rs

a
(1

26
)

ch
ur

ch
(7

9)
sa

t
(7

4)
cp

st
ak

(4
0)

0
200
400
600
800

1,000

3 8 0 0 53 2 035 5 1 1 8 1 1

Ru
nn

in
g
tim

e
(s
)

k = 0
DRSF
DDPA

re
ge

x
(3

07
)

de
riv

(1
90

)
pr

im
te

st
(1

28
)

rs
a

(1
26

)
ch

ur
ch

(7
9)

sa
t

(7
4)

cp
st

ak
(4

0)

1

10
1

3

22
5

19 5 4

77

3 8

k = 2

re
ge

x
(3

07
)

de
riv

(1
90

)
pr

im
te

st
(1

28
)

rs
a

(1
26

)
ch

ur
ch

(7
9)

sa
t

(7
4)

cp
st

ak
(4

0)

27 3446 56 42 17 11 36

k = 4

Worst-case recursion is slow (in DDPA too)
Currently retaining too much on merge

Extending little store: partial set of
bindings/constraints?/facts?

19/20



Questions?

20/20


