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DRSF⋃
=

∑

6=

= {x̂@∆ 7→ v̂ , . . .}
∆ = [δ, . . .] δ ::= Ix|Jx
∆CFA [POPL 06] (abstract frame strings)
PDCFA [JFP #24 (2014)] (stack deltas, reachability)
Little stores are incomplete
Relative (vs. DDPA’s absolute)
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Demand-Driven Higher-Order Program Analyses

DDPA DRSF

Context-sensitive 3 Contours 3 Little Stores

Flow-sensitive 3 Natural 3 Little Stores

Path-sensitive Filters 3 Little Stores

Must-alias A Mess 3 Little Stores

Non-local variables 3 Lookup 3 Lookup
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DRSF and Variable Alignment
1 let b = coin_flip () in
2 let f = fun p ->
3 let x = p in
4 fun y -> x + y
5 in
6 let g = f (b?4:"s") in
7 let v = (b?1:"t") in
8 let z = g v in z

b f g v z z

ff x fun y ff

p = 4 g = fun y

gg x + y gg

y = 1 z = x + y

p = "s" y = "t"
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Merging Relative Store Fragments
{

x@[] 7→ 4,
b@[Iz] 7→ true

}
⊕

{
y@[] 7→ 1,

b@[Iz] 7→ true

}
=


x@[] 7→ 4,
y@[] 7→ 1,

b@[Iz] 7→ true


{

x@[] 7→ "s",
b@[Iz] 7→ false

}
⊕

{
y@[] 7→ "t",

b@[Iz] 7→ false

}
=


x@[] 7→ "s",
y@[] 7→ "t",

b@[Iz] 7→ false



{
x@[] 7→ 4,

b@[Iz] 7→ true

}
⊕

{
y@[] 7→ "t",

b@[Iz] 7→ false

}
=

7

{
x@[] 7→ "s",

b@[Iz] 7→ false

}
⊕

{
y@[] 7→ 1,

b@[Iz] 7→ true

}
=

7
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Singleton Abstractions via Full Traces

Traces ∆ represent relative stack adjustments

Decidability? Finitization

kDRSF: DRSF with max ∆ length k
Not the same meaning as k in kCFA
Longer ∆ truncated to suffix, marked partial

[JaIb] + Ic ⇒ (IbIc]

Other models are possible

Full traces imply unique allocation/evaluation

Used to establish shallow singleton abstractions for e.g.
must-alias
Partial traces gracefully degrade
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Relative Store Fragments

Partial sets of bindings

Merge discards dissonant store fragments
Precision similar to non-store-widening analyses

Worst-case complexity, too (O(2n) vs DDPA’s O(nk))

Tunable!

Merges described in algebraic lookup function
Set complex policies for precision loss
Know needs before deciding what to lose

Versatile

Context-sensitivity
Flow-sensitivity
Path-sensitivity
Must-alias analysis
Non-local variable alignment
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