
A Set-Based Context Model for Program
Analysis

Leandro Fachinetti1, Zachary Palmer2, Scott F. Smith1, Ke Wu1, and Ayaka
Yorihiro3

1 Johns Hopkins University, USA
2 Swarthmore College, USA
3 Cornell University, USA

Abstract. In program analysis, the design of context models is an un-
derstudied topic. This paper presents a study of context models for
higher-order program analyses and develops new approaches. We de-
velop a context model which equates control flows with the same set of
call sites on the program stack, guaranteeing termination without the
arbitrary cutoffs which cause imprecision in existing models. We then
selectively polyinstantiate these contexts to avoid exponential growth.
We evaluate this model and existing models across multiple higher-order
program analysis families. Existing demand-driven analyses cannot sup-
port the set model, so we construct a demand-driven analysis, Plume,
which can. Our experiments demonstrate that the set-based model is
tractable and expressive on representative functional programs for both
forward- and demand-driven functional analyses.

Keywords: program analysis, control flow, data flow, context sensitivity, higher-
order, object-oriented

1 Introduction
In higher-order program analysis, there exists a fundamental tension between
context sensitivity and field sensitivity (also called structure-transmitted data
dependence [41]). Context sensitivity relates to how the analysis accounts for
the calling context of a function while analyzing the function’s body. Field sen-
sitivity relates to how the analysis aligns constructions and destructions as it
explores structured data: for instance, whether it can accurately project a field
from a constructed record or, equivalently, look up a non-local variable captured
in closure. Context and field sensitivity inform each other: an analysis lacking in
context sensitivity may lead to spurious data flows despite perfect field sensitiv-
ity. Any analysis which is perfectly context- and field-sensitive has been shown
to be undecidable [29] so, for an analysis tool to guarantee termination, some
concessions must be made.

A common approach is to preserve field sensitivity by approximating context
sensitivity using an abstract model. When introducing one of the first higher-
order program analyses, kCFA, Shivers wrote about context models: “Choosing
a good abstraction that is well-tuned to typical program usage is not a topic
that I have explored in depth, although it certainly merits study.” [33, p.34] The
choice of context models is a critical factor in analysis precision and running

2 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

time, but explorations of this question have been largely confined to truncated
call strings à la kCFA [38,19,18,12,5,23,39]. Recent work has explored selective
approaches to polyinstantiation [16,37] and using different context models for
parts of the same program [22,21,17], but these approaches must still contend
with a crucial weakness: in kCFA-like models, polyinstantiation of a saturated
context will lose the oldest call site. This conflates that call site’s control flows
with those of other call sites and weakens the analysis.

Alternative models of control flow exist in the space of object-oriented alias
analyses. The context and field sensitivity problems can be reduced to matched
parenthesis problems, so they can be modeled as a linear conjunctive language
(LCL) [26] reachability problem. While that problem is undecidable, performant
and relatively precise approximations have been recently developed [41]. Unfor-
tunately, it is not clear what information is lost in these approximations or which
programs would be affected by using LCL reachability in an analysis.

Another recent technique, synchronized pushdown systems (SPDS) [34], in-
volves making no concessions on either context sensitivity or field sensitivity
but treating them as separate problems. The resulting analysis performs well
on traditional object-oriented programs. But functional programs rely heavily
upon the interplay of data and interprocedural control flow and we show that
this approach is problematic for those programs (see Section 4.3).

In contrast with the kCFA-like models, we propose not to discard old call
site information at all. Instead, we represent calling contexts as the set of call
sites on the program stack. This identifies calls appearing at the same site but
retains information about the entire sequence of calls, preventing the conflation
of control flows in the k-limited models described above. This precision intro-
duces a problem: because the set stores call sites rather than called functions,
a recursive function calling itself at n sites may create 2n different contexts,
all of which analyze the same recursive function. We address this by selectively
polyinstantiating contexts in a fashion similar to context tunneling [16].

We evaluate these techniques both in terms of precision and performance.
Evaluating the precision of a component of a program analysis is a challenge: it
is difficult to separate the effects of the component from how it interacts with the
surrounding analysis. Our evaluation is a reproducability experiment: we test a
Cartesian product of program analyses and context models, demonstrating that
the k-cutoff and set-based context models exhibit the same difference in behavior
across those analyses. Given that these differences are reproducible in different
analyses, we ascribe them to the context model.

For the reproducability experiment’s result to apply broadly, the analyses
must be significantly different. We perform the experiment on three analyses.
The first two are ADI, a state-of-the-art functional analysis [5], and an analysis
similar to mCFA [24] in the style of object-oriented CFA analyses.

For the third analysis, we desired to use a higher-order analysis in a demand-
driven style. Demand-driven analyses differ from forward-running analyses in
that they only look up values on demand rather than propagating abstract
heaps throughout the program. Demand-driven analyses were originally de-

A Set-Based Context Model for Program Analysis 3

veloped for first-order programs [30,15,28,31,32,6,13] where they were shown
to achieve good performance/expressiveness trade-offs. Unfortunately, previous
higher-order demand-driven analyses [9,27,7,8,35,34] do not support set-based
context models. We develop a new demand-driven higher-order program anal-
ysis, Plume, to support set-based contexts and selective polyinstantiation. We
prove that Plume is sound, decidable, and strictly more expressive than DDPA
[7], a previous analysis in this class.

We describe Plume, set-based context models, and selective polyinstantiation
in Section 2. We formalize Plume in Section 3. Precision and performance testing
are discussed in Sections 4 and Section 5. (The full performance evaluation as
well as the proofs of Plume’s soundness and decidability appear in appendices.)
Section 6 discusses related and future work; we conclude in Section 7.

2 Overview
This section gives an overview of Plume, set-based context models and selective
polyinstantiation. Although our examples focus on the Plume analysis, set-based
context models and selective polyinstantiation are applicable to other analyses
as well. We discuss their use in other analyses in later sections.

2.1 Shallow A-Normalized Lambda Calculus
Throughout this paper, we will focus on a shallow A-normalized lambda calculus.
The grammar for this language appears in Figure 1. An expression is a list of
clauses to be executed in sequence; the result is the last assigned variable in
that sequence. Call site annotations Θ are used for selective polyinstantiation;
we discuss them in Section 2.4 below.

e ::= [c, . . .] expressions v ::= f values

c ::= x = b clauses f ::= fun x -> (e) functions

b ::= f | x | x x Θ clause bodies Θ ::= [θ, . . .] call site annotation lists

x ::= (identifiers) variables θ ::= @x call site annotations

E ::= [x = v, . . .] environments

Fig. 1. Grammar of Analyzed Language

We require that all programs are alphatized : all clauses define a unique vari-
able. This creates a bijection between variable names and program points, sim-
plifying the theory and presentation. We include more language features in the
implementation evaluated in Sections 4 and 5.

2.2 Plume By Example
Plume is a demand-driven program analysis inspired by DDPA [7]. Plume pro-
ceeds by incrementally constructing a contextual control flow graph (CCFG).
This structure tracks control flow in a context-sensitive manner by associating
a calling context with each graph node. DDPA does not include context infor-
mation in CFG nodes. The CCFG is the only data structure in Plume; there
are no stores or program states. Plume iteratively expands call sites, effectively
inlining function bodies into the CCFG.

Consider the example program in Figure 2. f is simply an η-converted identity
function. The functions defined in g and h are never called; they are simply used
as distinct values for discussion. In the execution of the program, the call assigned
to variable c1 will return g; the call assigned to variable c2 will return h.

4 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

1 f = fun x -> (# λx.(λy.y)x
2 i = fun y -> (# λy.y
3 ri = y;

4);

5 rf = i x;

6);

7 g = fun p -> (rg = p); # λp.p
8 h = fun q -> (rh = q q); # λq.q q
9 c1 = f g; # evaluates to λp.p

10 c2 = f h; # evaluates to λq.q q

f g h c1 c2

i rf

ri

i rf

ri

x=g c1=rf

x=h c2=rf

y=x rf=ri

y=x rf=ri

1

2

3

4

5

Fig. 2. Identity Example: ANF Fig. 3. Identity Example: CCFG Result

Constructing the CCFG Plume’s CCFG initially consists only of the middle
row of nodes (marked 1) representing top-level program points. Because the
analysis is demand-driven, we are not concerned with f, g, and h: they are value
assignments and, if those values are required, we will look them up on demand.

The first function call appears at c1. We start by tracing backward from c1

to find the called function. We pass two clauses — h = . . . and g = . . . — which
do not define f and so are skipped. We then discover variable f and its function.

We next add the second row of nodes (marked 2). The top line is the body
of the f function; the two nodes below are wiring nodes that represent the call’s
parameter and return data flows.This is why the analysis does not require a store:
values may be established on demand by retracing these control flow edges.

The call site rf is now reachable via non-call nodes. Expanding rf yields
the top row of nodes (marked 3). The call site c2 becomes reachable so, like
before, we identify f as the called function. We do not reuse the previous f

subgraph: because this call occurs at a distinct site, we create a new subgraph.
This subgraph appears in the second-to-last row in the diagram (marked 4).
Finally, we expand the call site rf, adding the nodes in the last row (marked 5).

The completed CCFG is Plume’s result and can be used to perform lookups.
To look up c2 from the end of the program, for instance, we move backward
through the graph and encounter c2=rf; our lookup therefore reduces to finding
the value of rf from that node. Moving backward from c2=rf, we discover rf=ri,
changing our goal to finding the value of ri. This process proceeds through ri=y

, y=x, and x=h, eventually leading us to the function defined on line 8.

This example does not show the lookup of a non-local variable. This is a
delicate process in demand-driven analyses and is solved in Plume with a stack
of lookup variables, a technique originally developed for DDPA [7]. We discuss
this approach in Appendix A for reasons of space.

A Set-Based Context Model for Program Analysis 5

2.3 Models of Context Sensitivity

Multiple passes over a program point allow different calls of a function to be
distinguished. These passes manifest in Plume as copies of the function in the
CCFG; in other analyses, they may manifest as additional program states, edges
in an automaton, or similar structures. A decidable program analysis must limit
how many times it analyzes each program point to keep these structures finite.

One typical finitization approach is to associate each function call with a
calling context derived from the circumstances under which the function is called.
In kCFA [33], for instance, calling contexts are a list of the k most recent call sites
visited by the program. In polyvariant P4F [12], calling contexts are represented
by the call site from which we have most recently returned. DDPA [7] and Plume,
like many program analyses, are parametric in the model of calling context used.
We use Σ to denote a context model and use Σk to denote the model in which
contexts are the top k call sites of the stack.

1 o = fun x -> (r = x x;)

2 z = o o; # (λx.x x)(λx.x x)

Fig. 4. Ω-combinator: ANF

o z

r

r

x=o z=r

x=x r=r

[]

[z]

[r]

Fig. 5. 1Plume CCFG

o z

r

r

r

x=o z=r

x=x r=r

x=x r=r

[]

[z]

[r,z]

[r,r]

Fig. 6. 2Plume CCFG

o z

r

r

x=o z=r

x=x r=r

∅

{z}

{r,z}

Fig. 7. SetPlume CCFG

One contribution of this paper is the development of a tractable analysis
using a set-based context model denoted ΣSet, which represents contexts as the
set of all call sites on the call stack. ΣSet addresses a weakness of traditional
k-cutoff models: recursion. Consider the non-terminating Ω-combinator program
in Figure 4 analyzed by Plume using Σ1 (which we call 1Plume). The generated
CCFG appears in Figure 5. Initially, the calling context is empty: the top level
of the program is not generated from any calls. When the first r call site is
expanded, it introduces nodes associated with the context [r]. (The context for
groups of nodes appears to the right.) The z is dropped from this context because
the list is limited to size 1. When the second r call site is expanded, we also
associate that call with [r], reusing the subgraph associated with this context.

By the time a program analysis begins to reuse resources in recognition of
the recursive call, we have lost all information about where the recursive call
started. In the final context of the CCFG, [r], the call site z is no longer present.
If the same recursive function were called in multiple locations, all such calls

6 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

would eventually converge on the [r] context and their control flows would be
conflated. As illustrated in Figure 6, increasing k does nothing to prevent this:
the context [r,r] has similarly lost all information before the recursive call.

Recent developments in object-oriented k-cutoff models mitigate this problem
in a variety of ways. Context tunneling [16] is the most relevant to this case: at
each call, we can decide whether to polyinstantiate the context as above or to
proceed with the context we already have. Here, however, we use a set-based
context model; unlike the k-cutoff models, a set-based model doesn’t discard
information past an arbitrary number of calls.

The CCFG in Figure 7 is generated by Plume using ΣSet (which we call Set-
Plume); SetPlume does not conflate recursive calls in this way. While this CCFG
initially appears to be the same as the one generated by 1Plume, the contexts
associated with each node retain every call site encountered since the top level
of the program. As a consequence, calls to the same function at different sites
will not be conflated. This is critical to allow recursive polymorphic functions
such as List.map to be analyzed correctly.

SetPlume is not the first program analysis to retain the context of recursive
calls by eshewing k-limited context. LCL reachability-based analyses [41] have
a similar approximation which tracks the call stack even more precisely at the
expense of some data flow information. However, most state-of-the-art analyses
use a k-cutoff model [18,5] or rely upon an externally generated CFG [35,34].

2.4 Selective Polyinstantiation

ΣSet distinguishes calls to recursive functions at different call sites by retaining
information about where the recursive function was called. Unlike Σk, there is no
point at which polyinstantiation loses information. As a result, ΣSet is vulnerable
to an exponential expansion of contexts. We address this issue using a selective
polyinstantiation technique similar to the context tunneling work mentioned
above.

1 fact0 = fun self -> (

2 factfn = fun n -> (

3 factret =

4 ifzero n then (

5 factret1 = 1;

6) else (

7 n’ = n - 1;

8 selfself = self self @self;

9 factn’ = selfself n’ @n;

10 fact = factn’ * n;

11);););

12 fact = fact0 fact0 @self;

13 x = 5;

14 fact5 = fact x;

Fig. 8. Factorial Example: Extended ANF

Consider a recursive function
whose body contains n recursive call
sites (e.g. an expression interpreter).
This recursive function may be called
through any combination of the n re-
cursive sites, leading to 2n possible
contexts. This is clearly intractable.
Further, it is a waste of effort: the
analysis is only more precise if differ-
ent recursive calls yield different (ab-
stract) values, and the inference of
polymorphic recursion is known to be
undecidable [14].

Our strategy is to be selective:
when a function calls itself, we choose
not to polyinstantiate it. The challenge is that, while ΣSet correctly identifies
and avoids polyinstantiation for recurring call sites, it does not identify recursive

A Set-Based Context Model for Program Analysis 7

functions. To identify a recursive call, we must take into account both the posi-
tion of call site and the function being called there. We explicitly mark each call
site with the identities of those functions which should not be polyinstantiated
if they are called in that location.

Consider the self-passing factorial program written in Figure 8 in an ex-
tended ANF. The only contexts generated during the analysis of this program
in SetPlume will be ∅ and {fact5} despite the fact that there are several other
function calls in the program. Upon reaching line 8, for instance, the analysis
looks up self and discovers that the function being called is the one assigned
to fact0. Because the ANF is alphatized, the name of the function’s parame-
ter, self, uniquely identifies it in the program. The annotation @self indicates
that, if this function is called on line 8, it should not be polyinstantiated. As
a result, this call site is wired to the body of that function associated with the
current context, {fact5}, rather than to a new copy. These annotations are of-
ten automatically inferrable: the performance benchmark programs evaluated in
Appendix D are written in an ML-like surface language without annotations and
are then machine translated to an annotated ANF.

Selective polyinstantiation is almost equivalent in expressiveness to context
tunneling. Both systems determine whether or not to polyinstantiate based upon
the pairing of call site and called function. This choice is driven here by an-
notations and in the context tunneling work by a global relation. (Selective
polyinstantiation can differentiate between call sites within the same method
while context tunneling cannot, but this distinction seems unlikely to be useful.)
There are two key differences between this work and context tunneling. First:
the context tunneling paper [16] uses a data-driven machine learning algorithm
to generate its pairwise relation; by comparison, we use a simple lexical anno-
tator here. Second: the motivations differ. The data-driven algorithm is used to
prevent the k-limited context from losing precision; here, we apply the technique
to mitigate performance concerns. Selective polyinstantiation also shares some
properties with earlier work [37] which eliminate provably redundant polyinstan-
tiations, although that work is not applicable to the set-based context model
discussed here.

Note that this approach is not limited to ΣSet or to Plume. Selective polyin-
stantiation is similar to context tunneling [16], which has been applied to k-
limited context models to prevent new, unimportant context information from
supplanting old, important context information. Here, polyinstantiation is used
to prevent a blow-up in complexity instead.

3 Formalizing Plume

We now formally define the Plume analysis. As outlined in Section 2.2, the
analysis proceeds in two steps. First, the program is embedded into an initial
CCFG; second, we perform a full closure of the CCFG using information from a
demand-driven value lookup algorithm. There is no store or heap; all values are
looked up by following the CCFG backward from the point of interest. We define
the analysis in three parts: the initial embedding and corresponding preliminary

8 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

definitions (Section 3.1), the demand-driven lookup function (Section 3.2), and
the CCFG closure algorithm (Section 3.3).

3.1 Preliminary Definitions

We begin by abstracting the target program. We define “hatted” analogs for each
grammar term in Figure 1: ê for abstract expressions, ĉ for abstract clauses, and
so on. We denote the abstraction of a concrete expression as α(e) = ê. For
convenience, we define RV as a function returning the last defined variable in an
expression and use || to denote list concatenation.

Recall that a CCFG is a contextual control flow graph; it contains context
information. We begin by defining a general notion of context model, Σ.

Definition 1. A context model Σ is a triple 〈Ĉ, ε,⊕〉 where

– Ĉ is a set whose elements, denoted Ĉ, are calling contexts.
– ε, the “empty context”, is an element of Ĉ.
– For all Ĉ ∈ Ĉ and all ĉ, Ĉ ⊕ ĉ = Ĉ ′ and Ĉ ′ ∈ Ĉ.

We formalize the k-cutoff and set models of Section 2 as follows:

Definition 2.

– Σk = 〈Ĉ, [],⊕〉 where Ĉ contains all lists of ĉ of length up to k and [ĉn, . . . , ĉ1]⊕
ĉ0 = [ĉk−1, . . . , ĉ0].

– ΣSet = 〈Ĉ, ∅,⊕〉 where Ĉ is the power set of all ĉ and Ĉ ⊕ ĉ = Ĉ ∪ {ĉ}.

Each context model defines a distinct Plume variant; for instance, we give
Plume using ΣSet the name SetPlume. Throughout the remainder of this section,
we assume some fixed context model meeting the conditions of Definition 1.

â ::= ĉ | x̂ Îc= x̂ | x̂Jĉ
= x̂ | Start | End annotated clauses η̂ ::= 〈â, Ĉ〉 CCFG nodes

V̂ ::= {v̂, . . .} value sets ĝ ::= η̂ << η̂ CCFG edges

X̂ ::= [x̂, . . .] variable lookup stacks Ĝ ::= {ĝ, . . .} CCFG’s

Fig. 9. Analysis Grammar

Given a context model, the remaining constructs required for the Plume
analysis appear in Figure 9. A CCFG Ĝ is a set of edges between contextual
control flow points η̂, each of which is a pairing between a program point and
the calling context in which that program point is visited. To work with these
graphs, we introduce the following notation:

Definition 3. We use the following notational sugar for CCFG graph edges:

– â1 << . . . << ân abbreviates {â1 << â2, . . . , ân−1 << ân}.
– â′ << {â1, . . . , ân} (resp. {â1 . . . ân} << â′) denotes {â′ << â1, . . . , â

′ << ân}
(resp. {â1 << â′, . . . , ân << â′}).

– We write â <� â′ to mean that (â << â′) ∈ Ĝ for Ĝ understood from context.

Using the above, we define the initial state of the CCFG as just the clauses
of the main program, with no function calls (yet) wired in:

A Set-Based Context Model for Program Analysis 9

Definition 4. The initial embedding of an expression into a CCFG, Êmbed(e),
is the graph Ĝ = 〈Start, ε〉 << 〈ĉ1, ε〉 << . . . << 〈ĉn, ε〉 << 〈End, ε〉 where α(e) =
[ĉ1, . . . , ĉn].

For example, the subgraph labeled 1 in Figure 3 is the initial embedding of
the Figure 2 expression.

3.2 The Lookup Function

Plume does not require an explicit representation of the heap. Instead, we look
up the value of each variable when it is needed by starting from the point where
it is used and tracing backward through the CCFG to the point where it is
defined.

Given a CCFG Ĝ, we formalize variable lookup as a relation Ĝ, 〈â, Ĉ〉 ` X̂ �
v̂ which indicates that the value v̂ may be discovered by reducing the lookup
stack X̂ from program point â in calling context Ĉ. For instance, if lookup
of variable x̂ from the end of the program produces value v̂, we may write
“Ĝ, 〈End, ε〉 ` [x̂]� v̂”. (As mentioned briefly in Section 2.2 and illustrated in
Appendix A, we use a stack of variables to facilitate looking up non-local (i.e.
closure-captured) variables.) Note that the provided program point â is assumed
not to have executed yet; each time we step backward through the graph, we
are undoing the effect of the preceding clause.

We formally define this relation as follows:

Definition 5. Ĝ, η̂ ` X̂ � v̂ holds iff there is a proof using the rules of Fig-
ure 10.

Given a position η̂ in the CCFG Ĝ and a lookup stack X̂, the rules in Fig-
ure 10 describe which transitions are legal during lookup. Any valid path through
the CCFG to locate a variable definition corresponds to a proof in that system.

The Alias rule indicates that, when looking for variable x̂ and about to undo
the assignment x̂ = x̂′, we can reduce our lookup to finding the value of x̂′ from
that point. The Value Discovery rule indicates that, when stepping back to x̂ = v̂
while looking for x̂, our lookup is complete: v̂ is the answer. The Function Enter
Non-Local and Value Discard rules represent the beginning and end (respec-
tively) of the lookup of a closure-captured variable, using the stack to retain the
variable while finding the definition site of the closure. The other two function
rules represent a value flowing into or out of a function (and update the current
lookup variable appropriately); the Skip rule handles clauses which do not have
an impact on the current lookup.

In Section 2.2 we informally described the lookup of the value of c2 of Figure
2 from the end of the program; formally that lookup corresponds to a proof of
Ĝ, 〈End, ε〉 ` [c2] � (fun p -> . . .) in the lookup system of Figure 10, for Ĝ
being the CCFG of Figure 3.

3.3 CCFG Closure Construction

Given a CCFG, the lookup function allows us to determine the values that
variables may have. We can use this to in turn deductively close over the CCFG:

10 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

Value Discovery
〈x̂ = v̂, Ĉ〉 <� η̂

Ĝ, η̂ ` [x̂]� v̂

Value Discard
η̂′ = 〈x̂ = f̂ , Ĉ〉 η̂′ <� η̂ Ĝ, η̂′ ` X̂ � v̂

Ĝ, η̂ ` [x̂] || X̂ � v̂

Alias
η̂′ = 〈x̂ = x̂′, Ĉ〉 η̂′ <� η̂ Ĝ, η̂′ ` [x̂′] || X̂ � v̂

Ĝ, η̂ ` [x̂] || X̂ � v̂

Function Enter Parameter

η̂′ = 〈x̂ Îc= x̂′, Ĉ〉 η̂′ <� η̂ Ĝ, η̂′ ` [x̂′] || X̂ � v̂

Ĝ, η̂ ` [x̂] || X̂ � v̂

Function Enter Non-Local

η̂′ = 〈x̂′′ Îc= x̂′, Ĉ〉
η̂′ <� η̂ x̂′′ 6= x̂ ĉ = (x̂f x̂v Θ̂) Ĝ, η̂′ ` [x̂f , x̂] || X̂ � v̂

Ĝ, η̂ ` [x̂] || X̂ � v̂

Function Exit

η̂′ = 〈x̂Jĉ
= x̂′, Ĉ〉 η̂′ <� η̂ Ĝ, η̂′ ` [x̂′] || X̂ � v̂

Ĝ, η̂ ` [x̂] || X̂ � v̂

Skip
η̂′ = 〈x̂′′ = b̂, Ĉ〉 η̂′ <� η̂ x̂′′ 6= x̂ Ĝ, η̂′ ` [x̂] || X̂ � v̂

Ĝ, η̂ ` [x̂] || X̂ � v̂

Fig. 10. Abstract Value Lookup

we add to the CCFG when we discover new control flows based upon looking up
values of variables. In this way, CCFG closure and value lookup work in tandem:
closure grows the CCFG based upon lookup, that growth increases the set of
values that lookup provides, closure grows the CCFG further, and so on.

When a function application is reached with a novel function-argument pair,
we add its body to the graph and add edges wiring that body around the call
site, effectively inlining that function as described in Section 2.2. We pair each of
the function’s clauses with the calling context Ĉ in which they will be executed.
Below, we formalize this process as a function: it creates an edge from each prede-

cessor of the call site (Preds(η̂)) to a parameter wiring node (〈x̂0
Îc
= x̂1, Ĉ

′〉), con-
nects that wiring node to the body of the function via a sequence of edges, adds

an edge from the body to a return wiring node (〈x̂2
Jĉ
= RV(ĉn), Ĉ ′〉), and then

draws edges from that return wiring node to the call site’s successors (Succs(η̂)).
We delegate the choice of calling context Ĉ ′ to the caller of the wiring function.

Definition 6. Let ̂Wirefun(η̂, fun x̂0 -> ([ĉ1, . . . , ĉn]), x̂1, x̂2, Ĉ
′) =

Preds(η̂) << 〈x̂0
Îc
= x̂1, Ĉ

′〉 << 〈ĉ1, Ĉ ′〉 << . . . << 〈ĉn, Ĉ ′〉 << 〈x̂2
Jĉ
= RV(ĉn), Ĉ ′〉

<< Succs(η̂)
where η̂ = 〈ĉ, Ĉ〉, Preds(η̂) = {η̂′ | η̂′ <� η̂}, and Succs(η̂) = {η̂′ | η̂ <� η̂′}.

A Set-Based Context Model for Program Analysis 11

We describe a call site which can be reached via a control flow from the
beginning of the program (and therefore must be analyzed) as active:

Definition 7. The predicate Âctive?(η̂′, Ĝ) holds iff path Start << η̂1 << . . . <<
η̂n << η̂′ appears in Ĝ such that no η̂i is of the form 〈x̂ = x̂′ x̂′′ Θ̂, Ĉ〉.

We are now ready to define the closure construction.

Contextual Application
η̂ = 〈ĉ, Ĉ〉 ĉ = (x̂1 = x̂2 x̂3 Θ̂) Âctive?(η̂, Ĝ) Ĝ, η̂ ` [x̂2]� f̂

Ĝ, η̂ ` [x̂3]� v̂ f̂ = fun x̂4 -> (ê) @x̂4 /∈ Θ̂ Ĉ′ = Ĉ ⊕ ĉ
Ĝ −̂→1 Ĝ ∪ Ŵirefun(η̂, f̂ , x̂3, x̂1, Ĉ

′)

Acontextual Application
η̂ = 〈ĉ, Ĉ〉 ĉ = (x̂1 = x̂2 x̂3 Θ̂) Âctive?(η̂, Ĝ)

Ĝ, η̂ ` [x̂2]� f̂ Ĝ, η̂ ` [x̂3]� v̂ f̂ = fun x̂4 -> (ê) @x̂4 ∈ Θ̂
Ĝ −̂→1 Ĝ ∪ Ŵirefun(η̂, f̂ , x̂3, x̂1, Ĉ)

Fig. 11. Control Flow Graph Closure Construction

Definition 8. We define Ĝ −̂→1
Ĝ′ to be the least relation satisfying the rules

in Figure 11. We write Ĝ0 −̂→∗ Ĝn to denote Ĝ0 −̂→1
. . . −̂→1

Ĝn. We write
−̂→!

to denote the transitive closure of −̂→1
.

To understand the rules in this definition, consider a function-argument pair
at a call site. We must select a calling context Ĉ to ascribe to the call. The rules
are otherwise similar: given an active call site for which values can be found
for both the function (x̂2) and argument (x̂3), we wire the body of the called
function around the call site (x̂1) using the wiring function defined above. The
only difference regards Θ̂ and Ĉ. Since the program is alphatized, all function
parameters are unique, so we identify each function by its parameter (x̂4). If the
parameter appears in a call site annotation in Θ̂, we do not polyinstantiate the
call site (the Acontextual Application rule); if the parameter does not appear in
the annotations, then we do (the Contextual Application rule).

3.4 Soundness and Decidability

The Plume analysis defined above is both sound and decidable. Here, soundness
means that the lookup relation Ĝ, η̂ ` X̂ � v̂ is always an over-approximation:
if a value can exist at runtime, then the lookup relation holds for its abstract
counterpart. Soundness is demonstrated in Appendix C.1 in two parts: first
by showing the operational semantics in Appendix B equivalent to a graph-
based operational semantics and then by showing the Plume analysis to be an
abstraction of the latter. Decidability proceeds by upper bounding the size of the
CCFG and then by a counting argument. This proof appears in Appendix C.2.

4 Evaluation of Precision
In this section, we evaluate the precision of the analysis techniques presented in
this paper. We perform this evaluation in three parts:

12 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

1. We directly compare Plume to DDPA, a closely-related functional analysis.
2. We compare the context models Σk and ΣSet and evaluate the precision im-

pact of selective polyinstantiation. We do so via a reproducability experiment
involving multiple functional analyses.

3. We consider another state-of-the-art analysis technique — synchronized push-
down systems [34] — and discuss how it may apply to functional programs.

All higher-order program analyses evaluated in this section are available as
supplementary material associated with this submission.

4.1 kPlume ≥ kDDPA

DDPA [7], like Plume, is a demand-driven higher-order functional program anal-
ysis. Both analyses iteratively construct a CFG and use on-demand lookups
rather than explicit value stores. Unlike Plume, DDPA uses an acontextual con-
trol flow graph (ACFG); calling contexts are represented as an extra parameter
in lookup. The ACFG in DDPA is much smaller than the CCFG of Plume, but
(1) the graph closure rules of DDPA perform all lookups irrespective of context
and (2) the caching structures necessary to make DDPA efficient are of the same
size complexity as Plume’s CCFG.

Like Plume, DDPA is parametric in its context model, but DDPA is more
restrictive and cannot support ΣSet. With list-based models, the analyses are
directly comparable and kPlume is more precise than kDDPA. Formally,

Theorem 1. For any program ê and any natural number k, let Ġ be the ACFG
produced for ê by kDDPA and let Ĝ be the CCFG produced for ê by kPlume.
Then, for any variable x̂ and program point ĉ in ê, every value produced by
lookup on Ĝ in kPlume is also produced by lookup on Ġ in kDDPA.

For space, the proof of this Theorem appears in Appendix C.3. As kPlume
subsumes kDDPA, we elide kDDPA from the remainder of this discussion.

4.2 Comparing Context Models

We now focus not on Plume or any one analysis but instead upon the effect
that context models and selective polyinstantiation have on functional program
analyses in general. We cannot simply compare two analyses: it would be unclear
how the choice of analysis affected the result. We cannot even do so while holding
the rest of the analysis theory constant (e.g. comparing kPlume vs. SetPlume)
as the results may only pertain to the theory in question (e.g. Plume).

To draw conclusions about context sensitivity models independent of the pro-
gram analysis, we examine the reproducibility of changes as the program analysis
itself is varied. We compare pairs of program analysis from a variety of analy-
sis families; each analysis in a pair differs from its counterpart only by context
sensitivity model, while each pair differs from the other pairs significantly. We
contend that, if changing the context sensitivity model of an analysis produces
an effect which is consistent across all pairs, it is reasonable to ascribe this ef-
fect to the context model rather than to the program analyses. This conclusion
is more reliable the larger the differences are between the analysis families. We
therefore conduct our experiments on the following families of program analyses:

A Set-Based Context Model for Program Analysis 13

– Plume, the demand-driven functional program analysis family in this paper.
– ADI, a state-of-the-art forward functional program analysis family [5].
– mADI, a modification of [5] using techniques from mCFA [24] to more closely

match object-oriented program analysis behavior.

We chose ADI to represent a series of higher-order program analyses that
include P4F [12], AAC [19], PDCFA [18], CFA2 [39], and others. ADI is the
most recent of the series and its precision is the state-of-the-art. ADI’s reference
implementation does not include a notion of context sensitivity so, for these
experiments, we use a purpose-built implementation of ADI over the same ANF
language used by Plume. This artifact yields two analyses, kADI and SetADI,
with context sensitivity models identical to kPlume and SetPlume.

We also modified ADI to produce an analysis family called mADI that models
the precision of object-oriented CFA-based analyses [24]. The main distinction is
in how non-local variables are handled when constructing a closure: ADI stores
a reference to the non-local while mADI stores a fresh copy of its value. As a
result, mADI is less precise than ADI but more performant. mADI is to ADI
what mCFA [24] is to kCFA. Just as with ADI, we define two variants of mADI
with different context models: kmADI uses Σk and SetmADI uses ΣSet. (Note
that the ADI paper [5] only used a list model).

Functional Test Cases Presently, no standard suite of functional precision
benchmarks exist. For this experiment, we developed a series of small programs
which are representative of common functional programming patterns:

– rec-ident, two calls to a recursive identity function. This function recurses,
decrementing a counter to zero, and then returns its argument. It is called
once with an integer and again with a boolean.

– list-2map, which generates an integer list in a loop and then maps over that
list twice. The first mapper is (+1); the second mapper is (==0).

– nest-pairmap, which uses a homogeneous pair mapping function to incre-
ment the elements of a pair (as in: pairmap (pairmap inc)((0,1),(1,0))) or
to convert them to boolean values.

– foldl-2L2F, which performs two left folds on two distinct lists. The first list
(of integers) is summed; the second list (of booleans) is “and-ed”.

– foldl-2L1F, which generates the same lists as foldl-2L2F using a single map-
ping function with case analysis.

– foldl-1L2F, which folds over a single list of integers twice. The first fold
sums the list; the second fold produces true iff the list contains no zeroes.

Each of the tests above calls a function on two types of primitive data:
integers and booleans. For each of the above programs, we ran each analysis
both with selective polyinstantiation annotations and without them. (k-limited
analyses without selective polyinstantiation are presented here for completeness
but are not representative of the state of the art.) A test passes if the analysis
can distinguish integers from booleans in every case.

For analyses not using k-cutoff models, we indicate whether the test passed
(denoted 3) or failed (denoted 7) by the above criteria. For analyses using k-
cutoff models, we give the minimum value of k necessary for the test to pass (or

14 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

7 if no such k exists). In real programs, the two function calls to be distinguished
do not necessarily appear side by side. To simulate this, we η-converted the two
call sites some number of times d; thus, d appears in the results in places where
the number of η conversions affects the choice of k.

Analysis k
P

lu
m

e

S
et

P
lu

m
e

k
A

D
I

S
et

A
D

I

k
m

A
D

I

S
et

m
A

D
I

B
o
o
m

er
a
n
g

B
m

g
.

S
P

D
S

Annot.? yes no yes no yes no yes no yes no yes no n/a n/a

rec-ident 1+d 7 3 3 1+d 7 3 3 1+d 7 3 3 3 3

list-2map 2+d 7 3 3 2+d 7 3 3 2+d 7 3 3 3 7

nest-pairmap 3+d 3+d 7 7 3+d 3+d 7 7 3+d 3+d 7 7 7 7

foldl-2L2F 2+d 7 3 3 2+d 7 3 3 2+d 7 3 3 3 7

foldl-2L1F 2+d 7 3 3 2+d 7 3 3 2+d 7 3 3 3 7

foldl-1L2F 2+d 7 3 3 2+d 7 3 3 2+d 7 3 3 3 7

Fig. 12. Precision of Analyses on Functional Test Cases

Functional Test Results The results of our experiments appear in Figure 12.
(Note that Boomerang and Boomerang SPDS analyses are not list-vs-set and
are discussed below.) Some clear patterns emerge from these results.

First and foremost: the differences between the Σk and ΣSet context models
are reproducible across all three analysis families. Each family’s four-column
group is identical. This degree of similarity suggests that the change in behavior
is, in fact, due to the context model.

Second: selective polyinstantiation had no impact on the precision of ΣSet.
This is intuitive as these functions do not exhibit polymorphic recursion. In
agreement with previous work [16], selective polyinstantiation improved the Σk

analyses. This is because Σk may lose information on polyinstantiation; ΣSet

does not.
Third: ΣSet fails on nest-pairmap. In this example, Σk requried three call sites

worth of context: one for the outer pairmap call, one for the inner pairmap call
(which served as the outer call’s mapping function), and one to call the element
mapping function itself. Because this test was not recursive, no annotations were
present. ΣSet failed on this example because it conflated the calls to the two
mappers (the inner pairmap function and the element mapper), as they occurred
at the same call site (within pairmap itself). Σk succeeded here because it admits
duplicate call sites in its contexts.

In conclusion, the precisions of ΣSet and Σk are incomparable: each has ad-
vantages over the other. ΣSet succeeds unconditionally in most cases; selective
polyinstantiation merely improves performance. Σk without selective polyinstan-
tiation unsurprisingly fails in all recursive cases; with selective polyinstantiation,
it suceeds on every case (including pairmap). But annotated Σk is still fragile
because k must be large enough to accommodate d, the number of polyinstan-
tiations between the two calls’ nearest ancestor, which cannot be determined at
analysis time.

A Set-Based Context Model for Program Analysis 15

4.3 Synchronized Pushdown Systems

Two types of precision are key to higher-order program analyses: context sen-
sitivity (specifically with respect to interprocedural control flow) and so-called
“field sensitivity” or “structure-transmitted data dependence” (such as which
values were stored in a particular record or object field). Any analysis with per-
fect precision in both of these forms is known to be undecidable [29], so program
analyses must decide which concessions to make. In SetPlume, for instance, con-
text sensitivity is approximated with a set while field sensitivity is handled by
the variable lookup stack X̂, which is represented by the stack of a pushdown
automaton in our implementation and not approximated.

Boomerang SPDS [34] uses a synchronized pushdown system: both context
and field sensitivity are represented without approximation but in separate
pushdown automata. Boomerang SPDS’s separation of these concerns showed
promise but functional programs rely upon the interplay between control and
data flow, so we chose to run the examples from the previous section on these
two analyses to investigate their precision on common functional-style code.

The Boomerang analysis family artifacts perform analysis of at-scale Java
programs and not our ANF grammar, so we translated each of our examples
by hand. These translations attempt to preserve the control flow of the original
program while minimizing the number of program points introduced.

Our results from running these experiments appears in the rightmost two
columns of Figure 12 above. The original Boomerang analysis bears a striking
resemblance to the behavior of set-based context models on these examples.
Boomerang SPDS, on the other hand, failed on every example except for rec-
ident. This is unsurprising in retrospect: Boomerang SPDS intentionally disre-
gards interactions between interprocedural calls and structured data flow. This
interaction does not appear in rec-ident (as there is no structured data) but is
critical in every other example; indeed, that type of interaction is common in
functional programs and in related higher-order object-oriented design patterns
such as the Visitor Pattern. Contrary to suppositions in the SPDS paper [34],
these results suggest that the SPDS technique is not appropriate for higher-order
programming patterns in functional languages.

4.4 Threats to Validity

Test cases. There does not presently exist a standard functional test suite for
analysis precision. The test cases presented here represent common functional
programming patterns but are not numerous or complete.

Translations. The conclusions regarding the Boomerang family of analyses rely
upon translations of functional programming idioms to Java. We only make
claims regarding the Boomerang analysis technique with respect to existing
functional programming languages and not with respect to the object-oriented
languages for which those analyses were designed.

5 Summary of Performance
We subjected the analysis techniques in this paper to two forms of preliminary
performance experiments: one which used typical functional microbenchmarks

16 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

from previous work [12] and another which used pumped versions of pathological
patterns to simulate use at scale. We leave experiments on programs from the
wild to future work. The details of these experiments appear in Appendix D for
reasons of space; we summarize them here.

We applied each of SetPlume, kPlume, P4F [12], and Boomerang SPDS to
each microbenchmark; kPlume is most similar to SetPlume and so most directly
demonstrates the impact of ΣSet. P4F and Boomerang SPDS are recent state-of-
the-art analyses. We used P4F in lieu of 1ADI as they are theoretically similar
and the P4F artifact has been used in previously published benchmarks.

SetPlume performs comparably or favorably to the other analyses in the mi-
crobenchmarks and pumped examples with one significant exception: a regular
expression matching program. This program makes use of continuation passing,
effectively hiding self-reference from our annotator and thus preventing selective
polyinstantiation from occurring. In the remaining cases, SetPlume performs
well; indeed, in the analysis of a brute-force SAT solving program, SetPlume
completes the analysis while both P4F and Boomerang SPDS trigger thirty-
minute timeouts. While more thorough and realistic benchmarks remain to be
conducted, we conclude that set-based context models with selective polyinstan-
tiation show promise as a practical tradeoff between precision and performance.

6 Related Work

6.1 Context Models

The higher-order program analysis community has long known that, in practice,
the widely-used kCFA context model [33,38,19,18,12,5,23,39] is imprecise and
slow [39, p.25], issues that have been the biggest impediments in the adoption
of higher-order analyses. The closest to a systematic study of context models
in the higher-order analysis literature is Allocation Characterizes Polyvariance
[11], but the main intent of that paper is to identify a layer of abstraction
between context models (what they call polyvariance techniques) and the AAM
[38] underlying analysis technique; the paper is not concerned with evaluating
the context models empirically to determine how tractable they are in practice.

Object-oriented analysis research has explored the choice of context model
further. Recent efforts have explored how to avoid polyinstantiation [16,37] and
how to vary polyvariance models within a singe analysis run [22,21,17]. These
analyses are still brittle in a way, as polyinstantiating a saturated context still
loses information. However, they preserve the ordered property of k-cutoff models
and so can often correctly handle the pairmap example in Section 4.2.

Other context models have been explored for object-oriented analyses, both
in theory [2] and in practice [20,25,4]. The experiments in these papers confirm
the weaknesses of the k-limited context models and point at better alternatives,
including a context model based on the arguments of a method call (the Carte-
sian Product Algorithm [1]), and a context model based on the object whose
method is called (termed object sensitivity [25]).

mCFA [24] simulates running kCFA in an object-oriented program. mCFA
inspired the mADI analysis we used in our evaluation (Section 4).

A Set-Based Context Model for Program Analysis 17

To the best of our knowledge the set-based context model introduced in this
paper is novel in the literature of both higher-order and object-oriented analysis.

6.2 Selective Polyinstantiation

As mentioned in Section 2.4, selective polyinstantiation is most similar to con-
text tunneling [16]. It also bears some resemblance to to Polymorphic Splitting
[40]. Both selective polyinstantiation and polymorphic splitting involve anno-
tating the analyzed program to direct decisions on polymorphism. In selective
polyinstantiation, the annotations occur at call sites and indicate functions for
which the analysis should not be polymorphic. In polymorphic splitting, by con-
trast, the annotations occur at function definitions and indicate where the anal-
ysis should be polymorphic. The selective polyinstantiation technique prevents
building spurious contexts and can be adapted to other underlying analysis tech-
niques. Polymorphic splitting is an analysis technique in and of itself.

6.3 Analysis Techniques

DDPA. DDPA [7] is an ancestor of Plume. The difference between Plume
and DDPA is in how they handle context: Plumes’ context is stored in the
CCFG while DDPA’s context is reconstructed during lookup. This has two con-
sequences. First, all Plume lookups include context, making Plume more precise
than DDPA (Section 4.1). Second, because Plume does not reconstruct contexts,
it is more permissive than DDPA and allows set-based models to be defined.
Demand CFA. Beyond DDPA, the technique closest to Plume is Demand
CFA [10]. Plume has the advantage of context sensitivity while Demand CFA
does not. However, Plume builds a full CCFG to answer localized lookups; De-
mand CFA may need to construct only a small part of the CFG for some lookups.
Other Higher-Order Analysis Techniques. Unlike most other higher-order
analysis techniques [33,24,38,19,18,12,5,23,39], Plume does not maintain an ab-
straction of the heap (sometimes also called a store elsewhere in the litera-
ture); Plume reconstructs only the relevant parts of the heap on demand with a
lookup function over the CFG. Some other higher-order analysis techniques fea-
ture something called a pushdown abstraction, which yields perfect call–return
alignment [39,18,19,12] (though not perfect context sensitivity), but Plume only
aligns calls and returns up to the precision of its context model.
Boomerang. The Boomerang family of analyses consists of two object-oriented
alias analyses for Java: the original Boomerang [35] and the recently-defined
“synchronized pushdown system” variant [34] called Boomerang SPDS. These
analyses do not model context sensitivity using a model of the form Σ. The
Boomerang analysis computes control flow in tandem with IFDS [30] and uses ad-
ditional iterations to address non-distributive flow problems; Boomerang SPDS
instead models control flow using a pushdown system which is intentionally sep-
arated from the modeling of field-sensitive data flow. The SPDS technique is not
specific to Boomerang; it has been applied to the IDEal taint analysis [36] and
has shown promise as a performance improvement there. All evaluations of these
theories prior to this paper have been on traditional object-oriented code.
Other Object-Oriented Analysis Techniques. The idea of reconstructing
the heap on demand was inspired by first-order demand-driven CFL-reachability

18 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

analyses [30], and DDPA was the first analysis to bring this technique to a
higher-order setting. The primary challenge of that setting is the interdependence
between control-flow and data-flow: no CFG is available a priori and so one must
be built as the analysis proceeds. Another challenge is lookup of closure-captured
variables: previous attempts to bring the technique to a higher-order setting [9]
lost precision in those cases, but Plume and DDPA are both able to preserve
precision by performing a series of subordinate lookups.

Recent analyses based on linear conjunctive language (LCL) reachability [41]
bear some resemblance to Plume in that they reduce lookup to an automaton
reachability question. While Plume is related to CFL reachability analyses [30],
this recent work reduces to the undecidable problem of LCL reachability and
then uses a computable approximation algorithm. Both classes of analysis ap-
proach context- and field-sensitivity as an approximation of reachability on a
two-stack pushdown automaton; one avenue of future work is to determine if
LCL reachability can be applied to Plume-style analyses.

7 Conclusions
This paper introduced set-based context sensitivity. This addresses the weakness
of k-limiting models – that polyinstantiation can cause information loss – without
compromising field sensitivity or separating it into a distinct problem. To make
set-based models practical, we applied selective polyinstantiation, an adaptation
of techniques used in k-limiting model research. This technique prevents recursive
functions from triggering the worst case performance of the set-based model.

To demonstrate the viability of these techniques, we have formally defined
Plume, a demand-driven higher-order program analysis which supports them,
and implemented several analysis artifacts. Our experiments show that, for rep-
resentative functional examples, several set-based, selectively polyinstantiated
analyses are superior in precision to their k-cutoff counterparts. We have also
demonstrated that analyses using these techniques yield performance compara-
ble with state-of-the-art analyses on typical functional benchmarks.

References
1. Agesen, O.: The cartesian product algorithm: Simple and precise type inference of

parametric polymorphism. ECOOP (1995)
2. Besson, F.: CPA beats∞-CFA. In: Proceedings of the 11th International Workshop

on Formal Techniques for Java-like Programs (2009)
3. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:

Application to model-checking. CONCUR (1997)
4. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated

points-to analyses. OOPSLA (2009)
5. Darais, D., Labich, N., Nguyen, P.C., Horn, D.V.: Abstracting definitional inter-

preters. CoRR (2017)
6. Duesterwald, E., Gupta, R., Soffa, M.L.: A practical framework for demand-driven

interprocedural data flow analysis. TOPLAS (6) (1997)
7. Facchinetti, L., Palmer, Z., Smith, S.: Higher-order demand-driven program anal-

ysis. TOPLAS (2019)
8. Facchinetti, L., Palmer, Z., Smith, S.F.: Relative store fragments for singleton

abstraction. In: Static Analysis (2017)

A Set-Based Context Model for Program Analysis 19

9. Fähndrich, M., Rehof, J., Das, M.: Scalable context-sensitive flow analysis using
instantiation constraints. PLDI (2000)

10. Germane, K., McCarthy, J., Adams, M.D., Might, M.: Demand control-flow anal-
ysis. In: VMCAI. Lecture Notes in Computer Science (2019)

11. Gilray, T., Adams, M.D., Might, M.: Allocation characterizes polyvariance: A uni-
fied methodology for polyvariant control-flow analysis. ICFP (2016)

12. Gilray, T., Lyde, S., Adams, M.D., Might, M., Van Horn, D.: Pushdown control-
flow analysis for free. POPL (2016)

13. Heintze, N., Tardieu, O.: Demand-driven pointer analysis. PLDI (2001)
14. Henglein, F.: Type inference with polymorphic recursion. TOPLAS (2) (1993)
15. Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. SIG-

SOFT (1995)
16. Jeon, M., Jeong, S., Oh, H.: Precise and scalable points-to analysis via data-driven

context tunneling. Proc. ACM Program. Lang. (OOPSLA) (2018)
17. Jeong, S., Jeon, M., Cha, S., Oh, H.: Data-driven context-sensitivity for points-to

analysis (OOPSLA) (2017)
18. Johnson, J.I., Sergey, I., Earl, C., Might, M., Van Horn, D.: Pushdown flow analysis

with abstract garbage collection. JFP (2-3) (2014)
19. Johnson, J.I., Van Horn, D.: Abstracting abstract control. In: DLS (2014)
20. Lhoták, O., Hendren, L.: Evaluating the benefits of context-sensitive points-to

analysis using a bdd-based implementation. TOSEM (1) (2008)
21. Li, Y., Tan, T., Møller, A., Smaragdakis, Y.: Precision-guided context sensitivity

for pointer analysis. Proc. ACM Program. Lang. (OOPSLA) (2018)
22. Li, Y., Tan, T., Møller, A., Smaragdakis, Y.: Scalability-first pointer analysis with

self-tuning context-sensitivity. In: Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ESEC/FSE 2018 (2018)

23. Might, M.: Environment Analysis of Higher-order Languages. Ph.D. thesis (2007),
aAI3271560

24. Might, M., Smaragdakis, Y., Van Horn, D.: Resolving and exploiting the k-cfa
paradox: Illuminating functional vs. object-oriented program analysis. PLDI (2010)

25. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for java. TOSEM (1) (2005)

26. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics (2001)

27. Rehof, J., Fähndrich, M.: Type-base flow analysis: From polymorphic subtyping
to CFL-reachability. POPL (2001)

28. Reps, T.: Shape analysis as a generalized path problem. PEPM (1995)
29. Reps, T.: Undecidability of context-sensitive data-dependence analysis. TOPLAS

(1) (2000)
30. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via

graph reachability. POPL (1995)
31. Reps, T.W.: Demand Interprocedural Program Analysis Using Logic Databases

(1995)
32. Saha, D., Ramakrishnan, C.R.: Incremental and demand-driven points-to analysis

using logic programming. PPDP (2005)
33. Shivers, O.G.: Control-flow Analysis of Higher-order Languages. Ph.D. thesis

(1991), uMI Order No. GAX91-26964
34. Späth, J., Ali, K., Bodden, E.: Context-, flow-, and field-sensitive data-flow analysis

using synchronized pushdown systems. Proc. ACM Program. Lang. (POPL) (2019)

20 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

35. Späth, J., Do, L.N.Q., Ali, K., Bodden, E.: Boomerang: Demand-Driven Flow- and
Context-Sensitive Pointer Analysis for Java. ECOOP (2016)

36. Späth, J., Ali, K., Bodden, E.: Ideal: Efficient and precise alias-aware data-flow
analysis. PACMPL (OOPSLA) (2017)

37. Tan, T., Li, Y., Xue, J.: Making k-object-sensitive pointer analysis more precise
with still k-limiting. In: Static Analysis (2016)

38. Van Horn, D., Might, M.: Abstracting abstract machines. In: ICFP (2010)
39. Vardoulakis, D., Shivers, O.: CFA2: A context-free approach to control-flow anal-

ysis. ESOP (2010)
40. Wright, A.K., Jagannathan, S.: Polymorphic splitting: An effective polyvariant

flow analysis. TOPLAS (1) (1998)
41. Zhang, Q., Su, Z.: Context-sensitive data-dependence analysis via linear conjunc-

tive language reachability. POPL (2017)

A Set-Based Context Model for Program Analysis 21

A An Overview of Non-Local Variables

The example in Section 2.2 does not illustrate the lookup of non-local variables
in Plume. This is a delicate process in demand-driven program analyses. In this
appendix, we describe how non-local variables are handled using techniques from
DDPA [7], Plume’s predecessor.

Consider the program appearing in Figure 13. This program defines the K-
combinator and then calls it twice to capture two different values, g and h, in
the closures of two different functions, kg and kh (respectively). At the end of
the program, kg is called with an ignored argument. During the execution of this
program, c should therefore be assigned the value g (and not the value h).

1 k = fun v -> (# λv.(λj.v)
2 z = fun j -> (rz = v;);

3);

4 g = fun p -> (rg = p); # λp.p
5 h = fun q -> (rh = q q); # λq.q q
6 kg = k g; # (λj.g)
7 kh = k h; # (λj.h)
8 c = kg h; # evaluates to g

f g h kg kh c

z

z

rz

v=g
kg=z

v=h kh=z

j=g c=rz

Fig. 13. K-Combinator: ANF Fig. 14. K-Combinator: Analysis

The CCFG produced by analyzing this program appears in Figure 14; let us
proceed to look up c from the end of the program. Moving backward, we first
see the wiring node c=rz. Proceeding backward, we see rz=v and we reduce to
looking for v. We then move past j=g (since j is not the variable we want) and
continue looking for v. We are now searching for the value v at the top level of
the program, where it is out of scope! How did we get here?

Ordinarily, skipping an unrelated variable assignment is the correct action;
however, j=g was a parameter wiring node. If we are looking for a non-parameter
variable when we discover a parameter wiring node, our search variable must have
been captured in closure where the function was defined. So we should find the
function’s definition and resume looking for our non-local variable there. Here,
the function associated with this parameter node was kg, so we look up kg and
then resume looking for v. In general, this requires a stack of variables as the
function we are looking up may have been captured in closure as well.

In our example, we suspend our lookup of v and begin looking for kg at
the wiring node. Proceeding backward, we ignore the wiring node kh=z (since it
doesn’t define kg) and skip over the kh call site. We then discover the kg=z wiring
node and follow it, looking for z. This leads us to z which defines a function.
We have discovered the location where the function’s closure was defined, so we
resume looking for the variable v. Since v is the parameter of the function, we
can safely follow v=g out to top level, where we discover g and find the answer
to the original lookup of c.

22 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

B An Operational Semantics
We begin by giving a small-step operational semantics for the language shown
in Figure 1. This semantics differs in a few respects from standard ones to make
the formal correctness arguments more direct. The primary difference is that it
neither substitutes values for function parameters on function application nor
builds closures; instead, at function application it inlines function bodies and
freshens bound variables, explicitly mapping the argument to its value in the
(flat) environment. The freshening allows static scope conventions to be pre-
served in spite of not using closures; we will term this a freshening operational
semantics.

These semantics require some preliminary definitions. All expressions are lists
of variable assignment clauses, so we interpret the last binding of a function’s
body to be its returned value; it is therefore helpful to define a function which
extracts the last bound variable of an expression. To facilitate freshening of
inlined functions, we also define a function which obtains the set of variables
bound by an expression.

Definition 9. Preliminary definitions:
– We define RV([x1 = b1, . . . , xn = bn]) = xn.
– We define BV([x1 = b1, . . . , xn = bn]) = {x1, . . . , xn}.
– We write e[x1/x2] to denote the replacement of all instances of x2 with x1

in e.

Alias
(x2 = v) ∈ E

E ||[x1 =x2] || e −→1 E ||[x1 = v] || e

Application
(xf = fun xp -> (e′)) ∈ E e′′ = [xp =xa] || e′

BV(e′′) = {x1, . . . , xn} e′′′ = e′′[x′1/x1] . . . [x′n/xn] x′1, . . . , x
′
n fresh

E ||[xs =xf xa Θ] || e −→1 E || e′′′ ||[xs =RV(e′′′)] || e

Fig. 15. Operational Semantics

Given these preliminaries, the operational semantics appears in Figure 15.
As expressions are represented as lists of assignment clauses, a step of evalu-
ation consists of finding the first assignment to a non-value and reducing it.
Alias clauses x =x′ are reduced by replacing x′ with its assigned value. Function
calls x1 =x2 x3 Θ are reduced by inlining the function’s body in place of its call
and adding a binding of the parameter and returned value to the environment.
Variable bindings in the function’s body are freshened during this inlining to
preserve the invariant that the expression is alphatized. Note that the annota-
tions Θ, mentioned in Section 2, have no effect here; they are used only by the
analysis.

C Formal Properties
This appendix establishes formal properties of the Plume analysis: soundness,
decidability, and precision with respect to the closely-related DDPA analysis.

A Set-Based Context Model for Program Analysis 23

C.1 Soundness

We first prove the Plume analysis is sound with respect to a (concrete) opera-
tional semantics. The freshening operational semantics in Figure 1 are forward-
running, and include a store in the form of the prefix E. The Plume analysis,
meanwhile, monotonically grows a control-flow graph and reconstructs abstract
store information on demand. To bridge this significant gap, we construct a mid-
point, a graph-based operational semantics which can be formally defined as a
variant on the Plume analysis.

ωPlume is a Graph-Based Operational Semantics Plume as defined in the
previous section is only two abstractions away from a full, concrete interpreter.
First: Plume’s context model Σ may be finite; second, call site annotations may
cause some contexts to be re-used. Here, we define a new analysis, ωPlume, which
relaxes these restrictions and serves as a full and faithful operational semantics.

Definition 10. The ωPlume analysis is defined as a variant of Plume as fol-
lows.

– ωPlume will use Σω as it’s context model. This is the list model of Definition
2 with k = ω, i.e. the list length is unbounded.

– Define a function Erase(e) which erases all annotations in e (replaces all Θ
with []). All expressions analyzed in ωPlume are first erased.

Since ωPlume is in fact a (Turing Complete) language and not a program
analysis, we will use the convention of non-hatted variables when writing ωPlume
elements; for example, we may writeG but view it as shorthand for Ĝ-in-ωPlume.
We formalize the stepping of concrete graphs as follows:

Definition 11. We define G −→1 G′ to be the least relation satisfying the rules
in Figure 11. We write G0 −→∗ Gn to denote G0 −→1 . . . −→1 Gn.

Equivalence of the Operational Semantics To show the soundness of
Plume, it is sufficient to prove two smaller goals: that the freshening opera-
tional semantics is bisimular to ωPlume, and that (any) Plume analysis simulates
ωPlume.

The first subgoal can be proven by establishing a bisimulation relation ∼=
between expressions under substitution-evaluation and embedded expressions
under graph-evaluation; a term steps in one operational semantics if and only if
its bisimulated term steps in the other.

Establishing the bisimulation is relatively straightforward; we will highlight
the four notable parts of the process. First, we must align each clause in the
expression with a node in the ωPlume graph. The only variation in these nodes
is in the variables: the freshening system generates fresh variables while the
graph system does not. In each case that fresh variables are generated, however,
the call stack of the associated graph nodes is changed; therefore it suffices to
be deliberate about how these fresh variables map to variable-stack pairs.

The second notable part of the process is that, by inspection, the freshening
system is deterministic — it always operates on the first unevaluated clause —

24 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

while the graph system operates on any Active? node. This reflects the non-
determinism of the expansion of the CFG in the analysis. It is possible, however,
to prove by induction that, during ωPlume evaluation, (1) at most one site is
active at a time that has not yet been expanded and (2) no active site is expanded
more than once. ωPlume is deterministic even though inspection is not sufficient
to demonstrate it.

The third notable part of establishing the bisimulation is that, while call sites
are replaced in the freshening semantics, ωPlume leaves old call sites in place.
That these call sites do not affect future evaluations can similarly be proven by
induction.

Finally, while ωPlume performs lookup on demand, the freshening opera-
tional semantics replaces alias assignments x =x′ with value assignments x = v.
We resolve this by allowing the single-stepping relations not to move in lock step
as long as they invariably realign. These insights allow the following result to be
established:

Lemma 1. If e ∼= G then

1. If e −→∗ e′ then G −→∗ G′ such that e′ ∼= G′.
2. If G −→∗ G′ then e −→∗ e′ such that e′ ∼= G′.

Abstract Interpretation The second subgoal of soundness described above is
to show that ωPlume is simulated by (6) Plume. This step is easier than the
previous as they only differ in how Plume may lose context information, which
can be shown by a similar simulation on context models.

In an un-annotated program, each ωPlume list context [c1, . . . , cn] can be
shown by induction to be simulated by ε ⊕ ĉ1 ⊕ . . . ⊕ ĉn. Our simulation must
be more general to support selective polyinstantiation annotations, however; an
annotated function call may not grow the abstract context (i.e., when the Acon-
textual Application rule of Figure 11 applies). Our map from concrete contexts
to abstract contexts can generally determine if a particular ωPlume call site ci is
acontextual by using ci to identify the call site, using ci+1 to identify the called
function, and determining if that function-site pair is annotated as acontextual.
In summary, we may establish the following.

Theorem 2 (Soundness). For any ωPlume graph G and any Plume graph Ĝ,

if G 6 Ĝ and G −→1 G′ then Ĝ −̂→1
Ĝ′ such that G′ 6 Ĝ′.

C.2 Decidability

Unlike soundness, the decidability of Plume does not hold for all context models
(obviously includingΣω). Here, we characterize effectively finite models for which
Plume is decidable:

Definition 12. Let Σ = 〈Ĉ, ε,⊕〉. Using ĉ to denote finite sets of abstract
clauses {ĉ, . . .}, let Ĉ yĉ Ĉ

′ iff Ĉ ′ = Ĉ ⊕ ĉ for ĉ ∈ ĉ. We write Σ/ĉ to denote
the transitive closure of yĉ on {ε}. We call Σ effectively finite if Σ/ĉ is finite
for all finite ĉ.

A Set-Based Context Model for Program Analysis 25

We now show the decidability of Plume for effectively finite context models.
We begin by showing the computability of the lookup function given in Defini-
tion 5.

Lemma 2. For any Ĝ, η̂, and X̂, Ĝ, η̂ ` X̂ � v̂ is computable.

Proof. By inspection, every premise in the rules of Figure 10 is either immedi-
ately computable or a subproof of the same relation Ĝ, η̂ ` X̂ � v̂. Throughout
a proof in this system, Ĝ is constant, η̂ is a position in the graph, and X̂ is
a list of variables manipulated only from the left side by a constant number
of additions and removals in each rule. This problem reduces to reachability in
a pushdown automaton: states are either nodes η̂ or values v̂, the stack is X̂,
and the input grammar consists solely of the empty string ε. In this encoding,
Ĝ, X̂ ` η̂� v̂ holds iff η̂ can reach v̂ with initial stack X̂ and final stack [].

The pushdown reachability question described above is computable in time
polynomial in the size of the graph Ĝ [3] but can be computed more efficiently
using an equivalent, specialized automaton [7].

As lookup is computable, a single step of graph closure is computable as well:

Lemma 3. For any finite Ĝ, Ĝ −̂→1
Ĝ′ is computable.

Proof. All premises in Figure 11 are either immediately computable, computable
by graph traversal (Âctive?), or computable by Lemma 2.

To show decidability, it now suffices to show that any closure sequence con-
verges in finitely many steps. We proceed by counting argument, showing a finite
upper bound on the size of the graph and relying on the monotonicity of closure.

Lemma 4. For any effectively finite context model Σ and any program e, let
Ĝ0 = Êmbed(e). Let ĉ be the set of all clauses in e. Then, for any Ĝ0 −̂→∗ Ĝn,
every node 〈â, Ĉ〉 in Ĝn has (1) either â ∈ ĉ or â as a wiring node comprised of
variables and clauses from ĉ, and (2) Ĉ ∈ Σ/ĉ.

Proof. By Definition 4, Ĝ0 contains only clauses appearing in e and only the
context ε. By inspection of Figure 11, closure adds only those edges produced by
̂Wirefun. By Definition 6, the nodes of these edges contain clauses either from

the graph or comprised of clauses and variables from graph. By induction on the
length of the closure sequence, the clauses in the nodes of Ĝn are either in ĉ or
are wiring nodes comprised of clauses and variables in ĉ.

By Definition 6, each node in an edge created by ̂Wirefun contains either
a context already in the graph or the context provided as an argument. By
inspection of Figure 11, the context provided to ̂Wirefun is either already in
the graph or is derived from an existing context and a clause from ĉ. Because
Σ is effectively finite and because Ĝ0 contains only the context ε, we have by
induction on the length of the closure sequence that all such contexts are in Σ/ĉ.

With this upper bound on the size of the graph, proof of Plume’s decidability
is straightforward:

26 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

Theorem 3 (Decidability). For any effective finite context model Σ and any

program e, let Ĝ0 = Êmbed(e). Then Ĝ0 −̂→!
Ĝn is decidable.

Proof. By Lemma 3, each step of closure is computable. By inspection of Fig-
ure 11, closure is monotonic: Ĝi ⊆ Ĝi+1. By Lemma 4, all graphs in the sequence
are upper-bounded by a finite set of edges. The maximum number of steps in
any closure sequence is therefore less than or equal to the number of edges in
this finite upper bound.

C.3 kPlume ≥ kDDPA

The proof argument for Theorem 1 in Section 4.1 is as follows:

Proof. We proceed by constructing a simulation of the ACFG of kDDPA using
the CCFG of kPlume. In particular, the initial ACFG of kDDPA may be sim-
ulated by a covering CCFG in which each the ACFG nodes are replicated into
the CCFG at every possible context (and edges are inserted correspondingly);
the kPlume CCFG is a subset of the covering CCFG. It may then be proven
by induction on the definition of lookup that, for any simulated pair of graphs,
kDDPA lookup produces at least as many values as kPlume lookup. Finally, we
may prove by induction on the length of the closure sequence that this simulation
is preserved throughout the analysis process.

D Evaluation of Performance

In this appendix, we conduct a preliminary performance evaluation of the anal-
ysis techniques presented in this paper. First: we wish to determine if SetPlume,
an analysis using a set-based context model and selective polyinstantiation an-
notations has performance comparable to state-of-the-art analyses on functional
programs. Second and relatedly: we wish to determine if selective polyinstantia-
tion is effective at preventing the worst-case exponential generation of contexts
in SetPlume. We do so by conducting two classes of experiments: one over a series
of functional microbenchmarks and another over a pair of pumped examples.

D.1 Experiment Design

Both classes of experiments consist of several performance benchmarks. We chose
to compare SetPlume, an analysis using a set-based context model, to three other
analyses: kPlume, P4F, and Boomerang SPDS.

Comparison with kPlume is a natural step as it most directly illustrates
the effect of the set-based context model. We included P4F and Boomerang
SPDS to compare with recent state-of-the-art analyses. P4F is a forward-running
functional analysis; it is theoretically quite similar to 1ADI and, while the ADI
artifact is a proof of concept developed for our precision comparison above, the
P4F artifact has been used for previously published benchmarks. Boomerang
SPDS is a hybrid forward-backward object-oriented alias analysis; this analysis
is dissimilar to SetPlume in form but, like SetPlume, uses a novel approach to
context sensitivity in the presence of dynamic control flow; we believe for this
reason that it warrants attention.

A Set-Based Context Model for Program Analysis 27

It should be noted that these analyses were implemented in different ways.
SetPlume and kPlume are written in OCaml and analyze a toy experimental lan-
guage, P4F is written in Scala and analyzes a subset of Scheme, and Boomerang
SPDS is written in Java and analyzes Java programs at scale. Due to these
differences, we focus only on cases in which the analyses perform dramatically
differently and all charts use logarithmic scales.

Our experiments consist of repeatedly executing each of a series of test cases
under each analysis. We ran each test case with each analysis ten times on a
3.4GHz Intel Xeon CPU with 32Gb of RAM running Ubuntu 18.04.3 (Linux
4.15); reported values are the mean of all ten runs. No significant variation
occurred between runs for any particular analysis-test case pair. Experiments
were timed out after thirty minutes. We observed that, for each analysis-test
case pair, either every run completed before the timeout or every run timed out;
there were no borderline cases.

D.2 Microbenchmarks

As of the time of this writing, no standard benchmark suite exists for higher-
order program analyses. Instead, we selected a set of test cases used by P4F and
by other evaluations in the higher-order program analysis literature. We have
selected the subset of test cases which (1) work in all four analyses’ implementa-
tions and (2) are not made redundant by the later experiments in Section D.3,
which test scalability. The tested microbenchmarks are described below.

– ack, tak: arithmetic functions with multiple recursion sites
– blur, loop2-1: test functions creating non-local variables in a loop
– eta: an identity function containing a spurious call
– facehugger: calls to two independent recursive functions which may appear

to call each other if precision is lost
– kcfa-2, kcfa-3: worst-case programs for kCFA, accessing non-locals in in-

creasingly nested functions
– primtest: the Fermat primality testing function
– regex: regular expression matching via derivatives
– rsa encryption and decryption algorithms from the RSA public-key cryp-

tosystem

The original microbenchmarks in this category were written in Scheme. Sim-
ilar to our precision experiments, we translated those benchmarks by hand to
Java (for Boomerang SPDS); we also translated them to a sugared surface lan-
guage which we then machine translate into shallow A-normalized form with
appropriate annotations for recursion (for kPlume and SetPlume). As a conse-
quence, the two Plume analyses are using recursion-annotated source code; the
other two analyses are not. As in Section 4, we attempted to translate exam-
ples in such a way as to preserve control flow but not to introduce unnecessary
program points.

The results of this microbenchmark experiment appear in Figure 16. The Set-
Plume and Boomerang SPDS analyses are context sensitive but have no tuneable
parameters. The P4F artifact may be run in either a monovariant mode or a poly-
variant mode; this polyvariant mode, however, is not further configurable and

28 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

is a form of 1-limited context with perfect call-return alignment. The kPlume
analysis has a choice of k and, for each benchmark, there are three cases. If some
fixed k ≥ 1 will produce the same precision as SetPlume, we use that k. If no
such k exists, we use k = 1 and denote this as inacc (for “inaccurate”). If such
a k may exist but determining it is impractical, we use k = 1 and denote this as
imprac.

1
0
6

2
7 8
1 9
7

ack

4
6
1

2
1 2
8

1
0
6

blur

1
7
0

8 9

5
3

eta

1
1
5

3
4 4
5 9
7

facehugger
9
4

1
9 2
3

8
6

kcfa-2

2
7
7

5
8 8
0 2
2
3

kcfa-3

1
8
0

4
7 5
3 1
0
7

loop2-1

3
3
0

1
2
6

1
9
5 5
3
6

primtest

1
6
4

1
2
9
8
8

1
6
4
6

regex

3
3
5

2
2
0

2
7
3

2
6
6
1

rsa

1
0
6

5
3

3
9
9

1
4
5

tak

Key: Boomerang SPDS SetPlume kPlume P4F Timeout

100

101

102

103

104

105

106

ti
m

e
in

m
s

k=1 k=1 k=1 k=5 k=7 k=1 k=1 k=1inacc inacc imprac

Fig. 16. Results: Microbenchmarks

With two notable exceptions, the four analyses perform comparably on all
of the benchmarks. SetPlume appears to holds a slight advantage for the recur-
sive functions ack and tak; we attribute this to the combination of a set-based
context model and selective polyinstantiation. SetPlume and kPlume perform
well in cases which involve spurious calls or non-locals; this is attributable to
the demand-driven nature of the analyses.

The clearest exception to this trend is regex, in which SetPlume timed out.
We suspect that this is because, as in the original Scheme example, the imple-
mentation indirectly generates cycles in control flow via continuations. Because
this is not observed by our annotator, it triggers the worst-case exponential ex-
pansion of contexts (as if no selective polyinstantiation annotations were used).
This may be mitigated in a number of ways, such as by a naive preliminary
analysis, which would be able to better inform an annotator before SetPlume
operates on the program; we leave such explorations to future work.

From this experiment, we conclude that SetPlume performs comparably
to modern state-of-the-art analyses on small functional benchmarks, including
those representative of real programming patterns.

D.3 Scalability

Our second category of test cases consist of pumped examples of two forms.
The first form of test case, termed rec, defines a function which calls itself at
several call sites (similar to the description of ack and tak above). An example
of rec appears in Figure 17. As we scale up rec, the number of recursive call
sites increases. As previously, Plume operates on annotated ANF. This form was
specifically designed to test the efficacy of these annotations.

The results of experimentation on the rec series of test cases appears in
Figure 18. We use 1Plume for these experiments for simplicity. kPlume’s exe-
cution time gradually worsens the number of call sites increases; this is likely

A Set-Based Context Model for Program Analysis 29

1 (define (pathological x)

2 (if (eq? x x) (pathological x)

3 (if (eq? x x) (pathological x)

4 (if (eq? x x) (pathological x)

5 (if (eq? x x) (pathological x) 0)))))

6 (pathological 5)

Fig. 17. Pumped Recursion Example: rec-S4

due to the ambiguity introduced during analysis by the loss of previous context.
Boomerang SPDS and P4F are unaffected by this; we suspect that this is due to
the primarily forward nature of the analyses, which prevents this loss of context
from affecting the lookup of non-local variables so directly. SetPlume fares well
because, paradoxically, it is capable of retaining all of the non-recursive con-
text and so faces no ambiguity except in the particular values of the boolean
variables.

9
0

9

1
7 3
6

rec-S2

8
7

1
1

3
2 3
6

rec-S3

9
8

1
5

6
2

3
7

rec-S4

9
9

1
9

1
0
7

3
7

rec-S5

1
0
4

2
3

1
8
1

3
7

rec-S6

1
2
1

2
6

2
9
3

3
8

rec-S7

1
1
5

3
2

4
5
4

3
8

rec-S8

Key: Boomerang SPDS SetPlume kPlume P4F

100

101

102

103

104

ti
m

e
in

m
s

Fig. 18. Pumped rec Benchmark Results

The second form of test case, termed sat, is a program which will, if analyzed
with perfect precision, induce the solution to a SAT problem; it is designed to
ensure that an analysis does not attempt to maintain perfect context sensitivity
in the face of indirect recursion. An example appears in Figure 19. As we scale
up the number of nested calls, the number of variables in the equivalent SAT
problem increases. This form was inspired by the sat-1, sat-2, and sat-3 test
cases from the test suite used by P4F; those cases were elided from the above
for redundancy. Again: Plume operates on code with selective polyinstantiation
annotations.

1 (define phi (lambda (x1) (lambda (x2) (lambda (x3) (lambda (x4)

2 (any boolean expression using those variables))))))

3 (define try (lambda (f) (or (f #t) (f #f))))

4 (define sat-solve-4 (lambda (p)

5 (try (lambda (n1) (try (lambda (n2) (try (lambda (n3) (try (lambda (n4)

6 ((((p n1) n2) n3) n4)))))))))))

7 (sat-solve-4 phi)

Fig. 19. Pumped SAT Example: sat-P4

30 L. Fachinetti, Z. Palmer, S. F. Smith, K. Wu, A. Yorihiro

The results of experimentation on the sat series of test cases appears in Fig-
ure 20. We use k = 1 for kPlume in these experiments as the level of k necessary
to yield perfect precision is intractable. The results in this figure demonstrate
clear trend lines even on a logarithmic scale. P4F’s time grows exponentially as
the number of nested calls increases; this is unsurprising, as polymorphic CFA
analyses (like polymorphic P4F) are known to be exponential in these cases.
Boomerang SPDS’s time grows less rapidly and careful examination suggests
that it may not be exponential. We suspect that this performance is because
Boomerang SPDS maintains a distinct pushdown system at each call site to
support context sensitivity and these examples are pathologically growing all of
them.

SetPlume’s and 1Plume’s times grow at similar rates. At twenty-two vari-
ables, the last test on which Boomerang SPDS completes before timeout, Set-
Plume is two orders of magnitude faster. We attribute SetPlume’s good per-
formance to the selective polyinstantiation annotations discussed Section 2.4.
Although the try function is not directly recursive, each invocation of try which
occurs within the try function itself (such as when try is invoked at the call site
f #t) and so bears annotations that prevent polyinstantiation of its call sites.
As a consequence, the number of contexts of try will be linear (rather than
exponential) in the number of SAT variables in the example.

3
7
7

1
8
1

5
2

4
7
7

sat-P4

7
5
4

3
5
9

7
9

5
7
5
9

sat-P6

1
8
0
8

5
6
0

1
1
6

1
2
1
6
6
8

sat-P8

4
0
8
4

1
3
3
9

1
6
5

sat-P10

1
0
4
7
7

1
3
4
7

2
2
6

sat-P12

2
5
8
9
2

2
0
5
3

3
0
8

sat-P14

5
9
0
8
8

3
1
0
9

4
1
4

sat-P16

1
2
7
2
0
0

4
2
5
5

5
5
4

sat-P18

2
6
6
4
2
2

5
5
6
4

7
0
6

sat-P20
4
5
9
9
0
1

6
9
6
2

8
9
5

sat-P22

1
0
1
2
0

1
1
3
5

sat-P24

Key: Boomerang SPDS SetPlume kPlume P4F Timeout

100

101

102

103

104

105

106

ti
m

e
in

m
s

Fig. 20. Pumped sat Benchmark Results

These experiments used pumped code designed to exploit the worst case of
SetPlume. From these experiments, we conclude that selective polyinstantiation
is successful at preventing exponential context generation. These results also
suggest that ΣSet with selective polyinstantiation may be a practical approach
to context sensitivity in a program analysis, though more experimentation at
scale is required.

D.4 Threats to Validity

Test cases. The test cases used in the experiments above are representative
of common functional programming idioms, but they are much smaller than
real-world programs and do not include several features commonly found in
practice (such as exceptions or state) due to lack of support in the implemented
artifacts. This could be mitigated by the development of a test suite for functional

A Set-Based Context Model for Program Analysis 31

program analyses which, as of the time of this writing, does not exist; the test
cases provided here are either taken directly from or are generated based upon
examples that have been used in various other program analysis publications.

Variations in expressiveness. Although Section 4 details experiments which
illustrate the precision of SetPlume in comparison to other analyses, these tests
are not the subject of those experiments. This is in part because these test
cases do not clearly illustrate the strengths and weaknesses of these analyses;
they are instead designed to exemplify functional programming patterns which
don’t require considerable expressiveness but act as tar pits for overly ambitious
analyses.

In these experiments, we attempt to mitigate this concern by making choices
generally favorable to other analyses at the expense of SetPlume. In the sat

example, for instance, we used 1Plume because the ideal value of k would in-
duce factorial complexity in the analysis but would also produce a result more
precise than SetPlume (in that it would actually solve the SAT problem with
sufficiently high k). When translating to Java, we used static methods when pos-
sible and only instantiated objects to represent functions when such an object
would meaningfully be allocated to the heap in a functional language. We do this
in an attempt to err on the side of over-approximating SetPlume’s cost, but this
model is not perfect. In the long term, this threat may be mitigated by fixing
a particular client for the three analyses performing the same task with each of
them. At the time of this writing, no same client exists for all of the concerned
analyses.

Language runtime performance. Three different languages are represented
in the artifacts that implement these analyses. Reported times are provided by
the analysis programs themselves to exclude runtime startup costs, parsing times,
and so on. Mitigation of this concern would require reimplementation of the
artifacts in a common language, which is impractical; instead, we simply avoid
drawing conclusions without clear timing differences which cannot be explained
by runtime variations (such as the trend lines in Figure 20).

	A Set-Based Context Model for Program Analysis

