Demand-Driven Relative Store Fragments for Singleton Abstraction Little Store's Big Journey

Leandro Facchinetti¹

Zachary Palmer² Scott F. Smith¹

The Johns Hopkins University¹

Swarthmore College²

September 1st, 2017

	push fo	orward	reverse lookup
first order	classic abs. interp. data flow analysis		CFL-reachability reverse data flow analysis
higher order	kCFA PDCFA	CFA2 FCFA	

	push fo	prward	reverse lookup
first order	classic abs. interp. data flow analysis		CFL-reachability reverse data flow analysis
↓ nigher order	kCFA PDCFA	CFA2 ΓCFA	

	push fo	prward	reverse lookup
first order	classic abs. interp. data flow analysis		CFL-reachability reverse data flow analysis
nigher order	kCFA PDCFA	CFA2 ΓCFA	

	push fo	prward	reverse lookup
first order	classic abs. interp. data flow analysis		CFL-reachability reverse data flow analysis
nigher order	kCFA PDCFA	CFA2 ΓCFA	DDPA

	push fo	orward	reverse lookup
first order	classic abs. interp. data flow analysis		CFL-reachability reverse data flow analysis
nigher order	kCFA PDCFA	CFA2 ΓCFA	DDPA DRSF

	push fo	prward	reverse lookup
first order	classic abs. interp. data flow analysis		CFL-reachability reverse data flow analysis
nigher order	kCFA PDCFA	CFA2 FCFA	DDPA DRSF
			(weak non-locals)

DDPA DRSF

Context-sensitive

Flow-sensitive

Path-sensitive

Must-alias

Non-local variables

	DDPA	DRSF
Context-sensitive	✓ Contours	1
Flow-sensitive	🗸 Natural	1
Path-sensitive	\sim	1
Must-alias	\sim	1
Non-local variables	1	1

	DDPA	DRSF
Context-sensitive	✓ Contours	✓
Flow-sensitive	🗸 Natural	1
Path-sensitive	\sim Filters	1
Must-alias	\sim	1
Non-local variables	1	1

	DDPA	DRSF
Context-sensitive	✓ Contours	1
Flow-sensitive	🗸 Natural	1
Path-sensitive	\sim Filters	1
Must-alias	∼ A Mess	1
Non-local variables	1	1

	DDPA	DRSF
Context-sensitive	✓ Contours	1
Flow-sensitive	🗸 Natural	1
Path-sensitive	\sim Filters	1
Must-alias	∕ A Mess	1
Non-local variables	🗸 Lookup	1

	DDPA	DRSF
Context-sensitive	✓ Contours	✓ Little Stores
Flow-sensitive	🗸 Natural	✓ Little Stores
Path-sensitive	\sim Filters	✓ Little Stores
Must-alias	∼ A Mess	✓ Little Stores
Non-local variables	🗸 Lookup	🗸 Lookup

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
```

DDPA by Example Initial CFG

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
```


Expand function call f 4

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
```


Expand function call f 4

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
```


Expand function call f 4

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
```


Expand function call f 4

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
```

f

Lookup

"Look Pup"

Expand function call f 4

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
```


Expand function call f 4

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
```

f

Expand function call f 4

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
```

f

Expand function call f 4

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
```

f

Wire in function call f 4

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
```

 $f \longrightarrow x \longrightarrow fun y fr$

Wire in function call f 4

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
```


Expand function call g v

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
```


Expand function call g v

Expand function call g v

Expand function call g v

|--|

Expand function call g v

Expand function call g v

Expand function call g v

Expand function call g v

Wire in function call g v

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
```


Parameter lookup: y

Parameter lookup: y

Parameter lookup: y

Non-local lookup: x

```
let f = fun p ->
    let x = p in
    fun y -> x + y
in
let g = f 4 in
let v = 1 in
let z = g v in z
```


Non-local lookup: x

Non-local lookup: x

Non-local lookup: x

x

Non-local lookup: x

x

Non-local lookup: x

Non-local lookup: x

Non-local lookup: x

Non-local lookup: x

Non-local lookup: x

Non-local lookup: x

Non-local lookup: x

Non-local lookup: x

Non-local lookup: x

Non-local lookup: x

Non-local lookup: x

Non-local lookup: x

• Value lookup on demand: no explicit store!

- Value lookup on demand: no explicit store!
- Lookup stack: intermediate lookups

- Value lookup on demand: no explicit store!
- Lookup stack: intermediate lookups
 - Function calls
 - Record projections
 - Binary operators
 - ...

- Value lookup on demand: no explicit store!
- Lookup stack: intermediate lookups
 - Function calls
 - Record projections
 - Binary operators
 - ...
- Polymorphism via abstract call stack

- Value lookup on demand: no explicit store!
- Lookup stack: intermediate lookups
 - Function calls
 - Record projections
 - Binary operators
 - ...
- Polymorphism via abstract call stack
- Recursion via pushdown reachability

- Value lookup on demand: no explicit store!
- Lookup stack: intermediate lookups
 - Function calls
 - Record projections
 - Binary operators
 - ...
- Polymorphism via abstract call stack
- Recursion via pushdown reachability

Connection to forward analyses?

• "Big stores": complete sets of bindings

- "Big stores": complete sets of bindings
- DDPA: reconstruct big stores with lookups
DDPA and **Abstract** Stores

• "Big stores": complete sets of bindings

• DDPA: reconstruct big stores with lookups

DDPA and **Abstract** Stores

- "Big stores": complete sets of bindings
- DDPA: reconstruct big stores with lookups

• Lookups from a point are independent

DDPA and **Abstract** Stores

- "Big stores": complete sets of bindings
- DDPA: reconstruct big stores with lookups

- Lookups from a point are independent
- Similar to per-point store widening

```
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z
```

```
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z
```



```
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z
```


1	let	b =	<pre>coin_flip () in</pre>
2	let	f =	fun p ->
3		let	x = p in
4		fun	y -> x + y
5	in		
6	let	g =	f (b?4:"s") in
7	let	v =	(b?1:"t") in
8	let	z =	g v in z

fun y x + y х g g g=fun y z = x + yp = 4v = 1 y = "t" "s" = מ f b z g v z

1	let	b =	<pre>coin_flip () in</pre>
2	let	f =	fun p ->
3		let	x = p in
4		fun	y -> x + y
5	in		
6	let	g =	f (b?4:"s") in
7	let	v =	(b?1:"t") in
8	let	z =	g v in z

 $\begin{array}{l} \mbox{Possible values of x + y?} \\ \mbox{ } x \in \{4, "s"\} \end{array}$

1	let	<pre>b = coin_flip () in</pre>
2	let	f = fun p ->
3		let x = p in
4		fun y -> x + y
5	in	
6	let	g = f (b?4:"s") in
7	let	v = (b?1:"t") in
8	let	z = g v in z

Possible values of x + y? x $\in \{4, "s"\}$ y $\in \{1, "t"\}$

1	let	<pre>b = coin_flip () ir</pre>	L
2	let	f = fun p ->	
3		<pre>let x = p in</pre>	
4		fun y -> x + y	
5	in		
6	let	g = f (b?4:"s") in	
7	let	v = (b?1:"t") in	
8	let	z = g v in z	

Possible values of x + y?
x
$$\in \{4, "s"\}$$

y $\in \{1, "t"\}$
x + y = $\begin{cases} 4 + 1 \\ 4 + "t" \\ "s" + 1 \\ "s" + "t" \end{cases}$

1	let	$b = coin_1$	lip () in
2	let	f = fun p	->
3		<pre>let x = p</pre>	in
4		fun y -> 3	c + y
5	in		
6	let	$g = f (b)^{2}$	l:"s") in
7	let	v = (b?1:'	't") in
8	let	z = g v ir	l Z

Possible values of x + y?
x
$$\in \{4, "s"\}$$

y $\in \{1, "t"\}$
x + y = $\begin{cases} 4 + 1 \\ 4 + "t" \\ "s" + 1 \\ "s" + "t" \end{cases}$

DRSF

DRSF

DRSF

DRSF $\bigcup \bigotimes^{\bigotimes} = \sum \bigotimes^{\swarrow} \neq \bigotimes^{\bigotimes}$

DRSF $\bigcup \bigotimes^{\otimes} = \sum \bigotimes \neq \bigotimes^{\otimes}$ $\bigotimes^{\otimes} = \{\hat{x} \otimes \Delta \mapsto \hat{v}, \ldots\}$

DRSF $| | \mathscr{A} = \sum \mathscr{A} \neq \mathscr{A}$ $\hat{x} = \{ \hat{x} @ \Delta \mapsto \hat{v}, \ldots \}$ $\Delta = [\delta, \ldots]$

• ΔCFA [POPL 06] (abstract frame strings)

• PDCFA [JFP #24 (2014)] (stack deltas, reachability)

- ΔCFA [POPL 06] (abstract frame strings)
- PDCFA [JFP #24 (2014)] (stack deltas, reachability)
- Little stores are incomplete

- ΔCFA [POPL 06] (abstract frame strings)
- PDCFA [JFP #24 (2014)] (stack deltas, reachability)
- Little stores are incomplete
- <u>Relative</u> (vs. DDPA's <u>absolute</u>)

- ΔCFA [POPL 06] (abstract frame strings)
- PDCFA [JFP #24 (2014)] (stack deltas, reachability)
- Little stores are incomplete
- Relative (vs. DDPA's absolute)

Demand-Driven Higher-Order Program Analyses

	DDPA	DRSF
Context-sensitive	✓ Contours	✓ Little Stores
Flow-sensitive	🗸 Natural	✓ Little Stores
Path-sensitive	\sim Filters	✓ Little Stores
Must-alias	🔨 A Mess	✓ Little Stores
Non-local variables	🗸 Lookup	🗸 Lookup

```
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z
```


$$\{b@[] \mapsto true\} \\ \bigcirc z \\ \{y@[] \mapsto 1\}$$

$$\begin{array}{c} \{ \texttt{b@[]} \mapsto \texttt{true} \} \\ \\ \\ \exists \texttt{z} \\ \{ \texttt{y@[]} \mapsto \texttt{1} \} \end{array}$$

$$\begin{array}{c} \{ \texttt{b@[]} \mapsto \texttt{true} \} \\ \\ \\ \exists \texttt{z} \\ \\ \{ \texttt{y@[]} \mapsto \texttt{1} \} \end{array}$$

$$\begin{cases} b@[]z] \mapsto true \end{cases} \\ \\ \{y@[] \mapsto 1 \end{cases}$$

$$egin{aligned} & \{\texttt{b@[}(z] \mapsto \texttt{true}\} \ & \{\texttt{y@[} \mapsto \texttt{1}\} \end{aligned}$$

$$\left\{ \begin{matrix} y@[]\mapsto 1,\\ b@[@z]\mapsto \texttt{true} \end{matrix} \right\}$$

Lookup Stack

Lookup Stack

Lookup Stack

Lookup Stack

Lookup Stack

Lookup Stack

Lookup Stack

Lookup Stack

$$\begin{cases} p@[Dg] \mapsto 4, \\ b@[] \mapsto true \end{cases}$$

$$\exists z$$

Lookup Stack

$$\begin{cases} \texttt{x@[]} \mapsto \texttt{4}, \\ \texttt{b@[]z]} \mapsto \texttt{true} \end{cases} \ \oplus \ \begin{cases} \texttt{y@[]} \mapsto \texttt{1}, \\ \texttt{b@[]z]} \mapsto \texttt{true} \end{cases} =$$

$$\begin{cases} \texttt{x}@[] \mapsto \texttt{4}, \\ \texttt{b}@[\texttt{d}\texttt{z}] \mapsto \texttt{true} \end{cases} \ \oplus \ \begin{cases} \texttt{y}@[] \mapsto \texttt{1}, \\ \texttt{b}@[\texttt{d}\texttt{z}] \mapsto \texttt{true} \end{cases} \ = \ \begin{cases} \texttt{x}@[] \mapsto \texttt{4}, \\ \texttt{y}@[] \mapsto \texttt{1}, \\ \texttt{b}@[\texttt{d}\texttt{z}] \mapsto \texttt{true} \end{cases}$$

$$\begin{cases} \texttt{x0[]} \mapsto \texttt{4}, \\ \texttt{b0[}[\texttt{Jz]} \mapsto \texttt{true} \end{cases} \ \oplus \ \begin{cases} \texttt{y0[]} \mapsto \texttt{1}, \\ \texttt{b0[}[\texttt{Jz]} \mapsto \texttt{true} \end{cases} \ = \ \begin{cases} \texttt{x0[]} \mapsto \texttt{4}, \\ \texttt{y0[]} \mapsto \texttt{1}, \\ \texttt{b0[}[\texttt{Jz]} \mapsto \texttt{true} \end{cases} \end{cases}$$

$$\begin{cases} \mathtt{x} @[] \mapsto \texttt{"s"}, \\ \mathtt{b} @[\texttt{Iz}] \mapsto \texttt{false} \end{cases} \oplus \begin{cases} \mathtt{y} @[] \mapsto \texttt{"t"}, \\ \mathtt{b} @[\texttt{Iz}] \mapsto \texttt{false} \end{cases} =$$

$$\begin{cases} \mathbf{x}\mathbb{Q}[] \mapsto 4, \\ \mathbf{b}\mathbb{Q}[\mathbb{Q}\mathbf{z}] \mapsto \mathbf{true} \end{cases} \oplus \begin{cases} \mathbf{y}\mathbb{Q}[] \mapsto 1, \\ \mathbf{b}\mathbb{Q}[\mathbb{Q}\mathbf{z}] \mapsto \mathbf{true} \end{cases} = \begin{cases} \mathbf{x}\mathbb{Q}[] \mapsto 4, \\ \mathbf{y}\mathbb{Q}[] \mapsto 1, \\ \mathbf{b}\mathbb{Q}[\mathbb{Q}\mathbf{z}] \mapsto \mathbf{true} \end{cases}$$
$$\begin{cases} \mathbf{x}\mathbb{Q}[] \mapsto \mathbf{x}^{\mathsf{w}}, \\ \mathbf{b}\mathbb{Q}[\mathbb{Q}\mathbf{z}] \mapsto \mathbf{true} \end{cases} \oplus \begin{cases} \mathbf{y}\mathbb{Q}[] \mapsto \mathbf{x}^{\mathsf{w}}, \\ \mathbf{b}\mathbb{Q}[\mathbb{Q}\mathbf{z}] \mapsto \mathbf{true} \end{cases} = \begin{cases} \mathbf{x}\mathbb{Q}[] \mapsto \mathbf{x}^{\mathsf{w}}, \\ \mathbf{y}\mathbb{Q}[] \mapsto \mathbf{x}^{\mathsf{w}}, \\ \mathbf{y}\mathbb{Q}[] \mapsto \mathbf{w}^{\mathsf{w}}, \\ \mathbf{b}\mathbb{Q}[\mathbb{Q}\mathbf{z}] \mapsto \mathbf{true} \end{cases} \end{cases}$$

$$\begin{cases} x@[] \mapsto 4, \\ b@[(]z] \mapsto true \end{cases} \oplus \begin{cases} y@[] \mapsto 1, \\ b@[(]z] \mapsto true \end{cases} = \begin{cases} x@[] \mapsto 4, \\ y@[] \mapsto 1, \\ b@[(]z] \mapsto true \end{cases}$$
$$\begin{cases} x@[] \mapsto "s", \\ b@[(]z] \mapsto false \end{cases} \oplus \begin{cases} y@[] \mapsto "t", \\ b@[(]z] \mapsto false \end{cases} = \begin{cases} x@[] \mapsto "s", \\ y@[] \mapsto "t", \\ b@[(]z] \mapsto false \end{cases}$$
$$\begin{cases} x@[] \mapsto 4, \\ b@[(]z] \mapsto true \end{cases} \oplus \begin{cases} y@[] \mapsto "t", \\ b@[(]z] \mapsto false \end{cases} = \begin{cases} x@[] \mapsto s", \\ b@[(]z] \mapsto false \end{cases}$$
$$\end{cases}$$

$$\begin{cases} x@[] \mapsto 4, \\ b@[\exists z] \mapsto true \end{cases} \oplus \begin{cases} y@[] \mapsto 1, \\ b@[\exists z] \mapsto true \end{cases} = \begin{cases} x@[] \mapsto 4, \\ y@[] \mapsto 1, \\ b@[\exists z] \mapsto true \end{cases}$$
$$\begin{cases} x@[] \mapsto "s", \\ b@[\exists z] \mapsto false \end{cases} \oplus \begin{cases} y@[] \mapsto "t", \\ b@[\exists z] \mapsto false \end{cases} = \begin{cases} x@[] \mapsto "s", \\ y@[] \mapsto "t", \\ b@[\exists z] \mapsto false \end{cases}$$
$$\begin{cases} x@[] \mapsto 4, \\ b@[\exists z] \mapsto true \end{cases} \oplus \begin{cases} y@[] \mapsto "t", \\ b@[\exists z] \mapsto false \end{cases} = \end{cases}$$
$$\begin{cases} x@[] \mapsto s", \\ b@[\exists z] \mapsto true \end{cases} \oplus \begin{cases} y@[] \mapsto "t", \\ b@[\exists z] \mapsto true \end{cases} = \end{cases}$$

```
1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0
```

```
1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0
```



```
1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0
```



```
1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0
```



```
1 let f = fun x -> x in
2 let a = 4 in
3 let b = f a in
4 let c = "s" in
5 let d = f c in
6 0
```


Lookup Stack

Lookup Stack

Lookup Stack

• Traces Δ represent relative stack adjustments

- $\bullet\,$ Traces Δ represent relative stack adjustments
- Decidability? Finitization

- Traces Δ represent relative stack adjustments
- Decidability? Finitization
 - kDRSF: DRSF with max Δ length k

- Traces Δ represent relative stack adjustments
- Decidability? Finitization
 - kDRSF: DRSF with max Δ length k
 - Not the same meaning as k in kCFA

- Traces Δ represent relative stack adjustments
- Decidability? Finitization
 - kDRSF: DRSF with max Δ length k
 - Not the same meaning as k in kCFA
 - Longer Δ truncated to suffix, marked partial

- Traces Δ represent relative stack adjustments
- Decidability? Finitization
 - kDRSF: DRSF with max Δ length k
 - Not the same meaning as k in kCFA
 - Longer Δ truncated to suffix, marked partial

•
$$[DaGb] + Gc \Rightarrow (GbGc]$$

- Traces Δ represent relative stack adjustments
- Decidability? Finitization
 - kDRSF: DRSF with max Δ length k
 - Not the same meaning as k in kCFA
 - Longer Δ truncated to suffix, marked partial

•
$$[DaGb] + Gc \Rightarrow (GbGc]$$

• Other models are possible

- Traces Δ represent relative stack adjustments
- Decidability? Finitization
 - kDRSF: DRSF with max Δ length k
 - Not the same meaning as k in kCFA
 - Longer Δ truncated to suffix, marked partial

• $[DaGb] + Gc \Rightarrow (GbGc]$

- Other models are possible
- Full traces imply unique allocation/evaluation

- Traces Δ represent relative stack adjustments
- Decidability? Finitization
 - kDRSF: DRSF with max Δ length k
 - Not the same meaning as k in kCFA
 - Longer Δ truncated to suffix, marked partial

• $[DaGb] + Gc \Rightarrow (GbGc]$

- Other models are possible
- Full traces imply unique allocation/evaluation
 - Used to establish shallow singleton abstractions for e.g. must-alias

- Traces Δ represent relative stack adjustments
- Decidability? Finitization
 - kDRSF: DRSF with max Δ length k
 - Not the same meaning as k in kCFA
 - Longer Δ truncated to suffix, marked partial

• $[DaGb] + Gc \Rightarrow (GbGc]$

- Other models are possible
- Full traces imply unique allocation/evaluation
 - Used to establish shallow singleton abstractions for e.g. must-alias
 - Partial traces gracefully degrade

• Partial sets of bindings

• Partial sets of bindings occurring simultaneously

- Partial sets of bindings occurring simultaneously
- Merge discards dissonant store fragments

- Partial sets of bindings occurring simultaneously
- Merge discards dissonant store fragments
- Precision similar to non-store-widening analyses

- Partial sets of bindings occurring simultaneously
- Merge discards dissonant store fragments
- Precision similar to non-store-widening analyses
 - Worst-case complexity, too $(O(2^n) \text{ vs DDPA's } O(n^k))$

- Partial sets of bindings occurring simultaneously
- Merge discards dissonant store fragments
- Precision similar to non-store-widening analyses
 - Worst-case complexity, too $(O(2^n) \text{ vs DDPA's } O(n^k))$
- Tunable!
 - Merges described in algebraic lookup function
 - Set complex policies for precision loss

- Partial sets of bindings occurring simultaneously
- Merge discards dissonant store fragments
- Precision similar to non-store-widening analyses
 - Worst-case complexity, too $(O(2^n)$ vs DDPA's $O(n^k))$
- Tunable!
 - Merges described in algebraic lookup function
 - Set complex policies for precision loss
 - Know needs before deciding what to lose

- Partial sets of bindings occurring simultaneously
- Merge discards dissonant store fragments
- Precision similar to non-store-widening analyses
 - Worst-case complexity, too $(O(2^n)$ vs DDPA's $O(n^k))$
- Tunable!
 - Merges described in algebraic lookup function
 - Set complex policies for precision loss
 - Know needs before deciding what to lose
- Versatile
 - Context-sensitivity
 - Flow-sensitivity
 - Path-sensitivity
 - Must-alias analysis
 - Non-local variable alignment

• Performance!

• Performance!

• Performance!

19/20

• Performance!

Performance!

- Worst-case recursion is slow (in DDPA too)
- Currently retaining too much on merge

• Performance!

- Worst-case recursion is slow (in DDPA too)
- Currently retaining too much on merge
- Extending little store: partial set of bindings

• Performance!

- Worst-case recursion is slow (in DDPA too)
- Currently retaining too much on merge
- Extending little store: partial set of bindings/constraints?
What's Next?

Performance!

- Worst-case recursion is slow (in DDPA too)
- Currently retaining too much on merge
- Extending little store: partial set of bindings/constraints?/facts?

