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symbolic evaluation to start anywhere in the program and proceed by executing in reverse to the program

start. SBE brings goal-directed reasoning to symbolic evaluation and has proven effective in e.g. automated

test generation for imperative languages.

In this paper we define DDSE, a novel SBE which operates on a functional as opposed to imperative

language; furthermore, it is defined as a natural extension of a backwards-executing interpreter. We establish

the soundness of DDSE and define a test generation algorithm for this toy language. We report on an initial

reference implementation to confirm the correctness of the principles.
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1 INTRODUCTION
Symbolic execution, the evaluation of a program over symbolic ranges of values instead of over

concrete values, has proven to be a useful technique with real-world applications from lightweight

program verification to automated test generation; see [Baldoni et al. 2018] for a recent survey of

the area. Path explosion is a major shortcoming with symbolic execution: a vast number of the

explored paths never get near the target program point in forward runs. A backward-running

approach can avoid searching many of those paths.

This paper focuses on symbolic backwards execution (SBE) [Baldoni et al. 2018, §2.3], a variation

on symbolic evaluation where evaluation can start at any point in the program and proceed in

reverse to the program start. This reverse propagation is similar in spirit to how Dijkstra weakest-

preconditions (wps) are propagated, and how classic backward program analyses propagate con-

straints in reverse. The advantage of SBE is the same as any goal-directed reasoning: by focusing

on the goal from the start, there are fewer spurious paths taken.

Authors’ addresses: Zachary Palmer, Swarthmore College, 500 College Ave., Swarthmore, PA, 19081, USA, zachary.palmer@

swarthmore.edu; Theodore Park, Swarthmore and Hopkins, USA, tedpark7@gmail.com; Scott Smith, The Johns Hopkins

University, 3400 N. Charles St., Baltimore, MD, 21218, USA, scott@cs.jhu.edu; Shiwei Weng, The Johns Hopkins University,

3400 N. Charles St., Baltimore, MD, 21218, USA, wengshiwei@jhu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/8-ART102

https://doi.org/10.1145/3408984

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 102. Publication date: August 2020.

https://doi.org/10.1145/3408984
https://doi.org/10.1145/3408984
https://doi.org/10.1145/3408984


102:2 Zachary Palmer, Theodore Park, Scott Smith, and Shiwei Weng

SBEs have been developed for imperative languages; examples include [Chandra et al. 2009;

Charreteur and Gotlieb 2010; Dinges and Agha 2014; Ma et al. 2011]. These reverse techniques are

useful for goal-directed reasoning about paths leading to a particular program point: if a condition

at a program point can be propagated back to the program start, this will deduce its validity. The

aforecited systems are capable of automatically generating tests exercising a particular program

point, using backward symbolic execution to accumulate constraints required to reach the target.

To be clear: SBE does not single-handedly solve the problem of symbolic execution performance,

but it is a fundamentally different approach that has advantages in some contexts.

These imperative language systems do not directly generalize to functional languages. Functional

languages have a combination of non-local variables and a control flow that can itself depend on

(function) data flow which makes this gap non-trivial. In this paper, we develop DDSE: a demand-

driven symbolic evaluator for higher-order functional languages which also propagates constraints

backwards. We show how, unlike existing SBEs, DDSE may be constructed as a direct generalization

of a backward concrete evaluator; this follows how forward symbolic evaluators are constructed

as generalizations of forward concrete evaluators and lends a regularity to the process. With this

regularity it is also possible to formally prove DDSE is correct, something not previously proven for

any SBE. In order to show applicability of DDSE, we develop a theory and implementation of test

generation for a functional language. While the paper focuses on the test generation application to

show that concrete results are possible, DDSE is also applicable to other goal-directed problems

that SBEs can address.

There exist demand-driven program analyses in parallel with demand-driven symbolic evaluators,

both for imperative languages [Horwitz et al. 1995] and more recently for functional languages

[Facchinetti et al. 2019; Germane et al. 2019]; DDSE is built on the infrastructure of one particular

higher-order demand-driven program analysis, DDPA [Facchinetti et al. 2019].

In Section 2 we give a high-level overview of the principles behind the approach. Section 3

defines a novel demand-driven operational semantics which serves as the basis of our symbolic

demand-driven evaluator. Section 4 extends the demand-driven operational semantics to symbolic

DDSE and shows how it can be used for test generation. We formally prove that the symbolic

interpreter extends the concrete one, and that tests inferred will in fact exercise the indicated

line of code they were supposed to. Section 5 describes the implementation of the test generation

algorithm and its performance on small benchmarks. Section 6 gives related work, and we conclude

in Section 7. Proofs are found in the Appendices.

2 OVERVIEW
Goal-directed program reasoning has a long tradition in programming languages, dating back to

Dijkstra weakest-precondition (wp) propagation. We review a very simple example in Figure 1 to

recollect wp propagation.

Suppose we started at line 6 with true as our (vacuous) assertion. By wp propagation since we

know we are coming only from the true branch of the conditional, before line 3 we must have

precondition {x < 25}, and continuing to propagate, we have {x > 0 ∧ x < 25} in line 2. So, it

means that input must be in the range of 1 . . . 24 for the target line 6 to be reached. This example

gives some idea of how existing first-order symbolic backward executors (SBEs) [Chandra et al.

2009; Dinges and Agha 2014] work: they start with a vacuous precondition and back-propagate to

the start of the program.

The goal of this paper is to show how a demand-driven symbolic evaluator can be developed

for higher-order functional languages. Weakest precondition logic was designed for first-order

stateful programs, and we aim to design a similar reverse propagation for functional programs.
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Recall that the general case of higher-order functions includes two key differences from first-

order programs: functions are passed as data, thus causing data flow to influence control flow,

and function bodies capture non-local variables in closures. The aforecited systems give partial

consideration of higher-order functions: they accommodate virtual method calls by an iterative

process for estimating the call graph. However, no soundness properties are claimed in those

works. By starting with a higher-order functional basis, we can develop a direct and provably

sound demand-driven symbolic evaluator. We will describe DDSE in stages here: first defining the

demand-driven evaluator, then extending it to deal with input, and finally performing symbolic

evaluation starting from an arbitrary program point.

2.1 Demand-Driven Functional Evaluators

1 let x = input in
2 (* {x > 0 ∧ x < 25} *)
3 if x > 0 then
4 (* {x < 25} *)
5 if x < 25
6 then x+1 (* {true} *)
7 else x-1
8 else x-2

Fig. 1. Weakest precondition propagation

A functional evaluator can be written to be more demand-

driven than the standard closure-based, environment-

based, or substitution-based evaluators: the evaluator

only needs to retain the current stack of function calls

invoked, and from this information it is possible to re-

construct any variable’s value. Consider for example the

program
1
in Figure 2.

For the f y call on line 5, a standard evaluator would

pass in the actual value 0 by some means. In our truly

demand-driven evaluator, however, the body x + 1 ex-
ecutes without any binding for x, only knowing that the

function was called from line 5. When x’s value is needed in the body to add 1 to it, we rely on the

fact that the call site fy was recorded. (We use unique variables in our A-normalized programs, so

variable definitions serve to uniquely identify program points.) We know that x’s value will take
on the value of y at that call site, which in turn can be seen to be 0. Although there is a call f 1 on

line 6, we know that our parameter x does not have the argument value 1 here because the call site

fy (and not the call site f1) was recorded. When the evaluator executes the f1 call, it will again
compute x + 1 but this time under the call site stack f1, and there x will have value 1.

1 let y = 0 in
2 let f =
3 (fun x ->
4 let fret = x + 1 in fret) in
5 let fy = f y in
6 let f1 = f 1 in
7 let ret = fy + f1 in ret

Fig. 2. Simple demand-driven evaluation ex-
ample

We now trace this more precisely. We will formally de-

fine a variable lookup assertion L([x],n,C) ≡ v to mean

that v is the result of a lookup of variable x , starting
the (reverse) search from program line n, and assuming

the current call site stack context is C . We will pun this

relation as a function since lookup is deterministic, writ-

ing it as a function L([x],n,C) returning v equivalently.

The [x] is just a singleton list; it can in general be a non-

singleton for looking up non-local variables, a topic we

address shortly in Section 2.2. The call stack C is not the

forward execution stack, since we are wp-style walking

the program in reverse; it merely denotes the calls entered and not yet exited in this reverse-order

sequence. We now illustrate lookup in detail by showing how the value of ret in the above program

is looked up from the program end and empty call stack (since we are starting outside any function

calls), L([ret], 7, []).

1
This section uses an informal OCaml-like syntax. In our formal presentation below, we A-normalize our programs to

clarify operator ordering; we give the formal grammar for our A-normalized form (ANF) in the following section.
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(1) L([ret], 7, []) ≡ L([fy], 6, [])+L([f1], 6, []): Line 7 defines ret in terms of two other variables,

so we now have two lookup sub-goals to find ret’s value: looking up fy and f1 starting from
the previous line. We will trace only fy in this example since f1 is similar.

(2) L([fy], 6, []) ≡ L([fy], 5, []): We may skip over f1’s definition as we do not find fy on that

line, making it irrelevant to fy’s lookup. (An astute reader may notice that skipping is not

sound if the call does not terminate, so skipping is not always correct; we address this case at

the end of this subsection.) In line 5, we find the definition of fy is not yet a value but is a
function call: fy’s value is in fact the result of the application f y. To obtain value, we first

need to look up the definition of f.
(3) L([f], 2, []) ≡ fun x -> . . . . We have looked up the definition of f, so now we need to

search for the result value of the function body, the contents of fret. We perform the lookup

L([fret], 4, [fy]), pushing the call site fy onto the call stack since the search has entered

that function body.
2

(4) L([fret], 4, [fy]) ≡ L([x], 3, [fy]) + 1: When we perform the lookup, we see that fret is

defined in the current line as the expression x + 1, so we next lookup x from the previous

line.

(5) L([x], 3, [fy]) ≡ L([y], 2, []): x is immediately seen as a parameter to the f, so we want to

look up the value of this parameter at the original call site. We know to examine call site fy
since it was recorded on the call stack. So we induce a lookup of the argument y from the

main program line right before fy, which is line 2.

(6) L([y], 2, []) ≡ L([y], 1, []) ≡ 0: The lookup fails to find y on line 2, so we skip to line 1, where

y is observed to be 0.
(7) Now that we have found our values, we can pop off lookup obligations. We have seen that

L([x], 3, [fy]) ≡ L([y], 2, []) ≡ 0, so L([fret], 3, [fy]) ≡ 0 + 1 = 1, so L([fy], 6, []) ≡ 1.
(8) A similar lookup of f1, yields L([f1], 6, []) ≡ 2, so L([ret], 7, []) ≡ 1 + 2 = 3.

Notice that in this process we did not use structures common in operational semantics of higher-

order functions: there were no environments or closures and no term substitution was performed.

That is because all variables are looked up on demand by a backtrace to their origin.

1 let g =
2 (fun x ->
3 let gret =
4 (fun y ->
5 let gyret = x + y in gyret) in gret) in
6 let g5 = g 5 in
7 let g51 = g5 1 in
8 let g6 = g 6 in
9 let g62 = g6 2 in
10 let ret = g51 + g62 in ret

Fig. 3. Non-local variable example

The trace above glosses over one de-

tail needed for test generation: lookup is a

data flow operation but test generation is

a search for a control flow path from a pro-

gram point to the start of the program. So,

we in fact need to look up all variables en-

countered in the reverse search and cannot

skip over any statement as it may have an

input or non-termination side effect. Addi-

tionally, to make sure we reach the start of

the program we initiate lookup with the

very first variable in the program from our

target point; the lookups traced above will be side effect lookups of that first variable lookup. In

this process we will map the full control of the program up to the line we initially targeted as a

consequence of tracing from that line back to the origin. Note that it will still be the case that only

a limited porition of the program needs to be exercised: we only examine earlier control flows and

not all branches need be taken.

2
Note that this logic is for call-by-name function call; for the call-by-value implemented here we need to also verify that the

argument is not divergent by looking it up.
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2.2 Non-Local Variables
Non-local variables are variables used in a function but whose definitions lie outside of that function;

they must be placed in closures in standard functional language evaluators. To support non-local

variable lookup in a reverse evaluator, we cannot rely on closures as they are a forward-passed

structure. So, we instead use a stack to record the chain of call frames we need to walk back

through to find where a non-local variable is local. This process is related to access links in compiler

implementations of non-local variable lookup. This is why the variable looked up in the previous

examples were singleton lists [x] – in the general case it can be multiple function definitions

followed by the variable, X = [f1, . . . , fn, x] and lookup is generally L(X ,n,C) = v . The lookup
stack gets longer than two elements when the non-locals are themselves functions – the stack in

effect is increasing as we climb the type hierarchy of non-local atomic values, functions, functionals,

functions on functionals, etc.

We now perform an example lookup of a non-local variable to clarify this process. Consider the

example of a Curried addition function in Figure 3; the use of x in line 5 is a non-local variable.

Suppose we want to look up the value of g51 for use in line 10.

(1) L([g51], 10, []) ≡ L([g51], 7, []): We skip lines 8 and 9 to reach g51’s definition in line 7, which

is the function application g5 1.
(2) L([g5], 6, []) ≡ (fun y -> . . . ): To look up g5, we find that is defined as the result of function

application g 5. So, we need to find the result returned by this call and so enter g and search

for the value of its result variable gret. We find that gret is immediately defined as the

function fun y ->. . . so we finally have found the value of g5 and can resume finding the

result of the call g5 1. Inspecting the source of fun y ->. . . , the return variable is gyret and
so to find the result of the call we need to find the result of that variable from within this call,

i.e. with g51 on the call stack.

(3) L([gyret], 5, [g51]) ≡ L([x], 4, [g51]) + L([y], 4, [g51]): Continuing, gyret is defined in line

5 as expression x + y, so we need to look up x (and y) from the previous line in order to get

gyret’s value. In this sub-lookup x is not defined in the current context: it is a non-local. So,

we will have to work harder to find its value. First, we exit the g51 call since the definition is

not local, and redirect our search. The key idea is we can find the definition of x if we look
up where function g5 if defined: that must be a point in the program where x is also defined

since it must be lexically in scope of that function definition (think about it: once we are at

the function definition, x must have a value under static scoping convention). This is a subtle

observation and is at the root of how we can avoid computing closures or similar structures.

(4) L([g5, x], 6, []) ≡ L([x], 3, [g5]): When performing this lookup, we are at line 6 at the top level

of the program looking for the definition point of g5; the lookup stack [g5, x] here indicates
that once we have found the definition point of g5 in line 3, we will need to pop g5 off of

the non-locals stack, giving us a goal of looking up x in the context g5. This implements the

intuition for non-local lookup just described. The [g5] call stack reflects that we had to enter

the g5 call site to find the fun y ->. . . definition.
(5) L([x], 3, [g5]) ≡ 5: We now are at a program point where x is defined (as the function

parameter in this case) and can simply perform a local parameter lookup, specifically for the

parameter at the g5 call site which in turn we find is 5. This completes the non-local portion

of the lookup, the rest is straightforward.

The above examples give a basic idea of the process; for even deeper lexically nested variables

there will be further chaining back through a series of function definitions. For recursive functions,

definable here via self-passing, the context stack may grow unboundedly but there is no need for

any special handling in the lookup definition. The demand-driven evaluator described here is novel
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but is based on ideas in [Facchinetti et al. 2019] (the ωDDPAc evaluator there), where it was used
for the purpose of proving a program analysis sound.

2.3 Demand-Driven Symbolic Execution: DDSE
The primary contribution of this paper is to make a demand-driven symbolic evaluator, DDSE, based

on the demand-driven evaluator of the previous subsection, and to show how DDSE may then

be used to infer tests to reach an arbitrary line of code. There are several extensions to the above

evaluator that are needed in order for it to evaluate symbolically and to infer tests. First, rather

than lookup returning values, constraints on values are accumulated, in the form of logical formulae.

This yields a symbolic evaluator. Then, the symbolic evaluator is modified to include input and to

allow (reverse) execution to commence from any point in the program including inside a function

or conditional; this latter modification may be used to generate a test reaching that program point.

We will now work through these extensions.

2.3.1 Constraint-Based execution. First we show how the demand-driven evaluator can be extended

to a symbolic demand-driven evaluator. The basic idea is simple: to accumulate all constraints

on variable values in a global formula Φ which must remain satisfiable, and to define lookup to

return a variable over which constraints are constructed. If a variable is directly receiving input, it

obviously can’t have a concrete value. But additionally, any variable depending on input cannot

have a concrete value; so, for uniformity, the symbolic evaluator always produces (constrained)

variables. Still, there are subtleties on how to name variables given there may be many activations

of the same variable at runtime. Fortunately, the pair of variable name and current call site stack

serves as a unique reference into the runtime heap, assuming that the initial program had any

duplicate variable definitions renamed (i.e. the program was alphatized). This property is formally

established in the Supplementary Appendix as Lemma C.8. We use notation
Cx for the pair of

variable x annotated with context stack C to uniquely identify runtime heap locations. Note that

every such pair denotes where the variable is defined; at a program point where we have only the

use of a variable we must look it up to find its defining variable pair, as equations on variables

must be on their definitions (equivalently, their heap locations) and not their uses. Every variable

use is invariably a chain of variable aliases back to a definition of the variable; such chains may

go through function calls. The symbolic lookup relation is of the form L
S

([x],n,C) ≡ C0x0, the S
standing for “symbolic”. Analogously with concrete lookup, we will equivalently write this in

function form as L
S

([x],n,C) returning C0x0. We will additionally produce a global set of constraints

Φ over all lookups which is an implicit result.

Let us re-evaluate the Figure 2 example symbolically to illustrate the differences, specifically by

looking up the variable ret from line 7.

(1) L
S

([ret], 7, []) ≡ []ret and
[]ret =L

S

([fy], 6, []) + L
S

([f1], 6, []): We proceed with looking up

fy and f1 to find their variable definitions, which we need in order to complete the second

equation constraining
[]ret. We trace only L

S

([fy], 6, []) since looking up f1 is similar.

(2) L
S

([fy], 6, []) ≡ L
S

([fret], 4, [fy]): Similar to how we looked up fy in the demand evaluator,

we skip f1’s definition and find that we need to look up f’s result value fret.

(3) L
S

([fret], 4, [fy]) ≡ [fy]fret and [fy]fret =L
S

([x], 3, [fy])+ 1: We have reached a point where

a concrete value is constructed, so the latter equation (after the remaining lookup has

completed) will be added to Φ. Note that here, [fy]fret is the defining variable: the stack

annotation [fy] disambiguates to mean the fy call site allocation of fret, as opposed to the

f1 allocation - we have succeeded in avoiding variable name clashes.
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(4) L
S

([x], 3, [fy]) ≡ L
S

([y], 2, []) ≡ []y and
[]y = 0: After tracing back through the lookups, we find

that we have reached a value definition with
[]y = 0, which we can add to Φ without any

further lookup. This also entails that both L
S

([y], 2, []) and L
S

([x], 3, [fy]) will return []y.
(5)

[fy]fret = []y + 1: Given the above results, we can construct this equation and add it to Φ. We

can then return
[fy]fret as the defining variable for fy.

(6)
[]ret = [fy]fret + [f1]fret: Here, we complete the lookup not only for fy, but also for f1, which
completes the equation in step 1 and allows us to add it to Φ.

The final constraint set Φ for this lookup (including constraints added when looking up f1) is:

Φ = {[]ret = [fy]fret + [f1]fret, [fy]fret = []y + 1, [f1]fret = 1 + 1, []y = 0}

By basic arithmetic we can conclude that
[]ret = 3 is logically deducible from satisfiable Φ. In

the DDSE implementation we simply call out to a SMT solver to check for satisfiability of Φ; the
implementation will be discussed in Section 5 below.

2.3.2 Adding Input. While relatively easy in forward evaluators, adding input in this backward

evaluation model is somewhat challenging. Forward evaluators simply process input in sequence

as they execute the program. In the demand-driven process described above, however, values are

looked up in the (reverse) order in which they are used rather than the order in which they are

defined. For example, consider the program in Figure 4. Here, the input keyword reads an integer

off standard input. When looking up ifret, we must first establish the value of the conditional i2,
which is neither the first or last value in the input sequence. All we know about this value is that it

is an input which was allocated to the heap on line 2.

1 let i1 = input in
2 let i2 = input in
3 let i3 = input in
4 let f = fun x ->
5 let fret =
6 if x = 0
7 then let fretp = x + 1 in fretp
8 else let fretm = x - 1 in fretm
9 in fret
10 in
11 let ifret =
12 if i2 = 0
13 then let fi1 = f i1 in fi1
14 else let fi2 = f i2 in fi2
15 in ifret

Fig. 4. Input Example

To address this issue, we record inputs not as

a stream but as a mapping from call-site anno-

tated variables to values, in a similar manner to

how we used annotated variables to uniquely

identify heap locations in the symbolic evalua-

tor above. If the input sequence of the original

program were [1, 2, 3], we would re-cast it as

ι = {[]i1 7→ 1, []i2 7→ 2, []i3 7→ 3}. Since all

three variables are defined at top level, their

call stack annotations are empty. We formally

establish that the two notions of input are iso-

morphic.

On this simple example these inputs look

similar to unconstrained variables, and could

in fact be modeled as such. But for general test

generation, inputs can repeated unboundedly

(e.g. input a number n, and then input n num-

bers to construct an integer list of length n). Importantly, we aim to show our ideas scale to arbitrary

inputs, so we include them in the theory even though they introduce complications.

2.3.3 Test Generation. We may finally consider how to generate a test exercising any particular

line of the program. Consider again the Figure 4 input example and suppose our goal is to find

inputs which reach (i.e., cover) line 7. Lookup of fretp from line 7 is non-trivial: this search begins

inside the body of f, there are two call sites to f, and either could have been the calling point. So, a

search is fundamentally required. A conservative approach would be that any call site could have

called f, but a simple program analysis can build a conservative call graph to winnow out nearly all
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call sites from contention. For this search process one additional global structure is present, along

with formula Φ: a path choice, Π, which records which call site was chosen in the current search

attempt.

Suppose here we arbitrarily guessed f i2 in line 14 as the call site that got us to line 7; let us

at a high level describe the lookup constraints Φ produced. In this case, we also know that with

this choice the call stack when we started must be [fi2] since the call site is at the top level. In

general, we only have a partial notion of the full call stack if we start deeply in the program, but

we can incrementally construct an isomorphic structure on-the-fly which we term a relative stack;

see Section 4.1 for details.

We began our search in the then branch, so we know the conditional expression to be true; we

will ultimately express this with a constraint of the shape L
S

([x], 5, [fi2]) = 0 where L
S

([x], 5, [fi2])
is the defining variable obtained by looking up x. This lookup in turn has the same result as looking

up fi2’s call site argument, i2, reducing our work to determining L
S

([i2], 12, []). Since we came

from the else branch, we will build a constraint of the shape L
S

([i2], 12, []) , 0 to remember that

this condition must have failed. Continuing with L
S

([i2], 12, []), we finally arrive at its definition

in line 2. Since i2 is defined as an arbitrary input, it is only constrained to be an integer. Having

completed lookup, we can fill in the unresolved lookups in the previous constraints: the else

constraint is
[]i2 , 0 (because L

S

([i2], 12, []) = []i2) and the original then constraint is
[]i2 = 0

(since L
S

([x], 5, [fi2]) = L
S

([i2], 12, []) = []i2). These two constraints,
[]i2 , 0 and

[]i2 = 0, are
immediately contradictory, meaning that this path will never happen and so the fi2 call site choice
can be discarded.

So, rewinding back to the start, we will this time record in Π that the fi1 call site was the caller

of f. Skipping the details, it produces Φ = {[]i2 = 0}. Any input mapping conforming to these

constraints, such as {[]i1 7→ 0, []i2 7→ 0, []i3 7→ 0}, will exercise line 6, and so we have successfully

deduced a test case.

Note that if all potential paths are unsatisfiable, we have a proof that there is no such test reaching

the line, i.e. is it dead code. It also could be the case that the code is unreachable but there are

infinitely many paths and so the search for a path will never terminate and the algorithm will be

unable to prove the code is unreachable.

3 A REVERSE CONSTRUCTION INTERPRETER
In this section we construct a demand-driven interpreter for our language. In the following section

we will then be able to symbol-ize this interpreter to make a sound demand-driven symbolic

interpreter. Section 2.1 gave an informal treatment of how a demand-driven interpreter operates;

here we make that informal intuition precise. This interpreter design was initially inspired by the

ωDDPAc interpreter of [Facchinetti et al. 2019]; unlike that interpreter it depends on and constructs

no control flow graph in a forward direction, so it is “even more demand driven” than [Facchinetti

et al. 2019].

The grammar of our language appears in Figure 5. This grammar is in A-normalized form (ANF)

to clarify order of execution and to simplify the presentation of the theory below. Expressions e in
ANF are then just lists of clauses c . We now define notation and well-formedness conditions on

this grammar.

Definition 3.1 Notation and well-formedness.

(1) We assume there is a fixed program eglob we are working over in this section.

(2) We use notation [x1, . . . , xn] for lists and | | for list concatenation.
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(3) We require that eglob is closed and that each clause c in eglob is uniquely identified by the variable
it defines (i.e., our programs are alphatized).

(4) For technical reasons, eglob cannot begin with a function definition clause. (W.o.l.o.g. the reader

can assume there is a dummy = 0 first clause.)

(5) Cl(x) is the unique c where c = (x =b) occurs in eglob (there is at most one such clause in eglob by
alphatization).

(6) Clauses fun x -> may only be used as the initial clause in an f .
(7) Clauses x ! β may only appear at the beginning of a conditional expression’s branch and all

conditional branches must start with such a clause. Variable x must match the variable defined

by the conditional; boolean value β must match the condition (true or false) used to enter the
branch.

Observe that functions f are themselves just lists of clauses; for uniformity the entry of a function

“fun x ->” is formally just a clause so functions are of the form [fun x -> , c1, . . . , cn]. For readability
we may use fun x -> e as an abbreviation of [fun x ->] | | e . This notion makes it easy to define a

uniform notion of “predecessor line” used in the reverse program traversal of lookup. Here is the

Figure 2 example in this formal grammar for illustration:

[o = 1, y = 0, f = [fun x ->,fret = x + o], fy = f y, f1 = f o, ret = fy + f1]

Similarly we add a clause x ! β at the front of conditionals marking which branch was taken; this

clause just serves to label the true vs false branches to know which branch we are at the start of.

For example, the first conditional in Figure 4 would formally be the clauses

[bv = x = 0, fret = bv ? [ fret ! true, fretp = x + 1 ] : [ fret ! false, fretm = x - 1 ]]

Notice that in the informal examples we concluded each let with the variable returned by the

final clause in the let, as this is the implicit semantics of ANF: the value of a list of ANF clauses

is the last variable assigned in the list. Also, observe that constants are not inlined in ANF; they

are predefined to reduce the number of cases in our definitions below, so we have added an initial

clause to the program above defining 1.
Figure 5 also contains all of the constructs needed to define the reverse interpreter.

e ::= [c, . . .] expressions

c ::= x =b | fun x -> | x ! β clauses

x ::= (identifiers) variables

b ::= v | x | input | x x bodies

| x ? e : e | x ⊙ x
⊙ ::= + | - | < | = | and | or | xor binops

v ::= f | n | β values

f ::= [fun x ->] | | e functions

n ::= 0 | 1 | −1 | . . . integers

β ::= true | false booleans

C ::= [c, . . .] contexts

X ::= [x, . . .] lookup stacks

ι ::= {Cx 7→ n, . . . , Cx 7→ n} inputs

Fig. 5. Language grammar and interpreter structures

Note that there is no environment for look-

ing up values; as was described in the overview,

all variables are looked up by tracing back in

the program to find their value.

The interpreter also needs inputs for test

generation, as was motivated in Section 2.3.2.

We model inputs as a mapping ι since the

usual stream ordering is not compatible with a

reverse-running interpreter; in Appendix C.1.3

we show how mapping and streaming versions

are provably interconvertible, so we will use

the mapping view to simplify our presentation

here. The domain of ι is a pair (C, x) which is

more succinctly notated
Cx - it is a variable plus

a call stack to disambiguate which runtime ver-

sion of the variable is being referenced
3
.

3
Lemma C.9 shows how this is a sufficient notion of freshening in a forward interpreter.
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3.1 Variable value lookup
Lookup was informally described in the Overview; here we make rigorous the intuitions described

there. There must be some whole program expression eglob being executed and fixed input mapping

ι defining the program inputs; we will often make these implicit parameters on relations as they are

globally fixed. Lookup also proceeds with respect to a current context stack C which corresponds

to the runtime call stack. The context stack is used to align calls and returns to rule out cases of

looking up a variable based on a non-sensical call stack. Step (4) in the example of Section 2.1 for

example shows how the context stack, there [fy], is used for this purpose in lookup.

Lookup also proceeds with respect to a lookup stack X . The topmost variable of this stack is the

variable currently being looked up. The rest of the stack is used to remember non-local variable(s)

we are in the process of looking up while searching for the lexically enclosing context where they

were defined. Section 2.2 described how the non-locals stack may be used to search for non-local

variable values.

Lookup of a variable value proceeds by “walking backwards” through the program. To accomplish

this, we define a notion of a syntactic predecessor: all clauses which are not the start of an expression

have a predecessor. We define a partial function Pred to formalize this concept and provide other

definitions to assist in the formalization.

Definition 3.2 Clause operations.

(1) Pred(c) = c ′ iff [. . . , c ′, c, . . .] occurs in eglob (to find the syntactic predecessor of a clause)

(2) Pred(x) = Pred(Cl(x))
(3) RetCl([c1, . . . , cn]) = cn (to extract the return (last) clause of a function or conditional body)

Note that Pred(c) is partial and invertible: some clauses (like the first clause in the program) do

not have predecessors and every clause can be the predecessor to at most one other clause.

Lookup finds the value of a variable starting from a given program point. In the context of a fixed

program eglob and input mapping ι, we write L(X , c,C) ≡ v to denote that lookup using lookup

stack X relative to program point c with context C returns v as a result. For instance, a lookup of

variable x from program point c with empty context returning v would be written L([x], c, []) ≡ v .
Note that this refers to looking for values of x starting at that program line – the definition could

be in the line we start on. In Section 2 we informally used program line numbers in place of clauses

c; otherwise the lookups in that section directly correspond with the formalization here.

Definition 3.3. Given fixed program eglob and input mapping ι, the relation L(X , c,C) ≡ v holds

iff there is a proof using the rules of Figure 6.

First(x, c,C) used in the Figure holds iff we can look up the very first variable in the program

from the current clause/stack: x , FirstV(eglob) implies ∃v ′. L([FirstV(eglob)], Pred(c),C) ≡ v ′ ∧ x =
FirstV(eglob) implies C = [].

Since the call stack forces calls and returns to align it is not difficult to show the interpreter is

deterministic.

Lemma 3.4. L(X , c,C) ≡ v is deterministic: given fixed eglob, ι and X , c,C there is at most one v
such that a proof can be constructed.

The proof appears in Appendix A.

Given the determinism of the lookup relation, we can overload lookup as a partial function:

L(X , c,C) = v if and only if relation L(X , c,C) ≡ v holds.

The intuitions for Definition 3.3 were given in examples in Figures 2 and 3 in Section 2.1. There

informally we used line numbers, and formally the clause in that line is used; additionally, for

context stack elements in the overview we used the defining variable of the clause and here we
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Value Discovery

First(x, Cl(x),C)

L([x], (x =v),C) ≡ v
Input

ι(Cx) = v First(x, Cl(x),C)

L([x], (x = input),C) ≡ v

Value Discard

L(X , Pred(x),C) ≡ v

L([x] | |X , (x = f ),C) ≡ v
Alias

L([x ′] | |X , Pred(x),C) ≡ v

L([x] | |X , (x =x ′),C) ≡ v

Binop

L([x ′], Pred(x),C) ≡ v ′ L([x ′′], Pred(x),C) ≡ v ′′

L([x], (x =x ′ ⊙ x ′′),C) ≡ v ′ ⊙ v ′′

Function Enter

Parameter

c = (xr =xf xv )
L([xv ] | |X , Pred(c),C) ≡ v L([xf ], Pred(c),C) ≡ [fun x ->] | | e

L([x] | |X , (fun x ->), [c] | |C) ≡ v

Function Enter

Non-Local

x ′′ , x c = (xr =xf xv )
L([xf , x] | |X , Pred(c),C) ≡ v L([xf ], Pred(c),C) ≡ [fun x ′′ ->] | | e

L([x] | |X , (fun x ′′ ->), [c] | |C) ≡ v

Function Exit

L([x ′] | |X , (x ′ = b), [Cl(x)] | |C) ≡ v
RetCl(e) = (x ′ = b) L([xf ], Pred(c),C) ≡ [fun x ′′ ->] | | e

L([x] | |X , (x =xf xv ),C) ≡ v

Skip

x ′′ , x L([x] | |X , Pred(x ′′),C) ≡ v ∃v0. L([x
′′], Cl(x ′′),C) ≡ v0

L([x] | |X , (x ′′ =b),C) ≡ v

Conditional Top

Cl(x1) = (x1 =x2 ? etrue : efalse)
L([x2], Pred(x1),C) ≡ β L(X , Pred(x1),C) ≡ v

L(X , (x1 ! β),C) ≡ v

Conditional Bottom

L([x2], Pred(x1),C) ≡ β
L([x ′] | |X , (x ′ =b),C) ≡ v RetCl(eβ ) = (x ′ =b)

L([x1] | |X , (x1 =x2 ? etrue : efalse),C) ≡ v

Fig. 6. Value Lookup Rules

use the full clause. For example, the informal lookup L([x], 3, [fy]) from the overview is formally

L([x], (fun x ->), [(fy = f y)]).
Before tracing through an overview example, here are a few high-level points about the rules.

Function Exit is the rule to “back into a function”, transitioning from a call site to the last clause

in the called function. And, the two Function Enter rules are transition out of the function body

from the front; one rule is for the case we were searching for the function parameter, and the other

not - Parameter vs Non Local. Note that the Function Enter Non-Local rule pushes xf on to

the lookup stack to implement the non-local lookup strategy: first find the function, then resume

looking for the variable.

The Conditional rules are similar in several ways to the Function rules: Conditional Top

transitions out of the front of the conditional, and Conditional Bottom transitions into the last

clause in one of the two branches. This latter rule shows the purpose of the x1 ! β clause: it serves

to mark which branch of the conditional we are about to exit out the front of. In both rules we

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 102. Publication date: August 2020.



102:12 Zachary Palmer, Theodore Park, Scott Smith, and Shiwei Weng

verify that we are in the correct branch; this is only needed in Conditional Top for the case that

the lookup started in the middle of a branch as otherwise the condition was already verified before

entering the branch.

The Value Discard rule is the case where the function f was found; the rule then pops off the

search for the function, resuming the search for the variable. Values are finally found and returned

in the Value Discovery rule. The First conditions in Value Discovery and Input address the

corner case where a value is reached but it could be that the current code is dead, i.e. is it not

accessible from the start of the program due to for example an infinite loop before this point. To

verify this is not the case, we require there is a path back to the program start via a lookup of the

first variable.

Let us trace the same example lookup of the overview through the formal definition; we will

use the stringent ANF syntax for Figure 2 given at the start of this section as that is what the rules

work over.

(1) L([fy], (f1 = f 1), []): Apply the Skip rule as fy , f1. This induces a lookup of fy from the

clause Pred(f1 = f 1) = (fy = f y). The last precondition of Skip is needed to ensure that

the computation we skipped over (f1’s in this case) is not diverging; that is, there exists some

value that could have been looked up for f1. In many practical cases non-termination checks

are not needed so this can be skipped. For brevity we will not prove that precondition now,

but the implementation currently always performs this check.

(2) L([fy], (fy = f y), []): Apply the Function Exit rule. This induces a lookup on fret which
pushes this call site onto the call stack. In addition, we need to satisfy these preconditions:

(a) Look up f to ensure that it is indeed a function. By Value Discovery we see it holds:

L([f], (f = [fun x ->, ... ]), []) = (f = [fun x ->, fret = x + o ]).
(b) Look up f’s return variable fret, the last variable defined in the body:

RetCl([fun x ->, fret = x + o ]) = (fret = x + o).
(3) L([fret], (fret = x + o ), [(fy = f y)]): Apply the Binop rule, looking up both terms in

the addition clause.

We will first look up x:

(4) L([x], (fun x ->), [(fy = f y)]): Apply the Function Enter Parameter rule. We are look-

ing for the variable x, which is the parameter passed into our function, so we pop out of the

function, pop the call site fy = f y from the stack, and search for the formal parameter y
from Pred(fy = f y) = (f = ...).

(5) L([y], (f = ...), []): Apply the Skip rule.

(6) L([y], (y = 0), []): Apply the Value Discovery rule to obtain 0 as the result for y and thus

for x.

Now we look up o from the Binop:

(7) L([o], (fun x ->), [(fy = f y)]): Apply the Function Enter Non-Local rule. In this strin-

gent ANF version of the example, o is a non-local variable in the function, giving us an

opportunity to exercise this rule. For the next lookup we will need to push f onto the lookup

stack to first find the definition point of o, and pop the current call site from the call stack

since we are exiting the function body.

(8) L([f, o], (f = ...), []): Apply the Value Discard rule, since we are sitting right on f’s
definition.We can now pop f off the lookup stack and continue lookup for o at the predecessor
clause.

(9) L([o], (y = 0), []): Apply the Skip rule.

(10) L([o], (o = 1), []): Apply the Value Discovery rule, returning 1.
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At this point both preconditions of Binop have completed and the result there is known to be

0 + 1 = 1, and chaining back that means the above fret and fy lookups are also 1.
The input and conditional rules were not covered in the above example but they are more

interesting for the symbolic case so will be described in the next section.

3.2 Equivalence of Demand and a Forward Interpreter
We need to show that the above lookup definition does not deviate fromwhat a standard operational

semantics would produce: if it is to be the basis for a demand symbolic evaluator, it must be sound

and complete with respect to a standard evaluator. A full proof of this equivalence is found in

Appendix C. It is the most conceptually deep Lemma in the paper as it aligns forward- and reverse-

running interpreters; a large number of invariants need to be added to align the two.

Additionally, Appendix C.1.3 justifies the mapping view of input ι used here by showing an

isomorphism between the standard stream-based andmapping-based inputs, as well as constructions

to build one form from the other.

4 A SYMBOLIC DEMAND-DRIVEN EVALUATOR
In this section we modify the demand-driven interpreter of the previous section to produce DDSE,

the symbolic demand-driven evaluator that is the goal of this paper. While the core structure of

lookup is mostly unchanged, two key modifications are required. First, we must make the interpreter

symbolic, allowing arbitrary ranges of input values to be searched simultaneously. Second, we must

replace the absolute stacks C in the lookup process with relative stacks ÛC; this supports variable
lookups that start in the middle of the program without knowing how we may have arrived at that

point. If the reverse interpreter of the previous section were to begin lookup in a function body

with an empty call stack, it would never be able to pop out of that call and no lookup proof can be

constructed; relative stacks soundly support pops in such cases.

We will use a global cache of constraints Φ to simultaneously constrain all run-time variables

in the program. In order to disambiguate different runtime versions of the same variable due to

recursion, we index each variable by its call stack: variables in Φ are pairs of the form
ÛCx (where

the relative stacks ÛC are explained below). Lookup paths are realizable only if the constraints of Φ
can be met; that is, Φ must always be satisfiable for some variable assignment. The implementation

uses an SMT solver to verify this condition.

In a symbolic interpreter, there is often no single path of execution. First, since we can start

lookup mid-program, we may start deep inside an (unknown) call stack and, as the correct caller

is not known, we must search through all potential callers. We address this issue by adding a

parameter Π to lookup which is an oracle to consult for which calling sites to choose in a particular

lookup. Second, conditionals could have both true and false branches satisfiable if we had not (yet)

accumulated any constraints in Φ to indicate otherwise; as with the call site exploration, both

branches must be tried one at a time. These two points of non-determinism capture the unknown

control flows which may lead to the program point at which our lookup started; when they are

fixed, the symbolic lookup process becomes deterministic.

4.1 Relative Stacks
Since our symbolic interpreter does not know the program stack at the time that lookup starts, it

uses a relative stack ÛC to characterize the stack state. At the beginning of symbolic lookup, the

stack is completely unknown; if we start within a function body, for instance, we do not know

from where that function was called. As we move backward through the program using decisions

in the aforementioned Π, we also retrospectively learn what the stack was when lookup began.
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The relative stack ÛC is thus a pair (co-stack, concrete stack) written C?C: the co-stack represents

those frames which have been popped since we started a lookup from inside a function body, and

the concrete stack represents those frames which have been pushed since we began lookup. Once

execution has reached the start of the program we can in retrospect transform all relative stacks ÛC
into absolute stacks C .

Before giving the formal definitions we provide some motivation. Consider the example of Figure

4 where we wanted to find inputs exercising line 7. When lookup begins the relative stack will be

ÛC = []?[]: we have not yet exited or entered any calls. Tracing back as with the interpreter rules we

will arrive at the start of f looking for parameter x but there are two call sites for the function: in

line 13 and in line 14. So, Π will contain one of those two as its arbitrary choice, say line 13. When

the search for x turns into a search for the parameter value i1 there, the relative stack will now be

[(fi1 = f i1)]?[] since that call site has been popped upon exiting f. We are now at the top of

the program, and when we learn that fact we can in retrospect convert relative stack []?[] that we

started lookup with to absolute stack [(fi1 = f i1)], as the pops to get from line 7 in reverse to

the start of the program must be the same as the pushes in a forward run to get from the front of

the program to line 7.

The general case is more complex as we may have exited multiple functions creating a longer

co-stack by the time we arrive at the program start, and we will need to reverse this top-level

co-stack to arrive at the absolute stack. Additionally, in the reverse search we may have not just

exited functions, we may have also entered new calls in the reverse walk; those are placed in the

concrete stack and are treated as concrete push-pop operations.

4.2 Notation for Symbolic Lookup
The new notation needed for symbolic lookup is summarized in Figure 7. Along with the Φ grammar

we define the relative stack grammar as described above. The formal definitions of operations on

these stacks are as follows.

Definition 4.1. Notation for pushing, popping, and concretizing relative stacks is as follows.

(1) Push([c1, . . . cn]?[c
′
1
, . . . c ′n′], c) = [c1, . . . cn]?[c, c

′
1
, . . . c ′n′],

(2) Pop([c1, . . . cn]?[], c) = [c, c1, . . . cn]?[],
(3) Pop([c1, . . . cn]?[c

′
1
, . . . c ′n′], c) = [c1, . . . cn]?[c

′
2
, . . . , c ′n′] for c = c ′

1
,

(4) [c1, . . . cn]?[c
′
1
, . . . c ′n′] is empty iff n′ = 0 (the stack is empty, the co-stack may not be).

(5) Concretize(C?[]) = Reverse(C)

ÛCx annotated vars

X annotated var sets

ÛC ::= C?C relative stacks

ς ::=
ÛCx | ςtrue formulae symbols

ϕ ::= ς = ς ⊙ ς | ς = ς formulae atoms

| ς =v | stack =C
Φ ::= ϕ ∧ . . . ∧ ϕ formulae

Π ::= { ÛC 7→ c, . . .} search paths

Fig. 7. New Constructs for Symbolic Lookup

The definitions are straightforward when the

purpose is kept in mind: if there are callsites

on the concrete stack and it is time to pop, pop

the callsite on top of the concrete stack. Only

if there are no concrete callsites does a pop add

a frame to the co-stack. Pop is undefined if the

concrete stack is non-empty but c is not the top
of the stack.

Function Concretize(C?[]) is used when the

lookup search reaches the top level with stack

C?[], this function extracts the actual stack that

the program point the search started on. Since

the concrete stack and co-stack grow oppositely, the co-stack at the top needs to be reversed to

obtain the stack at the start point. We use the atomic constraint stack =C of Figure 7 to record this

top-level inferred stack. There will only be at most one such constraint present in Φ.
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Above, we described how non-determinism in the lookup function needs to be addressed and

how an additional lookup parameter Π is used to represent the call site choices made. Concretely, in

the grammar Π ranges over mappings from relative stacks ÛC to function call sites c = (xr =xf xv ).

Mapping key ÛC is the current relative stack and the mapped call site is the one which should be

stepped (backwards) to by the lookup function under this call stack. The lookup function takes a Π
oracle map as parameter; our implementation will need to search through the space of potential Π
mappings. Since in large programs it is usually the case that the space of call sites paired with what

function called there is sparse (most call sites usually call only a very limited number of functions

in the whole program), the implementation in fact optimizes Π search by using an initial analysis

pass to remove many provably-invalid cases.

Formulae Φ of Figure 7 are similarly oracular in the specification, and the implementation for

the most part builds Φ monotonically. Φ also contains conditional branch choices which are not

monotonic if both cases are satisfiable, and a search over the choice is made in the implementation.

Definition 4.2. We use the following notation for formulae and their properties:

(1) Φ = ϕ1 ∧ · · · ∧ ϕn in some contexts is punned as the set of its atomic conjunctions, Φ =
{ϕ1, . . . ,ϕn}.

(2) isSAT(Φ) holds if there is a satisfying assignment for Φ.
(3) SATs(Φ) is the set of all satisfying assignmentsM that map (annotated) variables in Φ to values

v .

Inputs need no special handling, they can simply be recorded by constraints on the input variable

in Φ. So, the ι of the interpreter is subsumed by Φ here.

4.3 Variable Lookup Defined
We are now ready to define symbolic variable lookup.

Definition 4.3. For implicit fixed program eglob, Φ with isSAT(Φ) holding, and path mapping Π,

DDSE variable lookup, L
S

(X ,Φ,Π, c, ÛC) ≡
ÛCx holds iff there is a proof using the rules of Figure 8. Since

Φ and Π are fixed in most places we take them as implicit parameters in the Figure and elsewhere,

writing the equivalent shorthand L
S

(X , c, ÛC) ≡
ÛCx . In this Figure, we use a few additional notational

abbreviations:

• FirstV([x1 =b1, . . .]) = x1 extracts the first variable defined in the program eglob = [x1 =b1, . . .].

• L
S

(X , c, ÛC) ≡ v abbreviates ∃
ÛC0x0. L

S

(X , c, ÛC) ≡
ÛC0x0 ∧ (

ÛC0x0 =v) ∈ Φ

• L
S

(X , c, ÛC) ≡ _ abbreviates L
S

(X , c, ÛC) ≡
ÛC0x0 for some

ÛC0x0.

• First
S (x, c, ÛC) holds iff x , FirstV(eglob) implies L

S

([FirstV(eglob)], Pred(c), ÛC) ≡ _

Understanding The Symbolic Lookup Rules. The lookup rules of the reverse interpreter in Figure

6 closely mirror the symbolic rules of Figure 8, and the reader should look through those rules

and their detailed explanations before tackling the symbolic lookup rules. There are several key

differences which we now outline.

Instead of returning a value v as the result we return the defining variable of the value, allowing

us to return symbolic constraints in Φ instead of concrete values. For example, the Value Discovery

rule directly returns the defining variable x of (x =v) paired with the stack,
ÛCx . Note that some

of the lookup assertions have non-variables on the right, but that is just a notational shorthand,

described in Definition 4.3. This defining variable may then be used by other rules such as the

Binop rule, which invokes lookup on both operator parameters and uses the defining variables to

build the equation constraining the binary operator behavior in Φ. By using stack-indexed variable

definitions
ÛCx in the Φ constraints, we have a guarantee that there are no collisions of different
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Value Discovery

(
ÛCx =v) ∈ Φ

x , FirstV(eglob) ∨ (stack = Concretize( ÛC)) ∈ Φ First
S (x, c, ÛC)

L
S

([x], (x =v), ÛC) ≡
ÛCx

Input

ςtrue = (
ÛCx =

ÛCx) ∈ Φ x , FirstV(eglob) ∨ (stack = Concretize( ÛC)) ∈ Φ First
S (x, c, ÛC)

L
S

([x], (x = input), ÛC) ≡
ÛCx

Value Discard

L
S

(X , Pred(x), ÛC) ≡
ÛC0x0

L
S

([x] | |X , (x = f ), ÛC) ≡
ÛC0x0

Alias

L
S

([x ′] | |X , Pred(x), ÛC) ≡
ÛC0x0

L
S

([x] | |X , (x =x ′), ÛC) ≡
ÛC0x0

Binop

L
S

([x ′], Pred(x), ÛC) ≡
ÛCx ′ L

S

([x ′′], Pred(x), ÛC) ≡
ÛCx ′′ ÛCx =

ÛCx ′ ⊙
ÛCx ′′ ∈ Φ

L
S

([x], (x =x ′ ⊙ x ′′), ÛC) ≡
ÛCx

Function

Enter

Parameter

ÛC ′ = Pop( ÛC, c) L
S

([xv ] | |X , Pred(c), ÛC
′) ≡

ÛC0x0
c = (xr =xf xv ) Π( ÛC) = c L

S

([xf ], Pred(c), ÛC
′) ≡ (fun x -> ( e ))

L
S

([x] | |X , (fun x ->), ÛC) ≡
ÛC0x0

Function

Enter

Non-

Local

ÛC ′ = Pop( ÛC, c) x ′′ , x c = (xr =xf xv ) Π( ÛC) = c

L
S

([xf , x] | |X , Pred(c), ÛC
′) ≡

ÛC0x0 L
S

([xf ], Pred(c), ÛC
′) ≡ (fun x ′′ -> ( e ))

L
S

([x] | |X , (fun x ′′ ->), ÛC) ≡
ÛC0x0

Function Exit

L
S

([x ′] | |X , (x ′ = b), Push( ÛC, Cl(x))) ≡
ÛC0x0

RetCl(e) = (x ′ = b) L
S

([xf ], Pred(x), ÛC) ≡ (fun x ′′ -> ( e ))

L
S

([x] | |X , (x =xf xv ), ÛC) ≡
ÛC0x0

Skip

x ′′ , x L
S

([x] | |X , Pred(x ′′), ÛC) ≡
ÛC0x0 L

S

([x ′′], Cl(x ′′), ÛC) ≡ _

L
S

([x] | |X , (x ′′ =b), ÛC) ≡
ÛC0x0

Conditional Top

Cl(x1) = (x1 =x2 ? etrue : efalse)

L
S

([x2], Pred(x1), ÛC) ≡ β L
S

(X , Pred(x1), ÛC) ≡
ÛC0x0

L
S

(X , (x1 ! β), ÛC) ≡
ÛC0x0

Conditional Bottom

L
S

([x2], Pred(x1), ÛC) ≡ β

L
S

([x ′] | |X , (x ′ =b), ÛC) ≡
ÛC0x0 RetCl(eβ ) = (x ′ =b)

L
S

([x1] | |X , (x1 =x2 ? etrue : efalse, ÛC) ≡
ÛC0x0

Fig. 8. Symbolic Lookup Rules

activations of the same variable; they are relative stacks in the rules but upon completion of lookup

can be converted to absolute stacks as we describe below.

The Function Enter . . . rules are extended to support the case that a search is started lexically

within a function body. In this case Π is consulted for the choice to make and a call site frame

is added to the co-stack by the Pop. The rules contain an additional precondition to look up the
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function definition variable xf which is not present in the reverse interpreter; there the function

was already looked up by Function Exit and so it is unnecessary to look up the function again.

The Conditional Bottom rule could match both branches in the implementation, and so it may

be necessary to search through both possibilities. Here in the specification we assume the answer

was already wired into Φ, similar to how Π has pre-wired the single possibility for the function call

site choice. The requirement that Φ be satisfiable precludes both rules from firing.

All rules also use the relative stack push/pop operations of Definition 4.1 in place of the (absolute)

stack operations of the interpreter. The Value Discovery rule when on the first clause of the

program will require the constraint (stack = Concretize( ÛC)) be in Φ to record the absolute stack for

subsequent stack normalization.

The Input rule adds only the constraint ςtrue = (
ÛCx =

ÛCx) which implicitly constrains the input

variable to be an integer. (Equality in the language is defined only on integers.) Otherwise there

are no constraints added since the goal is to find inputs; as with Value Discovery the stack also

needs to be recorded if this is the first line in the program.

Section 2.3 informally traces some examples through this definition; with the formal definition

the results of that example can be confirmed. Note that the informal notation L
S

([x],n,C) ≡ C ′

x ′

used there abbreviates L
S

([x], c,C) ≡ C ′

x ′
for line n containing program clause c . We also did not

use relative stacks in the examples for simplicity, but we outlined the relative stack version for

Figure 7 lookup in Section 4.1 above.

4.4 Defining Test Generation and Showing Computability
This section uses the symbolic lookup definition to formally define a function T which generates

a test input exercising a particular clause in a program. We show T to be partially recursive and

complete: if an input sequence exists which will test a particular line of code, T will find it.

We begin by observing the determinism of symbolic lookup, in analogy to the determinism of

the reverse interpreter. To be clear, test generation is non-deterministic as the input choices in Φ
and branch choices in Π are not fixed, but for fixed Φ/Π there can be only one result.

Lemma 4.4. L
S

([x],Φ,Π, c, []?[]) ≡
ÛC0x0 is deterministic: given eglob, x, c,Π and satisfiable Φ, there

is at most one
ÛC0x0 such that a proof can be constructed.

This and all subsequent proofs in this section are found in Appendix B of the Supplement.

The goal of test generation is to find inputs exercising a particular clause in the program.

Definition 4.5 Test Generation Predicate. Given fixed expression eglob and a clause c in eglob,

• T(eglob, c,Φ,Π) holds if L
S

([FirstV(eglob)],Φ,Π, c, []?[]) ≡ _.

• T(eglob, c) holds iff T(eglob, c,Φ,Π) for some Φ,Π.

The above definition looks up the first variable in the program, guaranteeing that we do not

prematurely stop our reverse lookup somewhere in the middle, and in fact be in dead code or past

a termination point.

The above definition does not produce program inputs ι directly. However, an ι may always be

constructed from Φ; in particular, an SMT solver can produce such an input mapping. Formally, we

say ι satisfies the constraints Φ if isSAT(Φ∪ {
ÛCx =v |

ÛCx 7→ v ∈ ι}), and all input variables (identified

by constraints ςtrue = (
ÛCx =

ÛCx) in Φ) are mapped by ι. We first observe that, for any consistent Φ,
such a mapping always exists:

Lemma 4.6. Given expression eglob and clause c , if T(eglob, c,Φ,Π) for some Φ,Π then there exists

an ι such that ι satisfies Φ.
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Searching for such a mapping is not decidable, but it is recursively enumerable:

Lemma 4.7. Given eglob and c , finding a Φ,Π for which T(eglob, c,Φ,Π) holds is recursively enumer-

able.

Lemma 4.7 demonstrates that, if T(eglob, c), then we can eventually find a suitable input sequence.

But, the enumeration strategy used in the Lemma is not at all practical. Fortunately, in practice we

can incrementally accumulate constraints during lookup and only need to perform a nondetermin-

istic search for the cases where a function may have had multiple callers (we can use a program

analysis to rule out nearly all cases), and where a conditional clause may be either true or false.

Our implementation is described in the following section.

4.5 Correctness
Here we show that DDSE is fully and faithfully modeling the demand interpreter from the previous

section (which was itself shown to be equivalent to a forward interpreter; see Section 3.2).

Before getting into the meat of the proof we prove a small auxiliary Lemma showing how a

unique stack =C constraint must always show up in any successful symbolic lookup of the first

program variable.

Lemma 4.8. If L
S

([FirstV(eglob)],Φ,Π, c0, ÛC0) ≡
ÛCx then there is exactly one constraint of the form

(stack =C) in Φ for some C .

4.5.1 Absolutizing the Relative Stack. In our first step toward showing correctness, we will replace

the relative stacks used by symbolic lookup with absolute stacks to align them with the stacks

in the demand interpreter. We formalize the notation | ÛC |C = Ca to mean the normalization of a

relative stack ÛC with respect toC , the call stack at the program point where we start lookup (which

we only learn in retrospect), has absolute equivalent Ca .

Definition 4.9. Relative stacks, and variables and formulae so-labeled are absolutized as follows.

• |Cc?Cs |C = Cs | |C
′
where C = Reverse(Cc ) | |C

′
for some C ′

; this operator is undefined if the

equation fails for all C ′
;

• |
ÛCx |C =

| ÛC |Cx ;

• |X|C = {|
ÛCx |C |

ÛCx ∈ X}; and

• |Φ|C = Φ[(|X|C )/X], forX being the set of all variables inΦ, and in addition replacing constraint
(stack =C) in Φ with (stack = []).

For example, |[a]?[b]|[a,c] = [b, c]: relative stack [a]?[b] is the state of exiting a and then entering

b, and once we learn in retrospect that we started lookup with call stack [a, c], we see that the state
is the stack [b, c]. Using this operation, we can replace all relative stacks with absolute stacks and

replay the lookup isomorphically. We also establish the converse to help show completeness.

Lemma 4.10 Eqivalence of relative and absolute stacks.

(1) If L
S

(X ,Φ,Π, c0, ÛC0) ≡
ÛCx and (stack =C) ∈ Φ then | ÛC |C and | ÛC0 |C are defined and

L
S

(X , |Φ|C ,Π, c0, []?| ÛC0 |C ) ≡
| ÛC |Cx .

(2) If L
S

([FirstV(eglob)],Φ,Π, c0, []?C) ≡
[]?C ′

x then L
S

([FirstV(eglob)],Φ
′,Π, c0, []?[]) ≡

ÛCx for some

ÛC with C ′ = | ÛC |C , (stack =C) ∈ Φ′
, and Φ = |Φ′ |C .

4.5.2 Eliminating the Search Path. Now that we have an absolute stack, we no longer need Π: the
call site that invoked the function we wish to exit is always on top of the context stack. Formally,

we implement this by replacing mapping Π with a multi-mapping Πmax
which maps each

ÛCx to
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every call site c in the program. The effect of this is to neutralize any Π conditions in symbolic

lookup and bring lookup closer to the concrete interpreter.

In the following two Lemmas and proofs we are always dealing with relative stacks ÛC = []?C , i.e.
the co-stack portion is empty. So, we will sometimes abbreviate this ÛC as just C , in particular for

variables we let
Cx abbreviate

[]?Cx in the context of the symbolic system.

Lemma 4.11 Elimination of search paths.

(1) L
S

(X ,Φ,Π, c0, []?C) ≡
ÛCx implies L

S

(X ,Φ,Πmax, c0, []?C) ≡
ÛCx .

(2) L
S

(X ,Φ,Πmax, c0, []?C) ≡
ÛCx implies L

S

(X ,Φ,Π, c0, []?C) ≡
ÛCx for some (non-multi-) mapping

Π.

4.5.3 Relating Symbolic and Concrete Interpreters. At this point, we have removed two key dif-

ferences between the concrete and symbolic lookup: the relative stack ÛC and the search path Π.
The only significant remaining differences are the constraints Φ and the fact that DDSE lookup

returns a (constrained) variable rather than a value, but the constraints in Φ can be shown to be

isomorphic to the values produced by the concrete interpreter.

Lemma 4.12 Relating symbolic and concrete interpreters.

(1) If L
S

(X ,Φ,Πmax, c0, []?C) ≡
Cx then for all M ∈ SATs(Φ) with Cx 7→ v ∈ M , setting ι to M we

have L(X , c0,C) ≡ v .

(2) L(X , c0,C) ≡ v implies L
S

(X ,Φ,Πmax, c0, []?C) ≡
Cx for some Φ such that for someM ∈ SATs(Φ),

ι ⊆ M and
Cx 7→ v ∈ M .

From the chain of Lemmas defined above, we may now directly conclude that test generation is

sound and complete.

Theorem 4.13. Test generation is sound and complete:

(1) If T(eglob, c,Φ,Π) then L([FirstV(eglob)], c,C) ≡ v for some v , some ι satisfying Φ, and some C .
(2) If L([FirstV(eglob)], c,C) ≡ v for some v , ι and C , then T(eglob, c,Φ,Π) holds for some Φ satisfied

by ι, and some Π.

5 IMPLEMENTATION
In this section we describe the reference implementation of DDSE. This implementation closely

follows the specification, and is primarily designed to confirm correctness of the specification; while

it includes some optimizations, many more are needed for good performance. First we describe

the implementation and then we describe its performance on example programs. The language

implemented is the grammar of Figure 5 with additional syntax for records and projection to allow

us to re-use a wider range of benchmarks.

5.1 The OCaml Implementation of DDSE
Definition 4.3 gives the lookup function which symbolically executes a program in a demand-driven

fashion. This definition is declarative, treating the logical formulae Φ and the search path Π as

oracular, to improve readability. For a feasible implementation, however, we must construct Φ and

Π as we search for control flows which satisfy the lookup rules. Designing this algorithm presented

three key challenges – nondeterminism, nontermination, and caching – which we now discuss.

Our implementation searches for paths through a program to a desired destination by moving

backward and applying the rules of Definition 4.3. This naturally gives rise to a nondeterministic

algorithm: if multiple rules or uses of a rule apply, each of those choices is attempted. As choices

are made, incoherent universes (e.g. with Φ containing unsatisfiable formulae) are discarded. This

application of nondeterminism is common in proof searching algorithms, transitive closures,
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and similar domains; however, nondeterminism is non-trivial to combine with other features of

computation [Zwart and Marsden 2018].

One example of this poor interaction is with non-terminating computations. As stated in Sec-

tion 4.4, lookup is recursively enumerable (Lemma 4.7) but not decidable. Thus, traditional imple-

mentations of nondeterminism (such as the concatMap approach used in Haskell’s list monad) do

not enumerate correctly: even if one thread of nondeterministic computation fails to terminate,

we want other threads to be productive. We address this by modeling computations as promises,

routinely yielding control. This allows our implementation to explore the tree of nondeterministic

computations in a breadth-first fashion via a simple continuation-based worklist algorithm. We use

a simple priority function on the worklist: we prioritize the shortest relative stacks with the most

unique frames (fewest recursions).

Finally, most lookup rules include multiple child lookups and the descendants of those children

often overlap. In the Skip Rule, for instance, the lookup of x ′′
and x may share sub-lookups. This

recursion is exponential akin to naive Fibonacci algorithms and can be resolved the same way: via

caching. Here, we must contend with caching nondeterministic and potentially nonterminating

computations. Our implementation introduces a publish/subscribe messaging model: a cached

computation publishes its results as the worklist algorithm produces them, while computations

relying upon the cache consume value messages to produce a promise of future work. This pub-

lish/subscribe messaging model is global to the evaluation – that is, cached computations do not

recursively maintain their own caches – ensuring that cached values are shared between all subor-

dinate lookups regardless of where they appear in the computational tree. Simpler caching models,

such as associating each nondeterministic computation with its own cache, proved in practice to

be little different from no caching at all.

We developed the implementation with OCaml 4.09.0 using Z3 4.8.1 to check formulae. The

symbolic interpreter is implemented in monadic style: one module defines a monad addressing the

above challenges while another implements each rule of Definition 4.3 as straight-line imperative

code. This design permits additional language features to be supported with minimal effort.

Source code and instructions on how to build the implementation and run the tests and bench-

marks are included with the supplementary software artifact [Palmer et al. 2020].

5.2 Methodology
We have performed a preliminary evaluation of our reference implementation of the test generator.

Since there is no existing benchmark suite for general higher-order symbolic execution, we modified

some of the model-finding benchmarks from SMBC
4
, as well as standard Scheme benchmarks

from Larceny and P4F
5
, and additionally made some benchmarks of our own which allow for

arbitrary-sized inputs. The SMBC benchmarks are for SMT model finding with total recursive

functions and declared datatypes [Cruanes 2017]. Larceny is a standard set of Scheme benchmarks.

The P4F benchmarks are for higher-order program analysis.

The SMBC benchmarks are SMT programs in SMT-LIB syntax [Barrett et al. 2017]. The original

programs consist of function and datatype definitions, assertions and a goal. We can directly

translate the functions to our syntax. We put the assertions and the goal in an expression if
(assertions and goal) then target else nothing at the end of our program and start test

generation from target. We don’t directly support datatype declarations or solve for uninterpreted

functions, so those features of their benchmarks we encode by writing helper functions which

4
From https://cedeela.fr/~simon/files/cade_17.tar.gz, and https://github.com/c-cube/smbc

5
From http://www.larcenists.org/benchmarksAboutR7.html and https://github.com/adamsmd/paper-push-down-for-free-

prototype/tree/master/benchmarks.
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generate them. For instance, to generate an arbitrary list of integers, we use the code let rec
gen_list () = let t = input in if 0 == t then nil else t::(gen_list ()); to express
an uninterpreted function on booleans, we can use let bt = input in let bf = input in
fun x -> if x then (bt == 0) else (bf == 0). Using such encodings, we can convert the

original SMT programs with unknown terms to closed programs with an input-dependent goal.

For an example of this adaptation process, Figure 9(a) shows our adaption of the facehugger.scm
benchmark. For the Scheme benchmark, the (OCaml equivalent of the) last expression is ((id
f) 3) + ((id g) 4) and the evaluated result is 30. To construct an interesting symbolic test

generation benchmark, we change the argument 4 here to be an input y at the beginning of the
program. We then add a final condition checking whether the sum equals 30 and target a test to

reach the then-clause. Our test generator in fact automatically infers an input, 4, which matches

the argument of the original text. So, we have transformed an existing Scheme benchmark into

a benchmark for symbolic test generation. We apply a similar methodology to all the Scheme

benchmarks adapted for our evaluation.

The formal ANF syntax of Figure 5 is difficult to code in, so we also implemented a translator

which allows direct coding in an ML-like syntax; this syntax was used in the Section 2 examples.

Recursive functions or loops appearing in the original benchmarks are encoded via self-application

in the ANF. Lists are encoded as records, for example [1; 2] is

{last = false, elem = 1, next = {last = false, elem = 2, next = {last = true}}}

We use ML-like syntax for lists in the figures for clarity.

5.3 Evaluation
5.3.1 Performance on Simple Benchmarks. We now briefly describe the existing SMBC and Scheme

benchmarks and how we modified them to make test generation benchmarks. The benchmarks are

from the Scheme examples unless otherwise noted below.

fold The original SMBC benchmark synthesizes an accumulator function when folding a list,

that can distinguish between two lists of booleans with one different element. We generate

this function from the input.

palindrome The original SMBC benchmark looks for a list which is palindrome and satisfies

the constraints on the length and the sum of elements. We add an unbound recursive function

to generate one list from the input before checking for those constraints.

pigeon This SMBC benchmark encodes the classic pigeon hole problem. We choose 4 holes for

5 pigeons and specify a program point to reach if no solution found.

sorted This SMBC benchmark finds a list of natural numbers which is sorted and satisfies the

constraints on the length and the sum of elements. We use the similar methods in palindrome.

blur This benchmark combines non-local function definitions and recursion. We replace a

constant call (lp false 2) with (lp false x) where x is an added input that the test

generator must infer to get the correct answer.

eta Tests spurious function calls that do not affect the lookup subject. We simply check whether

the benchmark runs properly with symbolic execution.

facehugger The modifications to this benchmark appear in Figure 9(a) and were described

above.

flatten The original test flattens a fixed deeply nested list. We change it to test double nested

lists, and replace the hard-coded list elements by input values and check whether those inputs

appear in the right points after flattening.

k-cfa-2, k-cfa-3 These benchmarks test worst-cases for k-CFA. We simply check whether the

symbolic evaluator can get the original result.
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1 let x = input in
2 let id x = x in
3 let rec f n =
4 if n <= 1 then
5 1
6 else
7 n * (f (n-1))
8 in
9 let rec g n =
10 if n <= 1 then
11 1
12 else
13 n * (g (n-1))
14 in
15 # original benchmark
16 # ((id f) 3) + ((id g) 4)
17 # our benchmark
18 let sum = ((id f) 3) + ((id g) x) in
19 if (sum == 30) then
20 let target = 1 in 1
21 else
22 0

1 let y = input in
2 let rec list_build acc =
3 let x = input in
4 if 0 == x then
5 acc
6 else
7 list_build (x :: acc)
8 in
9 let rec list_map f l =
10 let rec lp lst =
11 match lst with
12 | [] -> []
13 | x::xs -> (f x)::(lp xs)
14 in
15 lp l
16 in
17 let rec sum_list l =
18 match lst with
19 | [] -> 0
20 | x::xs -> x + (sum_list xs)
21 in
22 let lst = list_build [] in
23 let make_adder s a = a + s in
24 let adder = make_adder y in
25 let lst2 = list_map adder lst in
26 let s = sum_list lst2 in
27 if (s == 10) then
28 let target = 1 in 1
29 else
30 0

(a) Facehugger function (b) List build, map and sum

Fig. 9. Benchmark Source Code Examples

map This Scheme benchmark tests the classic list map function on several example lists. We

change some of the list elements to be inputs and constrain the mapped list elements to

be equal to the result list returned by the Scheme benchmark, forcing the test generator to

generate those constant elements.

mj09 Tests the alignments of calls and returns. We simply check whether symbolic execution

can get the original result.

sat-1 A brute-force SAT solver on a hard-coded formula with four boolean variables. It recur-

sively tries both assignments for each variable to see if the formula is satisfiable. We again

simply verify whether symbolic execution correctly runs the benchmark.

sat-1-direct This is our own variation on sat-1 where we take formula variables from input

and demand that the test generator find values for the variables satisfying the formula.

All of these benchmarks run successfully in our test generator, and generate satisfying inputs (if

any). For each benchmark, Table 1 lists the elapsed time, taken as the average of three runs. The

total steps is an internal count of the number of coroutine monad binds and should only be viewed

relatively – the vast majority of these binds are trivially discharged, allowing the code to be highly

compositional. All of the times for these short programs are reasonably fast, in spite of the lack of

optimizations in our current implementation. sat-1-direct is much faster than sat-1 because
the satisfiability search is entirely within Z3 whereas sat-1 is a naive SAT solver checking cases
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one by one and needing a different control flow path for each. The fold benchmark also has to do a

control flow space search as we have to encode an uninterpreted boolean function by conditioning

on integer inputs; the SMBC system has native support for uninterpreted functions.

In the above examples we ask the test generator to find only one input stream reaching the

target, but it is also possible to query for multiple input streams which also must use a different

control flow path to reach the target.

Table 1. DDSE performance on SMBC and
Scheme benchmarks modified for test gen-
eration

Benchmark Time Steps
fold 20.51s 77587

palindrome 4.01s 20585

pigeon 0.55s 8055

sorted 2.46s 18377

blur 0.24s 2880

eta 0.04s 268

facehugger 0.98s 12226

flatten 0.85s 8157

k-cfa-2 0.09s 1537

k-cfa-3 0.25s 4308

map 1.19s 10631

mj09 0.07s 767

sat-1 4.42s 20213

sat-1 direct 0.07s 861

5.3.2 Synthesizing Unbounded Inputs. To test the ability

to synthesize tests in the presence of somewhat more

complex higher-order functions and recursion with an

unbounded number of inputs, we craft some longer ex-

amples based on List.map, a common functional idiom;

see the code in Figure 9(b).

This program first defines a function that inputs a list

of unbounded length. The list build finishes when 0 is

input at line 4. list_map and sum_list work as their

names suggest. After these function definitions, the main

workflow is to build a list lst, to make an adder function

adder, to map over it to get a new list lst2, to sum the

new list s, and finally check whether we can get the

desired sum to reach the specified program point target.
The first input y parameterizes how much adder adds,

the last 0 is required to exit list_build, and the remain-

ing input is the list lst. We fed this program into the test

generator requesting four unique control flows reaching target line 28. We get the following results

requiring 7.1 seconds to infer all four input sequences:

Input generated Steps of symbolic evaluation

[9, 1, 0] 5878

[1, -1, 9, 0] 10793

[-1, 1, -1, 13, 0] 17947

[1, -1, -1, -1, 9, 10] 27618

For each control flow path taken, we ask the underlying SMT solver for (only) one solution to

the constraints. To get a different control flow path we need a longer list, so in each run the lists

generated get longer. Notice that the steps of symbolic evaluation needed increase nearly-linearly

in the length of the list needed: the underlying algorithm is linear, and few spurious paths are taken

since we are demand-driven.

1 let rec count d =
2 let x = input in
3 if x == 0 then 0
4 else 1 + (count d)
5 in
6 let ca = count 0 in
7 let cb = count 0 in
8 if ca == 2 * cb and 2 < cb then
9 let target = 1 in 1
10 else 0

Fig. 10. Double count program

5.3.3 Strengths of DDSE. The problem with a pure for-

ward symbolic execution is if the wrong control flow

path is taken early on, it will then perform a lot of wasted

work and in general it can be just “shooting in the dark”

to find the proper control flow. It is particularly bad for

the common case of a branch inside of recursion as there

will be an unbounded number of bad control flow choices

to make. In such cases, demand-driven test generation

can be much more efficient.

For example, consider the example of Figure 10. For

this program, pure forward symbolic execution doesn’t
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have any guidance on how many times the count loop

should run in the two calls to count, and so ca and cb do not initially get constrained. However, the
later code requires ca to be twice the value of cb and a forward symbolic interpreter must perform

a search of all possible iterations for both loops until it luckily picks one that is twice the other,

making many fruitless attempts before reaching this goal. DDSE on the other hand starts from the

target point, which immediately gives it a constraint as to what previous control flow paths will

work, and significantly shrinks the search space for control flows – DDSE successfully infers input

stream [1,1,1,1,1,1,0,1,1,1,0] with 69823 steps required. This code is a simplified example of

common real-world cases which contain an assertion deep inside a program but which may have a

massive number of forward paths to explore to reach it.

5.3.4 Weaknesses of DDSE. While our implementation performs caching of the lookup function, it

is of the completely obvious sort: if the exact same arguments are seen again the cached result is

used. But there are many lookups which are nearly identical but have slightly different arguments

and those will all require separate lookups even in cases where they are provably the same. One

obvious example is imagine the first line declares a constant k = 0 and k is used throughout the

program. Each lookup of k in a different call stack context will be a different lookup and so no

caching will be possible in our primitive caching scheme. A more advanced caching methodology

would be able to cache over schemas of call stacks. Additionally, since the source code is fixed,

lookup can be partially evaluated for a given function body producing a table summary; this is

called function summarization in the first-order symbolic analysis literature [Baldoni et al. 2018].

We aim to make a more real-world implementation addressing these and other performance issues.

While the goal-directed proof search strategy used here is generally considered superior to

forward search due to the much greater number of spurious paths in a forward search, the problem

we are trying to solve is undecidable and pure demand-driven searches can also get overwhelmed

with cases. It can be useful to combine forward- and reverse-symbolic methods, a topic there has

been some progress on in the first-order space and which we discuss next in the related work.

Overall, the test generator is performing correctly on all the benchmarks, showing that our

symbolic evaluator is promising as a tool for goal-directed symbolic execution of higher-order

programs.

6 RELATEDWORK
Symbolic execution has been an active area of research for almost 50 years; we refer readers to a

recent complete survey for broader background [Baldoni et al. 2018].

Our work lies under the umbrella of symbolic backwards execution (SBE) [Blackshear et al. 2013;

Bourdoncle 1993; Chandra et al. 2009; Charreteur and Gotlieb 2010; Cousot et al. 2011; Dinges

and Agha 2014; Manevich et al. 2004]. Our general philosophy is similar in principle to these

works. In detail, however, there are many differences as we are addressing higher-order functional

languages and these papers address imperative languages. We also have only a small toy language

and implementation, but with rigorous semantics, an implementation that very closely follows the

semantics, and correctness proofs of the semantics. (Note that there have been some correctness

proofs for forward symbolic executions of C programs [Aissat et al. 2016], but not for higher-order

demand symbolic execution). CCBSE [Ma et al. 2011] is a forward evaluator which steps back

incrementally from the target to try to “hit” it, giving it some character of the SBE school. Their Mix-

CCBSE system combines forward symbolic execution with this partial-reverse strategy; it improves

performance by combining the advantages. [Dinges and Agha 2014] combines SBE with concrete

forward execution to narrow the search space. The idea of combining forward and backward would

also likely benefit DDSE: a forward phase would eliminate a class of search paths by propagating
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some constraints forward which would preclude those paths from ever being considered in the

backward phase.

Many of the issues and challenges of these systems we also share. The key problem in symbolic

execution is the well-known path explosion problem [Anand et al. 2013, 2008]: the search space grows

far too rapidly and the algorithm founders. We currently use a simple cache of the lookup function

L
S

to avoid repeated lookup, but it would not be hard to extend this to caching of whole families

of lookups: in many cases parameters are fully or partly irrelevant. Some caching of function

summaries is performed by Snugglebug [Chandra et al. 2009]. Snugglebug speeds up SMT queries

by solving most of them internally rather than calling out to a solver; this is because the logic is

nearly always very simple and an industrial SMT solver is overkill. Our DDSE artifact also performs

simple on-the-fly SAT checks to eagerly catch obvious inconsistencies. All symbolic interpreters

suffer when the logical assertions are beyond the capabilities of the solver; we share that weakness.

These existing systems have many complex phases and heuristics; one advantage of DDSE is how

the formal specification can fit on a page (Definition 4.3), and it is a direct generalization of a

non-symbolic interpreter (Definition 3.3) to symbolic data.

The demand-driven interpreter which we symbolize here was inspired by theωDDPAc interpreter
[Facchinetti et al. 2019; Palmer and Smith 2016], which was developed solely to show soundness

of a demand-driven program analysis. The interpreter of this paper is significantly simplified

from ωDDPAc in that it does not require (forward) construction of a control flow graph, and for

this reason it is purely demand-driven unlike ωDDPAc. But the main contribution here beyond

[Facchinetti et al. 2019] is to show how demand interpreters also can be turned into demand

symbolic evaluators, producing the first such known system for a higher-order functional language.

Beyond the very different natures of program analyses and symbolic evaluators, several particular

features of DDSE were not found in previous work, including the modeling of input equivalently

as a mapping; the use of stack-indexed variables in formulae to disambiguate across different

activations; and, the novel relative stack construction for building a call stack starting from the

middle of a program and working backward.

While we focus on functional code here, there is in principle no problem with extending these

results to include side effects beyond input and non-termination. For mutation for example, a

demand evaluator in this style finds the most recent assignment to the cell, verifying no aliases of

it were skipped over [Facchinetti et al. 2019].

Automated test generation is a well-studied research topic withmany complementary approaches;

see [Anand et al. 2013] for a survey. Simple automated test generators such as QuickCheck [Claessen

and Hughes 2000] are very useful but test coverage will often be incomplete: some lines of code

will still have no test exercising them. Some variations allow the distribution of data to be altered

[Lampropoulos et al. 2017] to improve coverage, but code structure is not taken into account; this

ameliorates the incompleteness problem but does not solve it. In general, there is an infinite search

space of possible inputs and, in practice, test generation algorithms will be incapable of reaching

some program points. This is a consequence of path explosion and is a major problem in automated

test generation. As mentioned above, SBE [Chandra et al. 2009; Dinges and Agha 2014; Ma et al.

2011] aims squarely at this issue, taking a goal-directed approach to deal with path explosion: paths

that would never lead to the goal line are not even initiated. DDSE aims to extend the SBE approach

to functional languages.

Forward symbolic evaluators have been developed for extended functional languages, e.g. Rosette

[Torlak and Bodik 2013] for Racket and Kaplan [Köksal et al. 2012] for Scala. Higher-order contract

verification [Tobin-Hochstadt and Van Horn 2012] is a generalized form of higher-order forward
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symbolic execution. Contract verification is a step closer to program logic; one particular reason

why this current study excites us is for the potential applications as a more general logic.

If functions are required to be total and data types are all declared, it is possible to take a more

structural view to automated counterexample search in the presence of higher-order functions; one

state-of-the-art forward symbolic evaluator in this area is [Cruanes 2017]. Their notion of conflict-

driven clause learning (CDCL) allows earlier identification of useless search paths. Our approach

is more general in that we have no requirement for data type declarations or for functions to be

always terminating and we support unbounded inputs. These differences make our approach more

directly applicable to mainstream programming languages; conversely, CDCL can take advantage of

these restrictions to make the search more efficient. We showed in Section 5.3 how their benchmark

examples are also successfully solved by our system.

In the first-order program space, incorrectness logic [O’Hearn 2019] shows how symbolic ex-

ecution can be extended to a refutation logic, and by analogy our symbolic evaluator is “just an

induction rule” away from being a higher-order refutation logic. Note that incorrectness logic sup-

ports both forward- and reverse reasoning, a generalization of forward-reverse symbolic execution

[Dinges and Agha 2014; Ma et al. 2011], but it has no automated proof search methodology and so

does not define a symbolic execution.

Dijkstra monads [Swamy et al. 2013] are in a related but different space to our work; they show

how in functional programs with monadic effects there is a natural porting of wp logic on effect-ful

code to the monadic presentation of that effect-ful code. They can then use wp propagation to

generate verification conditions for semi-automatic verification of program properties. Our work is

not focused not only on side effects ordering, but on also the order of operation inherent even in

pure functional code.

7 CONCLUSIONS
Here we developed the theory and reference implementation of DDSE, a symbolic backwards

executor (SBE) for higher-order functional programs. Unlike existing SBE’s, DDSE works on

higher-order functional languages and is characterized as a direct symbolic generalization of a

(non-symbolic, backward) interpreter. This places demand symbolic interpreters closer to forward

symbolic interpreters, which are also direct generalizations of forward non-symbolic interpreters.

We described initial results from a reference implementation.

This paper represents the initial effort in this direction; handling more language features and a

more optimized implementation are key extensions needed. There are also several general fronts

on which this approach could lead to new applications. Currently the test generation approach only

generates tests for whole programs. By using type and data structure information it should also

be able to generate tests for code fragments, to e.g. be used to generate unit tests. The underlying

logic of DDSE lookup embodies a novel approach to reasoning about programs and may be useful

as a program logic: its goal-directed nature naturally aligns with theorem provers.
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A PROOFS FOR SECTION 3 (A REVERSE CONSTRUCTION INTERPRETER)
Lemma 3.4. L(X , c,C) ≡ v is deterministic: given fixed eglob, ι and X , c,C there is at most one v

such that a proof can be constructed.

Proof. We show by induction on n that all proof trees constructed from Definition 3.3 of height

up to n from someX , c,C must have identical result valuev . Assume trees of height less than n have

the above property, and show for trees of height n. This tree has a fixed X , c,C in its conclusion.

It is a fact that at most one of the rules can apply at the conclusion of the tree: All the rules

have a different c below the line, which will make the choice unique, except in a few cases we now

consider. For values, since the two Value rules apply to lookup stacks of different lengths (Value

Discovery for singleton X and Value Discard for non-singleton X ) so only one of those rules

applies. For the two Function Enter rules, in the Parameter rule the function parameter must be

on the top of the lookup stack, and for the Non-Local must not be, so they are mutually exclusive.

The Skip rule only applies when the clause contains a variable x ′′
that is not the top of the lookup

stack; for all the other rules that condition fails.

Now, by inspection of all these rules, in each case but Function Exit or Conditional Bottom

the subordinate lookup parameters are deterministically calculable from the information in the

rule. So, by induction each of those subordinate lookup proof trees must have unique values. In the

Function Exit rule, the x ′
lookup depends on the result of the xf lookup so we first can show

xf has a unique value by induction, and then show the same for x ′
. The final value v is calculable

from xf and x ′
by direct inspection of the Function Exit rule, so only one v can be constructed,

establishing the claim in this case. Lastly, for Conditional Bottom by induction the lookup for x2
must return a unique value which must be either true or false; it cannot return both as that would

violate the uniqueness of value requirement in the induction hypothesis. Thus the conditional

branch chosen is fixed and the case follows by induction. □

B PROOFS FOR SECTION 4 (A SYMBOLIC DEMAND-DRIVEN EVALUATOR)
Lemma 4.4. L

S

([x],Φ,Π, c, []?[]) ≡
ÛC0x0 is deterministic: given eglob, x, c,Π and satisfiable Φ, there

is at most one
ÛC0x0 such that a proof can be constructed.

Proof. We show by induction on n that all proof trees constructed from Definition 4.3 of height

up to n from some X , c, ÛC must have identical result
ÛC0x0. Assume trees of height less than n have

the above property, and show for trees of height n. This tree has a fixed X , c, ÛC in its conclusion.

It is a fact that at most one of the rules can apply at the conclusion of the tree: All the rules

have a different c below the line, which will make the choice unique, except in a few cases we now

consider. For values, since the two Value rules apply to X of different lengths, only one of them can

apply. For the two Function Enter rules, in the Parameter rule the function parameter must be

on the top of the lookup stack, and for the Non-Local must not be, so they are mutually exclusive.

The Skip rule only applies when the clause contains a variable x ′′
that is not the top of the lookup

stack; for all the other rules that condition fails.

Now, by inspection of all these rules, in each case but Function Exit or Conditional Bottom

the three subordinate lookup parameters are deterministically calculable from information in the

rule (in the Function Enter rules in particular, note how Π pre-determines a fixed c for subordinate
lookups, forcing determinism). So, by induction each of those subordinate lookup proof trees must

have unique values. In the Function Exit rule, the x ′
lookup depends on the result of the xf

lookup; we first can show xf is constrained to a unique value by induction, and then show the same

for x ′
. Thus the final value

ÛC0x0 is calculable from xf and x ′
by direct inspection of the rule, so only

one
ÛC0x0 can be constructed, establishing the claim in this case. Lastly, for Conditional Bottom by
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induction the x2 lookup must result in constraining the variable to either true or false; it cannot
be constrained to both as that would result in an unsatisfiable Φ and also violate the uniqueness of

value requirement in the induction hypothesis. Thus the conditional branch chosen is fixed and the

case follows by induction. □

Lemma 4.6. Given expression eglob and clause c , if T(eglob, c,Φ,Π) for some Φ,Π then there exists

an ι such that ι satisfies Φ.

Proof. Suppose T(eglob, c,Φ,Π) for some satisfiable Φ and Π, i.e. expanding definitions we have

L
S

([FirstV(eglob)],Φ,Π, c, []?[]) ≡ _. Inspecting the rules, for each input action a constraint of the

form ςtrue = (
ÛCx =

ÛCx) ∈ Φ, and no other, is placed on input variable
ÛCx , requiring it to be an integer.

So, to construct ι, pick its domain to be all variables
ÛCx such that a constraint of the above form

appears in Φ; those are all of the dynamic inputs occurring over the program run. Now, take any

satisfying assignment to Φ (which we know must exist by virtue of it being satisfiable), and restrict

its domain to these
ÛCx ; since is it a sub-mapping of the satisfiable mapping it must satisfy Φ. □

Lemma 4.7. Given eglob and c , finding a Φ,Π for which T(eglob, c,Φ,Π) holds is recursively enumer-

able.

Proof. The space of (Φ,Π) pairs is recursively enumerable since each individually is r.e. by

inspection of the grammar of Figure 7, and pairing preserves r.e.-ness. Lookup itself is recursively

enumerable as it is a proof system with decidable auxiliary predicates. Thus, dovetailing lookups

over the Φ,Π enumeration will enumerate the valid Φ,Π. □

Lemma 4.8. If L
S

([FirstV(eglob)],Φ,Π, c0, ÛC0) ≡
ÛCx then there is exactly one constraint of the form

(stack =C) in Φ for some C .

Proof. We need to show that looking up FirstV(eglob) anywhere in the program must eventually

lead to applying the Value Discovery or Input rule to FirstV(eglob) at the start of the program.

Consider the structure of the proof tree for L
S

([FirstV(eglob)],Φ,Π, c0, ÛC0) ≡
ÛCx . Note that the first

clause in the program must either be a value or an input clause, for all of the other clauses would

contain a free variable and the program would not be well-formed.

By inspection of the rules, the only leaves of a valid proof tree are in fact lookups of [FirstV(eglob)]
in either Value Discovery or Input: all the other rules and the other cases of those two rules are

not leaves and force one or more sub-lookups. So, there must be at least one constraint of the form

(stack =C) in Φ.
All that remains is to show there can be no (stack =C ′) for C ′ , C in Φ; this is trivial from the

requirement that Φ be satisfiable. □

Lemma 4.10 Eqivalence of relative and absolute stacks.

(1) If L
S

(X ,Φ,Π, c0, ÛC0) ≡
ÛCx and (stack =C) ∈ Φ then | ÛC |C and | ÛC0 |C are defined and

L
S

(X , |Φ|C ,Π, c0, []?| ÛC0 |C ) ≡
| ÛC |Cx .

(2) If L
S

([FirstV(eglob)],Φ,Π, c0, []?C) ≡
[]?C ′

x then L
S

([FirstV(eglob)],Φ
′,Π, c0, []?[]) ≡

ÛCx for some

ÛC with C ′ = | ÛC |C , (stack =C) ∈ Φ′
, and Φ = |Φ′ |C .

Proof. Clause (1): Proceed by induction on the height of the proof tree forL
S

(X ,Φ,Π, c0, ÛC0) ≡
ÛCx ,

assuming (stack =C) ∈ Φ. Assume the result holds for trees of height shorter than n, show for

height n. For Value Discovery and Input, uniformly replacing ÛC0 with | ÛC0 |C will produce a valid

proof directly by induction if the case where FirstV holds is ignored. And, if the FirstV assertion

holds, it must be that Concretize( ÛC0) = C in the assumption since (stack =C) ∈ Φ, meaning
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ÛC0 = Reverse(C)?[]; in this case | ÛC0 |C = [] by the definition of | · |C ; so, by Definition 4.9 for formulae

Φ we have (stack = []) ∈ |Φ|C which will allow the FirstV condition to hold in the absolute stack

derivation.

For the other rules most do not change the context stack so the result follows immediately by

induction. Only the Function rules change the stack, and we address those cases in turn.

For the Function Enter Parameter rule, in the assumed relative stack derivation, the sub-

lookups use stack Pop( ÛC0, c), where Π( ÛC0) = c . Now, by induction hypothesis we have sub-lookups

for some popped stack []?C ′
0
and then the stack in the final proof node we need to construct is

| ÛC0 |C = C0 = [c] | |C ′
0
(recall that Pop functions as a concrete pop if there is no co-stack present).

At this point, we proceed by cases on whether ÛC0 has a non-empty concrete stack component. If

the concrete stack is empty, then ÛC0 = C00?[]. In this case, Pop( ÛC0, c) = Pop(C00?[], c) = ([c] | |C00)?[].

By the induction hypothesis on the sub-derivations, we know that |([c] | |C00)?[]|C = C ′
0
. Now,

expanding | · |C , this means C = (Reverse(C00) | |[c]) | |C
′′
for some C ′′

with |Pop( ÛC0, c)|C = C
′
0
, and

so by the definition C ′
0
= [] | |C ′′ = C ′′

. We now have the justifications at hand to show the stacks

still align, i.e. we can show | ÛC0 |C = C0, by the following chain of equivalences: | ÛC0 |C = |C00?[]|C
which expanding the definition means C = Reverse(C00) | |([c] | |C

′′) and so |C00?[]|C = [c] | |C ′′
;

since C ′
0
= C ′′

was shown above, it is also equivalent to [c] | |C ′
0
which is then C0, establishing the

result for the empty concrete stack sub-case.

Next we consider the case that the concrete stack component is non-empty. Here the co-stack is

not used as Pop can directly pop from the concrete stack, and the case follows directly by induction.

The Function Enter Non-Local rule has identical stack operations as with the previous case

and the proof proceeds analogously.

Lastly consider the Function Exit rule. Here the stack operations in both assumption and

conclusion are concrete pushes which uniformly work on a concrete stack, and so it follows directly

by induction.

Clause (2): Assume L
S

([FirstV(eglob)],Φ,Π, c0, []?C) ≡
[]?C ′

x . This assertion is only for lookup of

the first variable of the program; to establish the result by induction we strengthen the statement

we wish to prove to: If L
S

(X ,Φ,Π, c0, []?C0) ≡
[]?C ′

x then L
S

(X ,Φ′,Π, c0, ÛC0) ≡
ÛCx for some ÛC0, ÛC with

C ′ = | ÛC |C , C0 = | ÛC0 |C , (stack =C) ∈ Φ′
, and Φ′ = |Φ|C . (Note that C = |[]?[]|C so this is indeed a

generalization of the Lemma statement).

So, assume proof trees of height less than n have the above property, and show for trees of height

n. For Value Discovery and Input, if the FirstV clause does not apply those cases are direct by

induction. For the case x = FirstV(eglob), we are at the top of the program inside no function calls,

so C0 = []. So, by the assumed derivation holding we must then have stack = [] ∈ Φ. Define Φ′

to include stack =C ∈ Φ so that |Φ|C = Φ′
holds, and this then satisfies the preconditions of the

relative stack derivation, completing this case.

Most of the remaining rules only use the C/ ÛC to tag variables, and for those variables we may

directly map a stack such as C1 to a stack ÛC1 where C1 = | ÛC1 |C by the induction hypothesis. By

inspection of the rules, all but the Function rules produce a proof tree falling under this case and

are direct by induction. We now consider the Function rules in turn/

Consider the case where Function Enter Parameter is the root of the proof tree. In our

assumption L
S

(X ,Φ,Π, c0, []?C0) ≡
[]?C ′

x this means the “ ÛC” of the rule is []?C0, and Pop([]?C0, c) by
inspection of Definition 4.1 is []?C ′

0
where C0 = [c] | |C ′

0
, with c = Π([]?C0). The sub-lookups in

this rule all use this popped stack, []?C ′
0
. And, on those sub-lookups we can apply our induction

hypothesis to obtain lookups on stack ÛC0 defined by C ′
0
= | ÛC0 |C . Now, to construct the proof

of L
S

(X ,Φ′,Π, c0, ÛC0) ≡
ÛCx we proceed by cases on the form of ÛC0. In the first case, the concrete

stack component is empty in the sub-lookups: ÛC = C00?[] for some C00. In this case, the concrete

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 102. Publication date: August 2020.



102:32 Zachary Palmer, Theodore Park, Scott Smith, and Shiwei Weng

derivation invokes sub-lookups on the c-popped stack so we have C0 = [c] | |C ′
0
. At this point we

are at the exact same point as in the clause (1) Function Enter Parameter case and so by identical

algebraic reasoning on relative stacks can obtain | ÛC0 |C = C0, allowing us to construct the desired

derivation concluding with stack ÛC0.

The Function Enter Non-Local rule has identical stack manipulations as the previous case

and proceeds analogously.

Lastly, Function Exit is only performing concrete pushes to the stack in either derivation and

so follows directly by induction. □

Lemma 4.11 Elimination of search paths.

(1) L
S

(X ,Φ,Π, c0, []?C) ≡
ÛCx implies L

S

(X ,Φ,Πmax, c0, []?C) ≡
ÛCx .

(2) L
S

(X ,Φ,Πmax, c0, []?C) ≡
ÛCx implies L

S

(X ,Φ,Π, c0, []?C) ≡
ÛCx for some (non-multi-) mapping

Π.

Proof. Clause (1): Assuming L
S

(X ,Φ,Π, c0, []?C) ≡
ÛCx , proceed by induction on the depth of

the proof tree to show L
S

(X ,Φ,Πmax, c0, []?C) ≡
ÛCx . Notice that these lookups are identical in all

parameters except for Π. Assume the statement holds for proofs shorter than height n, prove for
height n. For all but the Function Enter rules Π is not used so it follows trivially by induction in

those cases. Consider the Function Enter Parameter rule. By induction all the sub-lookups and

conditions must be identical, the only difference is in the assumed proof tree we have constraint

Π( ÛC) = c and in the newly constructed proof we need to instead have Πmax( ÛC) = c . But, since Πmax

is maximal by construction this is trivial, completing this case. The Function Enter Non-Local

rule proceeds by an identical argument.

Clause (2): Suppose L
S

(X ,Φ,Πmax, c0, []?C) ≡
ÛCx , and show there is a Π mapping for which

L
S

(X ,Φ,Π, c0, []?C) ≡
ÛCx . Consider the partial proof which has the identical structure with the

assumed proof tree, but which has a collection of outstanding constraints of the form {Π( ÛC1) =

c1, . . .Π( ÛCn) = cn} taken by collecting all of these constraints from all the Function Enter rule

instantiations in the proof tree. The only thing we need to show is this is a mapping, i.e. each ÛC
relates to a unique c in this set, and it will then induce the Π for the desired proof.

Now, since the context stack always has an empty co-stack in these proof trees (recall we removed

the co-stack portion with the previous Lemma), we know that Pop is invariably a concrete pop in

the Function Enter rules, meaning the c in those rules is always the top concrete stack frame, i.e.

the ÛC there is of the form []?([c] | |C ′) for some C ′
. So, we can simply define Π([]?([c] | |C ′)) = c , a

mapping returning the top of the concrete stack, which will satisfy all Function Enter constraints

collected above and produce a complete proof tree. □

Lemma 4.12 Relating symbolic and concrete interpreters.

(1) If L
S

(X ,Φ,Πmax, c0, []?C) ≡
Cx then for all M ∈ SATs(Φ) with Cx 7→ v ∈ M , setting ι to M we

have L(X , c0,C) ≡ v .

(2) L(X , c0,C) ≡ v implies L
S

(X ,Φ,Πmax, c0, []?C) ≡
Cx for some Φ such that for someM ∈ SATs(Φ),

ι ⊆ M and
Cx 7→ v ∈ M .

Proof. Clause (1): Assuming the antecedent with M ∈ SATs(Φ), Cx 7→ v ∈ M , and set ι to be

thisM . Proceed by induction on the depth of the proof of L
S

(X ,Φ,Πmax, c0, []?C) ≡
Cx with the goal

to show L(X , c0,C) ≡ v .
Assume the statement holds for proofs shorter than height n, prove for height n. If the antecedent

constructs a proof with Value Discovery, it follows immediately: M(x) = v is required since it is

directly a constraint placed in Φ by the rule. For Input, sinceM = ι,M(x) = v again directly holds,

and the First condition in these rules follows immediately by induction.
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For the remaining rules, observe that the symbolic and concrete rules are identical except in

a few dimensions which we carefully address one-by-one. (1) Symbolic rules relate to a variable

Cx whereas concrete rules relate to a value v . But we can translate the symbolic to concrete by

replacing
Cx withM(Cx). (2) Symbolic rules use stacks ÛC and concrete rules use stack C . But, here

the symbolic stacks are always of the form ÛC = []?C , defining an isomorphism between the stack

forms. And, by inspection of the definitions of pushing and popping in Definition 4.1, the co-stack

operations degenerate into the same operations in the concrete system in this case. So for example

in Function Enter in the symbolic system we have requirement Pop( ÛC, c) = ÛC ′
which given the

lack of co-stack may be simplified to Pop([]?([c] | |C), c) = []?C , which aligns symbolic ÛC precisely

with the context [c] | |C of the concrete Function Enter. (3) Symbolic rules include additional

Πmax
constraints; they can simply be removed when constructing the concrete proof tree. So, we

have succeeded in translating each symbolic node to a concrete node, establishing the result.

Clause (2): Assume L(X , c0,C) ≡ v . Proceed by induction on the depth of the proof tree to both

incrementally construct a Φ/M and to show that L
S

(X ,Φ,Πmax, c0, []?C) ≡
Cx . In other words, we

strengthen the induction hypothesis to also assume a Φ0 and satisfying assignmentM0 has been

constructed in each sub-lookup of the symbolic system, and will produce a new extension of these,

Φ andM , which are supersets of all sub-lookup formulae and mappings. Since we are constructing

satisfying assignmentM in parallel, by construction we will have the final Φ satisfiable (by the final

M). Observe that all requirements upon Φ placed by the rules in the symbolic system are positive, i.e.

they require certain constraints only be present and nothing is required to be absent from Φ, so it

will be sound to re-play the proof tree with the final fixed Φ/M reaching the root to produce a fixed

Φ over the entire derivation. We assume initially that Φ consists of only the constraint (stack = [])
(this constraint was only needed to absolutize the relative stacks which we have already done, we

need to introduce it here only so the base case lookups on the first variable will satisfy the rule set).

Assume the strengthened statement holds for proofs shorter than height n, prove for height
n. For Value Discovery we simply add Φ = {(Cx =v)} and M = {(Cx 7→ v)} and the claim then

follows directly by induction. For Input, it only adds ςtrue = (
Cx =Cx) to Φ, so we can directly add

Cx 7→ ι(Cx) toM and it will be a satisfying assignment. This also meets the requirement that ι ⊆ M .

Now consider the inductive cases. In the proof of clause (1) above we carefully enumerated all

differences between the rule sets excepting Value Discovery and Input, and we will re-visit those

same differences, (1)-(3), for this direction.

For difference (1), observe by inspection of the symbolic rules that return variables
Cx in lookup

are ultimately only constructed in the base case rules; all the other rules just “forward”
Cx from

some subordinate lookup result. These variables are formed by pairing the defining program

variable x with the current call stack ÛC = []?C . As such, they are in fact isomorphic to such base

lookups, the variable completely defines the lookup: supposing the result of a base case lookup

was
Cx ; this result by inspection of the base case rules must have come from a lookup of the form

L
S

([x],Φ,Πmax, (x =v or input), []?C) ≡ Cx – the lookup stack must be [x], the clause must be the

(sole) defining clause of x in the program, and the stack must be the variable annotation, []?C . This
thus fixes all parameters of lookup. So, there will by definition be no variable collisions.

Difference (1) also adds constraints to Φ, let us enumerate these cases and define how satisfying

assignments from the sub-lookups can be combined and extended to produce an overall satisfying

assignmentM . Rule Binop adds
Cx =Cx ′ ⊙ Cx ′′

to Φ. By assumption from the concrete system we

have final result v ′ ⊙ v ′′
where v ′

and v ′′
are the results returned from the two sub-lookups. By

induction we can assume
Cx ′ 7→ v ′

and
Cx ′′ 7→ v ′′

are in M ′
and M ′′

respectively (mappings

produced from the left and right operator lookups, respectively), and so we can consistently define

the extended mappingM asM ′ ∪M ′′ ∪ Cx 7→ v ′ ⊙ v ′′
. Observe that this extends assignmentM to
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cover the new variable
Cx ′′

added toΦ and so is a satisfying assignment forΦ. The other rules adding
constraints are similar, here is a rundown of those cases. For the Conditional rules, expanding

the notation abbreviation used in the rule from Definition 4.3 there must be either a
Cx2 = true

or
Cx2 = false constraint added to Φ; we thus also add mapping

Cx2 7→ true or
Cx2 7→ false,

respectively, to M . The Function rules similarly extend Φ and M to constrain
Cxf to a function.

For rules adding no constraints to Φ, we only union the constraints Φ and assignmentsM .

For difference (2), in clause (1) we defined a trivial isomorphism between the two stack forms and

operations which we can just apply in reverse here. For difference (3), the additional constraints on

Πmax
are all vacuously true as Πmax

maps to all call sites – it was previously neutralized in Lemma

4.11 above. □

Theorem 4.13. Test generation is sound and complete:

(1) If T(eglob, c,Φ,Π) then L([FirstV(eglob)], c,C) ≡ v for some v , some ι satisfying Φ, and some C .
(2) If L([FirstV(eglob)], c,C) ≡ v for some v , ι and C , then T(eglob, c,Φ,Π) holds for some Φ satisfied

by ι, and some Π.

Proof. Clause (1): Assume T(eglob, c,Φ,Π). Expanding the definition of the test generation

predicate, we have L
S

([FirstV(eglob)],Φ,Π, c, []?[]) ≡ _. By Lemma 4.8, we must have a (single)

constraint (stack =C) ∈ Φ. Now, applying clause (1) of Lemma 4.10 we can absolutize the stack

to obtain L
S

([FirstV(eglob)], |Φ|C ,Π, c, []?C) ≡
| ÛC |Cx observing |[]?[]|C = C . Then, since the stack is

absolutized we may apply clause (1) of Lemma 4.11 to obtain L
S

([FirstV(eglob)], |Φ|C ,Π
max, c, []?C) ≡

| ÛC |Cx . Next we may apply clause (1) of Lemma 4.12 to obtain L([FirstV(eglob)], c,C) ≡ v .
Clause (2): Assume L([FirstV(eglob)], c,C) ≡ v . By clause (2) of Lemma 4.12, we then must have

L
S

([FirstV(eglob)],Φ,Π
max, c, []?C) ≡ _. Then by clause (2) of Lemma 4.11 it follows that we have

L
S

([FirstV(eglob)],Φ,Π, c, []?C) ≡ _ for some mapping Π. Lastly, by clause (2) of Lemma 4.10 we have

L
S

([FirstV(eglob)],Φ,Π, c, []?[]) ≡ _ and thus T(eglob, c,Φ,Π). □

C CORRECTNESS OF REVERSE OPERATIONAL SEMANTICS
We now demonstrate the correctness of the lookup system given in Definition 3.3. In general terms,

we aim to prove a program can run forward in a standard forward operational semantics to a

particular program point if and only if the reverse lookup relation provides correct values for

that program point. We demonstrate this first by defining a forward operational semantics for the

grammar appearing in Figure 5 and then proving its equivalence with the lookup relation. This

proof is delicate as we are showing a forward run is equivalent to a backward which is the exact

opposite of an induction argument; significant strengthenings are thus required to prove the result.

The proof here is a completely new proof, but a previous proof of a similar property is found in

[Facchinetti et al. 2019] as Theorem 5.19; that result requires a control flow graph construction and

is for a language with no conditionals or inputs.

In the process, we formally show how a sequence of inputs can be translated to an equivalent

mapping form as was used in the paper body in Section 3.

C.1 Forward Operational Semantics
In this subsection we present a forward operational semantics which we subsequently show

equivalent with the reverse semantics.

In order to make the forward-reverse proof simpler, we first factor out one issue in the forward

operational semantics alone: we show how the view of inputs as a mapping ι is isomorphic to a
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E ::= [x 7→ Ûv, . . .] environments

Ûv ::= κ | n | β environment values

κ ::= ⟨f , E⟩ closures

I ::= [n, . . .] input sequences

σ ::= ⟨E, e⟩ program stack frames

Σ ::= [σ , . . .] program stacks

Fig. 11. Forward Operational Semantics Grammar

Definition

x not of form f

[⟨E, [x =v] | | e⟩] | | Σ, I −→1 [⟨E | |[x 7→ v], e⟩] | | Σ, I

Closure

[⟨E, [x = f ] | | e⟩] | | Σ, I −→1 [⟨E | |[x 7→ ⟨f , E⟩], e⟩] | | Σ, I

Input

[⟨E, [x = input] | | e⟩] | | Σ, [n] | | I −→1 [⟨E | |[x 7→ n], e⟩] | | Σ, I

Alias

E(x ′) = Ûv

[⟨E, [x =x ′] | | e⟩] | | Σ, I −→1 [⟨E | |[x 7→ Ûv], e⟩] | | Σ, I

Binop

E(x2) = Ûv2 E(x3) = Ûv3 Ûv1 = Ûv2 ⊙ Ûv3

[⟨E, [x1 =x2 ⊙ x3] | | e⟩] | | Σ, I −→
1 [⟨E | |[x1 = Ûv1], e⟩] | | Σ, I

Call

Σ = [⟨E, [x1 =x2 x3] | | e⟩] | | Σ
′ E(x2) = ⟨[funx4 ->] | | e

′, E ′⟩ E(x3) = Ûv

Σ, I −→1 [⟨E ′ | |[x4 7→ Ûv], e ′⟩] | | Σ, I

Return

[⟨E | |[x 7→ Ûv], []⟩, ⟨E ′, [x1 =x2 x3] | | e⟩] | | Σ, I −→
1 [⟨E ′ | |[x1 = Ûv], e⟩] | | Σ, I

Conditional Start

Σ = [⟨E, [x1 =x2 ? etrue : efalse] | | e⟩] | | Σ
′ E(x2) = β eβ = [x1 ! β] | | e

′

Σ, I −→1 [⟨E, e ′⟩] | | Σ, I

Conditional End

[⟨E | |[x 7→ Ûv], []⟩, ⟨E ′, [x1 =x2 ? eT : eF ] | | e⟩] | | Σ, I −→
1 [⟨E | |[x1 7→ Ûv], e⟩] | | Σ, I

Fig. 12. Input-as-list Forward Operational Semantics Rules

standard list view of inputs, I . So, we first present a list-based-input forward semantics, then a

map-based-input forward semantics, and then show the two are equivalent.

The operational semantics is a more or less standard environment/closure/stack based presenta-

tion. Grammatical entities for environments, closures, and stacks are defined in Figure 11.

Environment lookup is standard.

Definition C.1. We define lookup of a variable x in an environment E, denoted E(x), as follows:

• If E = E ′ | |[x 7→ Ûv] then E(x) = Ûv .
• If E = E ′ | |[x ′ 7→ Ûv] where x , x ′

then E(x) = E ′(x).

Note that lookup of an unbound variable is undefined; that is, if E = [], then E(x) is undefined for all x .

C.1.1 Input List Operational Semantics. We first present an operational semantics where inputs

are read off of a list I .
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Definition C.2. The relation Σ, I −→1 Σ′, I ′ holds iff there is a proof using the rules of Figure 12.

We inductively define Σ, I −→∗ Σ′, I ′ to hold iff either Σ, I −→1 Σ′, I ′ or both Σ, I −→∗ Σ′′, I ′′ and
Σ′′, I ′′ −→1 Σ′, I ′.

There is nothing too surprising in the rules, but note that the stack is not only for function calls

but also for conditional bodies. This presentation is designed to better align with the reverse system.

Input list I is part of the state, and each Input rule reads and removes one element from the list.

C.1.2 Mapping Input. Input is naturally a list that is read from incrementally as computation

proceeds, but a demand-driven operational semantics looks up inputs in the order they are used in

reverse, not how they are defined going forward, and we need to connect these two views. In the

reverse semantics of the paper we used an order-free notion of inputs, ι, taking “heap locations”

(uniquely identified by the call stack) onto values. So, next define an operational semantics where

instead of reading inputs off of a list, we assume a fixed mapping ι of context-tagged variables
Cx

to integers, as was used in the main paper body (see Definition 5). This is the forward operational

semantics we will be able to align to the reverse system. The rules are nearly identical: only the

input rule differs.

Recall that in the reverse system we support code which iteratively inputs an unbounded amount

of data, and so a single program input clause x = input may read in many input values. So, the

domain of ι cannot just be variables x . In the reverse system, we added context C to make
Cx as

the domain of ι, and we can do the same here. But, to do that we need to be able to extract the call

stack from the Σ of our operational semantics. Fortunately, that is easy.

Definition C.3. We define StackName(Σ) = C inductively as follows:

• StackName([]) = []

• StackName([⟨E, [x1 =x2 x3] | | e]⟩] | | Σ) = [x1 =x2 x3] | | StackName(Σ)
• StackName([⟨E, [x1 =x2 ? eT : eF ] | | e⟩] | | Σ) = StackName(Σ)

Notice that we are only accumulating the function call sites and passing over the conditionals

on the stack frames, since C contains only the function call portion. The main challenge in proving

the list- and mapping-input views are equivalent is showing that the
Cx names do not collide: the

call stack is sufficient to differentiate distinct runtime input clauses.

Definition C.4. The relation Σ −→1

ι Σ
′
holds iff there is a proof using the rules of Figure 13. We

inductively define Σ −→∗
ι Σ

′
to hold iff either Σ −→1

ι Σ
′
or both Σ −→∗

ι Σ
′′
and Σ′′ −→1

ι Σ
′
.

Inspecting the rules of Figure 13, they are nearly identical to the list-based input system. One

difference is that ι is not part of the configuration state, it is fixed. Also, in the Input rule we extract

the current calling context C from Σ and use that to construct pair
Cx which can be looked up in

the mapping.

C.1.3 Proving the Two Input Representations Equivalent. We need to prove these two approaches

to input are isomorphic. For this we construct two variations on the systems above, representing

two different hybrids of them.

Our first is an instrumented version of the forward-running operational semantics that constructs

ι from I . Each evaluation of a clause Cx = input adds the fresh mapping
Cx 7→ v to the input mapping

ι, which is not fixed but is increasing; otherwise, every rule exhibits the same behavior as the list

semantics of Figure 12.

The second instrumented system is a variation on the mapping semantics of Figure 13 which

given fixed mapping ι can incrementally reconstruct the equivalent I . The relationship between

these operational semantics in our equivalence proof is depicted in Figure 14: we prove each arrow

in that Figure as an implication, showing the systems are all equivalent.
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Definition

x not of form f

[⟨E, [x =v] | | e⟩] | | Σ −→1

ι [⟨E | |[x 7→ v], e⟩] | | Σ

Closure

[⟨E, [x = f ] | | e⟩] | | Σ −→1

ι [⟨E | |[x 7→ ⟨f , E⟩], e⟩] | | Σ

Input

C = StackName(Σ) ι(Cx) = n

[⟨E, [x = input] | | e⟩] | | Σ −→1

ι [⟨E | |[x 7→ n], e⟩] | | Σ

Alias

E(x ′) = Ûv

[⟨E, [x =x ′] | | e⟩] | | Σ −→1

ι [⟨E | |[x 7→ Ûv], e⟩] | | Σ

Binop

E(x2) = Ûv2 E(x3) = Ûv3 Ûv1 = Ûv2 ⊙ Ûv3

[⟨E, [x1 =x2 ⊙ x3] | | e⟩] | | Σ −→1

ι [⟨E | |[x1 = Ûv1], e⟩] | | Σ

Call

Σ = [⟨E, [x1 =x2 x3] | | e⟩] | | Σ
′ E(x2) = ⟨[funx4 ->] | | e

′, E ′⟩ E(x3) = Ûv

Σ −→1

ι [⟨E
′ | |[x4 7→ Ûv], e ′⟩] | | Σ

Return

[⟨E | |[x 7→ Ûv], []⟩, ⟨E ′, [x1 =x2 x3] | | e⟩] | | Σ −→1

ι [⟨E
′ | |[x1 = Ûv], e⟩] | | Σ

Conditional Start

Σ = [⟨E, [x1 =x2 ? etrue : efalse] | | e⟩] | | Σ
′ E(x2) = β eβ = [x1 ! β] | | e

′

Σ −→1

ι [⟨E, e
′⟩] | | Σ

Conditional End

[⟨E | |[x 7→ Ûv], []⟩, ⟨E ′, [x1 =x2 ? eT : eF ] | | e⟩] | | Σ −→1

ι [⟨E
′ | |[x1 7→ Ûv], e⟩] | | Σ

Fig. 13. Input-as-Mapping Forward Operational Semantics Rules

Σ, I −→∗ Σ, I Σ, I , ι −→∗ Σ, I , ι

Σ −→∗
ι ΣΣ, I −→∗

ι Σ, I

input list opsem, Fig. 12 ι-building opsem, Def. C.5

input map opsem, Fig. 13I -building opsem, Def. C.11

Fig. 14. Relating Input-as-list (I ) to Input-as-Mapping (ι) interpreters; =⇒ are transformations

We now define Σ, I , ι −→1 Σ, I , ι.

Definition C.5. Define Σ, I , ι −→1 Σ′, I ′, ι′ as the relation defined by the rules of Figure 12, but

with additional ι added to each state and for each non-Input rule mapping ι to itself. The new Input

rule in this system is as follows:

Input

C = StackName(Σ)

[⟨E, [x = input] | | Σ⟩] | | Σ, ([n] | | I ), ι −→1 [⟨E | |[x 7→ n], Σ⟩] | | Σ, I , (ι ∪ {Cx 7→ n}}

We inductively define Σ, I , ι −→∗ Σ′, I ′, ι′ to hold iff either Σ, I , ι −→1 Σ′, I ′, ι′ or both Σ, I , ι −→∗

Σ′′, I ′′, ι′′ and Σ′′, I ′′, ι′′ −→1 Σ′, I ′, ι′.

In practice, we work with global derivations in which the initial mapping ι is empty. Since this

system is doing nothing new other than accumulating constraints it is trivial to show that it is

equivalent to the input-as-list system.

Lemma C.6. Σ, I −→∗ Σ′, I ′ iff Σ, I , {} −→∗ Σ, I , ι.
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Proof. Immediate by induction. □

The more meaningful result is that the accumulated mapping can be extracted from the ι-
building semantics and then produce an equivalent run in the input-as-mapping semantics. Since

the configurations are otherwise identical in the two systems, the only case where equivalence

could fail is if there was a name collision: a derivation contained two different input steps which

both used mapping key
Cx . So, we first establish uniqueness of the

Cx keys as a Lemma.

The Lemma requires some auxiliary notation that we now define.

Definition C.7. (1) Let Ûc , Ûe , Ûσ , and ÛΣ be minor extensions to their respective grammars of figure

11 with additional clause Ûc = •, and where Ûe , Ûσ , and ÛΣ are in turn extended to use this new

notion of clause. Additionally, there must be at most one occurrence of • in any Ûe/ Ûσ / ÛΣ.
(2) We define hole filling, ÛΣ[c], as the replacement of the (single) • in ÛΣ with c . The result of this

replacement is clearly a Σ.
(3) We can now use this notation to define the occurrence of a variable: let pair (c, ÛΣ) define an

occurrence of c in Σ if ÛΣ[c] = Σ.
(4) Given a clause occurrence (c, ÛΣ), Define ContFrames(c, ÛΣ) to be Σ1 where

ÛΣ = Σ0 | | Ûσ | | Σ1.

(5) We overload StackName(c, ÛΣ) to mean StackName(ContFrames(c, ÛΣ)).
(6) Given a step Σ0, I , ι0 −→

1 Σ1, I1, ι1 and some clause c with Σ0 = ÛΣ0[c] and Σ1 = ÛΣ1[c], we say
c is 1-common to this step 6-tuple if ÛΣ0[c

′], I , ι0 −→1 Σ1[c
′], I1, ι1 for any c ′: it is the same

occurence across the step.

(7) Given an n-step computation sequence Σ0, I , ι0 −→
∗ Σn, In, ιn and some clause c with Σ0 = ÛΣ0[c]

and Σ1 = ÛΣ1[c], we say c is common to this sequence if it is 1-common to each of the n − 1 steps

in this computation sequence.

We need to prove a stronger result for which uniqueness of input keys follows as an immediate

corollary.

Lemma C.8. given any computation sequence Σ0, I0, ι0 −→
∗ Σn, In, ιn , if two distinct occurrences of

the same c , Σi = ÛΣ[c] and Σj = ÛΣ′[c]) (for which i may or not be equal to j) are not common to this

sequence, that it must be the case that StackName(c, ÛΣ) and StackName(c, ÛΣ′) differ.

Proof. Proceed by induction the length of the derivation, assuming the fact holds for shorter

derivations. So, assume we have some derivation Σ0, I0, ι0 −→
∗ Σn, In, ιn with the above property,

and show it holds this derivation extended by one additional step, Σn, In, ιn −→1 Σn+1, In+1, ιn+1.
Proceed by cases on which rule fires in this nth-step.

All of the rules which do not change the stack have the property trivially holding by induction,

as they only remove one clause and change nothing else. The conditional rules change the stack but

do not add any new clauses, and the stack changes are also no-ops as far as StackName is concerned

as it only is counting call frames. The Return rule also adds no new clauses.

Only Call adds clauses and so introduces the possibility of name clashes; let us consider that

case in detail. By inspection of the rule, the step must be of the form

Σn, In, ιn −→1 [⟨E ′ | |[x4 7→ Ûv], [c1, . . . , cm]⟩] | | Σn, In+1, ιn+1

for Σn = [⟨E, [x1 =x2 x3] | | e⟩] | | Σ
′
and E(x2) = ⟨[funx4 ->] | |[c1, . . . , cm], E

′⟩. Let us compute the

StackName of x1 =x2 x3 in this redex: letting ÛΣ′′ = [⟨E, • || e⟩] | | Σ′
, we have Σn = ÛΣ′′[x1 =x2 x3]. So

for this occurrence StackName(x1 =x2 x3, ÛΣ
′′) = C for some C which by the induction hypothesis

is unique for all non-common occurrences of x1 =x2 x3 in the derivation. We have expanded the

e ′ in the rule to [c1, . . . , cm] to show the individual clauses added; we must establish for each

of these clause occurrences ci that their StackName is unique. The occurrence of some arbitrary

ci in the (n + 1)-th stack is the pair (ci , ÛΣ) for ÛΣ = [⟨E ′ | |[x4 7→ Ûv], [c1, ci−1, •, ci+1, . . . , cm]⟩].
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Computing, StackName(ci , ÛΣ) = [x1 =x2 x3] | | StackName(Σ
′), which by inspection of the definitions

equals [x1 =x2 x3] | |C . Now, consider some other non-common occurrence of the same clause ci
in the derivation, i.e. some ÛΣ′[ci ] = Σj . We assert StackName(ci , ÛΣ

′) cannot be [x1 =x2 x3] | |C: we
know C was unique for clause [x1 =x2 x3], and context [x1 =x2 x3] | |C can only arise by a call at

call site x1 =x2 x3 from contextC ; so, [x1 =x2 x3] | |C must be unique for ci since any previous Call

at C cannot be at site x1 =x2 x3 by uniqueness of C for the call site and by inspection of the rules:

once a call site occurrence fires, it cannot ever re-fire. □

Lemma C.9. Given any computation sequence Σ0, I0, ι0 −→
∗ Σn, In, ιn , for each Input step in the

sequence, ι ∪ {Cx 7→ n} is a disjoint union: Cx < Dom(ι).

Proof. This folllows directly from Lemma C.8: let the clause c of that Lemma above be an input

x = input occurring in steps Σi = ÛΣ[c] and Σj = ÛΣ′[c]) which are not common occurrences. By the

above property, StackName(c, ÛΣ) and StackName(c, ÛΣ′) differ. So, the Cx produced by the two will be

unique. □

Lemma C.10. If Σ0, I0, {} −→
∗ Σn, In, ιn then Σ0 −→

∗
ιn Σn .

Proof. Proceed by induction on the number of steps in the assumption to establish the goal.

Assume the property holds for computations of length less than k , show for k . Before getting into

the proof, observe that ιi ⊆ ιn for all i by inspection of the rules: ι is monotonically increasing.

For the non-Input case the result is trivial by induction.

Now consider Input. In the hybrid system rule the mapping portion steps from ιk−1 to ιk =
ιk−1 ∪ {Cx 7→ n}. By the induction hypothesis, in the ι system we can step to the point before this

point with identical Σ. The Input rule step in that system then is also identical but needs ιn(
Cx) = n.

And, this follows trivially from the observation that ιk (
Cx) = n from the hybrid system conclusion

the fact that ιk ⊆ ιn , and Lemma C.9 which requires ιn to indeed be a (deterministic) mapping. □

For test generation we also need to be able to convert in the opposite direction: we are going to

find test inputs using the mapping notion of input, and would like to map them back to a standard

interpreter. For this we can create another system which infers I from ι. Note that if ι(Cx) is not
defined, that means the input was never used and so the demand-driven inference algorithm never

needed the value; for these cases an arbitrary value can be chosen.

Definition C.11. Define Σ, I −→1

ι Σ
′, I ′ as the relation defined by the rules of Figure 13, but with

additional I parameter added to each state and for each non-Input rule mapping I to itself. The new
Input rule in this system is then as follows:

Input

C = StackName(Σ) ι(Cx) = n

[⟨E, [x = input] | | e⟩] | | Σ, I −→1

ι [⟨E | |[x 7→ n], e⟩] | | Σ, (I | |[n])

We inductively define Σ, I −→∗
ι Σ

′, I ′ to hold iff either Σ, I −→1

ι Σ
′, I ′ or both Σ, I −→∗

ι Σ
′′, I ′′, ι′′ and

Σ′′, I ′ −→1

ι Σ
′, I ′. In a global derivation we begin with I = [].

Observe that we build the input list by adding the elements as they appear to the end of the

list; in the list-based system we read off the front of the final list inferred. That is reflected in the

following soundness property.

Lemma C.12. If e0, [] −→
∗
ι en, I then e0, I −→

∗ en, [].

Proof. Suppose e0, [] −→∗
ι en, I . In order to capture the intermediate states of this run we

strengthen the induction hypothesis to show e0, [] −→
∗
ι en, Il for I = Il | | Ir implies e0, I −→

∗ en, Ir .
Proceed by induction on the length of the derivation, assuming the property holds for less than k
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c̃ ::= c | ϵ optional clauses

σ ::= ⟨E, e, c̃⟩ tracking stack frames

S ::= [ς, . . .] tracking stacks

Fig. 15. Tracking Operational Semantics Grammar

steps and show for the k-th step. As before, non-Input rules follow trivially by induction. Consider

the case where the last step of the hybrid system was an Input. In this case, transition in the rule

was from input list I ′ to Il = (I ′ | |[n]). In the input list system the previous step must then have

had input list [n] | | Ir by induction, and so by inspection of the Input rule for the input list system

it can then step to a state with list Ir after reading off input [n], establishing the result. □

C.1.4 A Semantics Tracking the Previous Clause. Now that we have shown that input can be

represented as either a list or a mapping, we prepare to show the correctness of reverse lookup

with respect to an input-as-mapping operational semantics. In preparation for this, we must make

a small change to that operational semantics to align it with reverse lookup: we must keep track of

the most recently evaluated clause in each stack frame. We address this by defining an equivalent

and nearly identical operational semantics here. The relevant grammar appears in Figure 15.

We must also provide auxiliary definitions for relating the two systems and their operations:

Definition C.13. Let Forget(⟨E, e, c̃⟩) = ⟨E, e⟩. We overload this definition to lists of stack frames

homomorphically: Forget([]) = [] and Forget([ς] | | S) = [Forget(ς)] | | Forget(S).

Definition C.14. We define StackName(S) = StackName(Forget(S)).

Given these definitions, we then formally define this tracking operational semantics as follows:

Definition C.15. The relation S −→1

ι S
′
holds iff there is a proof using the rules of Figure 16. We

inductively define S −→∗
ι S

′
to hold iff either S −→1

ι S
′
or both S −→∗

ι S
′′
and S ′′ −→1

ι S
′
.

Note that the changes in this operational semantics are largely notational. In each rule, the

just-processed clause is moved from the expression to the new third position in the stack rather

than being discarded entirely. In the Call and Conditional Start rules, the underlying stack frame is

not affected; in the Call case, for instance, the function header is removed from the function body.

The header is treated as the just-processed clause (as it has been bound to the argument value) and

the body of the function is placed in the stack frame for execution.

None of these changes impact how the program actually runs, so these operational semantics

are equivalent. We formally state and prove equivalence between the two systems as follows:

Lemma C.16. [⟨[], eglob⟩] −→
∗
ι Σ iff [⟨[], eglob, ϵ⟩] −→

∗
ι S such that Forget(S) = Σ.

Proof. By proving each implication of the equivalence separately, first by induction on the

height of the proof tree and then by the proof rule used. In each case, the preconditions provided

by one proof tree are together with the inductive hypothesis sufficient to construct the other proof

tree. □

C.2 Auxiliary Lemmas for Soundness and Completeness
Our next goal is to demonstrate the equivalence of the tracking operational semantics with the

reverse lookup relation in Definition 3.3. To do so, we must first prove a number of properties about

this forward operational semantics which are instrumental in showing this equivalence.
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Definition

c = (x =v) x not of form f

[⟨E, [c] | | e, c̃⟩] | | S −→1

ι [⟨E | |[x 7→ v], e, c⟩] | | S

Closure

c = (x = f )

[⟨E, [c] | | e, c̃⟩] | | S −→1

ι [⟨E | |[x 7→ ⟨f , E⟩], e, c⟩] | | S

Input

c = (x = input) C = StackName(S) ι(Cx) = n

[⟨E, [c] | | e, c̃⟩] | | S −→1

ι [⟨E | |[x 7→ n], e, c⟩] | | S

Alias

c = (x =x ′) E(x ′) = Ûv

[⟨E, [c] | | e, c̃⟩] | | S −→1

ι [⟨E | |[x 7→ Ûv], e, c⟩] | | S

Binop

c = (x1 =x2 ⊙ x3) E(x2) = Ûv2 E(x3) = Ûv3 Ûv1 = Ûv2 ⊙ Ûv3

[⟨E, [c] | | e, c̃⟩] | | S −→1

ι [⟨E | |[x1 = Ûv1], e, c⟩] | | S

Call

S = [⟨E, [x1 =x2 x3] | | e, c̃⟩] | | S
′ E(x2) = ⟨[funx4 ->] | | e

′, E ′⟩ E(x3) = Ûv

S −→1

ι [⟨E
′ | |[x4 7→ Ûv], e ′, funx4 ->⟩] | | S

Return

c = (x1 =x2 x3)

[⟨E | |[x 7→ Ûv], [], c̃ ′⟩, ⟨E ′, [c] | | e, c̃⟩] | | S −→1

ι [⟨E
′ | |[x1 = Ûv], e, c⟩] | | S

Conditional Start

S = [⟨E, [x1 =x2 ? etrue : efalse] | | e, c̃⟩] | | S
′

E(x2) = β eβ = [x1 ! β] | | e
′

S −→1

ι [⟨E, e
′, x1 ! β⟩] | | S

Conditional End

c = x1 =x2 ? eT : eF

[⟨E | |[x 7→ Ûv], [], c̃ ′⟩, ⟨E ′, [c] | | e, c̃⟩] | | S −→1

ι [⟨E
′ | |[x1 7→ Ûv], e, c⟩] | | S

Fig. 16. Input-as-Mapping Forward Operational Semantics Rules

C.2.1 Properties of Evaluation. We begin with a simple property: demonstrating that any proof of

evaluation of a well-formed expression uses one of only two of the operational semantics rules.

Lemma C.17. For any well-formed eglob and any ι, any proof of ⟨[], eglob, ϵ⟩ −→
1

ι S uses either the

Definition rule or Input rule from Figure 16.

Proof. By case analysis to exclude all other cases. The Closure rule is not used because a well-

formed eglob does not start with a function definition clause (Definition 3.1). All other rules other

than Definition and Input operate on clauses which contain free variables. If eglob is closed, then no

free variables appear in its first clause; thus, those other rules are also excluded. □

We next demonstrate that the first variable of the program appears in every environment

which is created during evaluation. This is especially helpful when proving equivalence with the

reverse lookup system, as it relies heavily upon being able to look up the first program variable

(Definition 3.3.

Lemma C.18. Suppose a well-formed eglob such that ⟨[], eglob, ϵ⟩ −→
∗
ι S . For any E appearing within

S (including within the closures of other environments), (FirstV(eglob) 7→ Ûv) ∈ E for some Ûv .
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Proof. By induction on the length of the proof of ⟨[], eglob, ϵ⟩ −→
∗
ι S . Lemma C.17 gives us that

the base case only contends with the Definition and Input rules. In the base case, each of these

rules directly adds a mapping for the program’s first variable to the resulting environment.

In the inductive step, we proceed by case analysis on the proof rule used. In the Definition, Input,

Alias, and Binop rules, the only change from the previous stack (which maintains this property by

the inductive hypothesis) is that a new mapping is added to the environment of the topmost stack

frame. This mapping is either not a closure or is a pre-existing closure (and so already satisfies this

property), so these cases are finished.

If the Closure rule is used, a new closure is added to the top stack frame’s environment. This

closure contains a copy of the top stack frame’s previous environment. By the inductive hypothesis,

this new closure contains a mapping for FirstV(eglob) and this case is finished.

If the Call rule is used, a new stack frame is added to the top of the stack with a new environment.

This environment is an extension of one appearing in a closure in the environment of the old top

stack frame so, by the inductive hypothesis, it also contains a FirstV(eglob) mapping and this case is

finished.

If the Conditional Start rule is used, a new stack frame is added to the top of the stack with a copy

of the environment from the old top stack frame. By the inductive hypothesis, this environment

also contains an appropriate mapping, so these cases are finished.

Otherwise, either the Return rule or the Conditional End rule is used. These rules remove a

frame from the top of the stack and extend the environment stack frame beneath it. Thus, by the

inductive hypothesis, this extended environment contains a mapping for FirstV(e) and these cases

are also finished. □

A number of lemmas rely upon the fact that new expressions are not synthesized during evalua-

tion. We formalize that property as follows:

Lemma C.19. For any well-formed eglob and any ι, suppose ⟨[], eglob, ϵ⟩ −→
∗
ι S . Then any e appearing

in S either appears in eglob or is a suffix of an expression that appears in eglob.

Proof. By induction on the length of ⟨[], eglob, ϵ⟩ −→
∗
ι S . In the base case, Lemma C.17 gives

us that S = [⟨[x 7→ v], e, Cl(x)⟩] where [Cl(x)] | | e = eglob; the only expression appearing here is e ,
which is a suffix of eglob itself.

In the inductive case, we proceed by case analysis on the rule used. In the case of the Definition,

Input, Alias, and Binop rules, the only change to the expressions in the stack is the removal of a

clause from the expression in the top stack frame, so this property holds by the inductive hypothesis.

The Closure rule introduces a new closure to the environment containing a function’s body; that

function appeared in the top stack frame’s expression previously and so this property holds by the

inductive hypothesis.

In the Call case, a new stack frame is created containing an expression and environment drawn

from a closure in the previous top stack frame’s environment; thus, by the inductive hypothesis,

any expressions appearing in this closure (and therefore in the new top stack frame) appear in eglob.
The Conditional Start case is similar except that the new top stack frame’s expression is part of the

previous top stack frame’s expression rather than part of its environment.

In the Return and Conditional End cases, a top stack frame is discard which induces no proof

obligation. The new top stack frame contains an expression which is a suffix of one appearing in

the previous stack, so this case is also addressed by the inductive hypothesis. □

We also rely upon the fact that expressions are closed by their respective environments through-

out evaluation. This is particularly helpful when proving that variables which are free in the

next-to-be-executed clause are bound in the current environment.
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Lemma C.20. For any well-formed eglob and any ι, suppose ⟨[], eglob, ϵ⟩ −→1

ι S such that S =
S1 | |[⟨E, e, c̃⟩] | | S2. For any free variable x appearing in e , a binding x 7→ Ûv for some Ûv appears in E.
Likewise, for any closure ⟨f , E ′⟩ appearing recursively in E and any free variable x in f , a binding
x ′ 7→ Ûv for some Ûv appears in E ′

.

Proof. By induction on the length of the proof of ⟨[], eglob, ϵ⟩ −→
1

ι S . The Definition, Input, Alias,
and Binop rules immediately remove a variable-binding expression (x =b) and add a non-closure

binding for x to the environment. Removing this expression makes occurrences of x free in the

remainder of the expression; the new x binding in the environment preserves the invariant.

The Closure rule operates similarly but adds a closure to the environment. This imposes an

additional proof obligation: that the free variables of the closure’s function are bound by its

environment. This is satisfied by the inductive hypothesis: the function appeared in the current stack

frame’s expression, that expression’s free variables are bound by the stack frame’s environment,

and that environment is the environment of the new closure.

The Call and Conditional Start rules are similar to the non-closure cases above except that they

create a new stack frame. In the Call rule, this new stack frame’s environment and expression are

taken from a closure (and then the first clause is processed as above), so the closure property of the

inductive hypothesis satisfies the proof obligation for this new stack frame. Conditional Start rule

copies the current environment as well as a subexpression of the current expression, immediately

satisfying the proof obligation.

The Return and Conditional End rules are similar to the non-closure cases above except that they

discard a stack frame. Discarding a stack frame imposes no additional proof obligation. The single

clause processed by these rules satisfies the proof obligation in the same fashion as the non-closure

cases above. □

C.2.2 Properties of Predecessors and Tracking. Next, we demonstrate that, during evaluation, each

clause in an expression on the stack is the predecessor of the one that follows it. This is already

true of a well-formed program; we here demonstrate that it is true of the subexpressions after each

step of evaluation.

LemmaC.21. For anywell-formed eglob and any ι, suppose ⟨[], eglob, ϵ⟩ −→
∗
ι S . For any e appearing in

S (in an environment, an expression, or a stack frame), if e = [. . . , x1 =b1, x2 =b2, . . .] then Pred(x2) =
x1.

Proof. By induction on the length of the proof of ⟨[], eglob, ϵ⟩ −→∗
ι S . In particular, no rule

synthesizes a new sequence of clauses; all expressions which appear during evaluation are substrings

of the expressions which appeared in eglob, so no new Pred relations need to be proven. □

Further, after the first step of evaluation, the tracking clause is never the placeholder ϵ ; it is
always a valid clause.

Lemma C.22. For any well-formed eglob and any ι, suppose ⟨[], eglob, ϵ⟩ −→
∗
ι S . For any stack frame

⟨E, e, c̃⟩ appearing in S , c̃ , ϵ .

Proof. By induction on the length of the proof of ⟨[], eglob, ϵ⟩ −→∗
ι S . This is immediate by

inspection of the rules: ϵ does not appear on the right side of any small step. □

We also demonstrate the predecessor relationship between the new tracking clause at the current

expression for each stack frame.

Lemma C.23. For any well-formed eglob and any ι, suppose ⟨[], eglob, ϵ⟩ −→
∗
ι S . For any stack frame

⟨E, e, c̃⟩ appearing in S , c̃ = c ′ for some non-ϵ c ′ and e = [c] | | e ′ iff Pred(c) = c ′.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 102. Publication date: August 2020.



102:44 Zachary Palmer, Theodore Park, Scott Smith, and Shiwei Weng

Proof. By induction on the length of the proof of ⟨[], eglob, ϵ⟩ −→∗
ι S . We have c̃ = c ′ by

Lemma C.22. The predecessor relationship is immediate by Lemma C.21 in each rule. Note that,

for each rule, we must determine if the resulting expression is non-empty or not before applying

Lemma C.21; if the resulting expression is empty, we have no proof obligation for that stack

frame. □

We also show that a given clause in eglob may either be a return clause or a predecessor of another

clause; it cannot be both.

Lemma C.24. For any well-formed eglob and any ι, suppose ⟨[], eglob, ϵ⟩ −→
1

ι S . For any e appearing
in S (including in closures within environments), there is no c such that Pred(c) = RetCl(e).

Proof. By induction on the length of ⟨[], eglob, ϵ⟩ −→1

ι S . In the base case, only one such

expression appears – eglob – and, by Definition 3.2, this property holds for all expressions in it. In

the inductive step, the only expressions added to stack frames are (1) those drawn from previous

stack frames or (2) suffixes of them. The set of return clauses for all expressions in the stack is

therefore fixed throughout execution and so the property established in the base case holds at each

inductive step. □

C.2.3 Properties of Application and Conditionals. We now demonstrate the coherence of stack

frames throughout execution. As we evaluate the program, we add stack frames at the beginning of

function calls and conditionals and remove stack frames at the end of function calls and conditionals.

Intuitively, the stack frame appearing above e.g. a call is the body of the function that is called. While

this is immediately evident when the function is entered, we provide these lemmas to reinforce that

property as we finish the stack frame. These lemmas are specifically tailored toward requirements

that appear during the proof of completeness.

Lemma C.25. For any well-formed eglob and any ι, suppose ⟨[], eglob, ϵ⟩ −→
∗
ι S . Suppose also that

S = S3 | |[ς2, ς1] | | S0 where c1 = (x1 =x2 x3), ς2 = ⟨E2, e2, c
′
L⟩, and ς1 = ⟨E1, [c1] | | e

′
1
, cL⟩. If e2 = []

then let c ′ = c ′L ; otherwise, let c
′ = RetCl(e2). From this, we can conclude E1(x2) = ⟨f , E ′⟩ and

RetCl(f ) = c ′.

Proof. By induction on the length of the proof of ⟨[], eglob, ϵ⟩ −→
1

ι S . In the base case, LemmaC.17

gives us that S = [⟨E, e ′, c̃⟩], so this property (which universally quantifies over adjacent pairs of

stack frames) is vacuously true.

In the inductive step, all stack frames except for the top two are satisfied as necessary by the

inductive hypothesis. We proceed by case analysis of the rule used.

In the Definition, Closure, Input, Alias, and Binop rules, we observe that the size of the stack

does not change. A single clause is removed from the expression and its defined variable is mapped

in the environment. If this clause is the last clause in the expression, then the inductive hypothesis

(in the RetCl(e2) case) shows this property (in the c ′L case) for the top two stack frames. Otherwise,

both the inductive hypothesis and the property use the RetCl(e2) case for the top two stack frames.

All other adjacent stack frames use the inductive hypothesis directly.

In the Call case, a new stack frame is introduced. Its expression taken from the body of the called

function; this establishes the property between the new topmost stack frame and the stack frame

beneath it. All other adjacent stack frames use the inductive hypothesis directly.

In the Conditional Start case, a new stack frame is added but the stack frame immediately beneath

it does not have an expression with a first clause in the form of an application. Thus, this property

is established vacuously for that pair of adjacent stack frames.

In the Return and Conditional End cases, an existing stack frame is removed. This induces no

proof obligations and all other adjacent stack frames use the inductive hypothesis directly. □
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We must similarly formalize the coherence of conditional stack frames.

Lemma C.26. For any well-formed eglob and any ι, suppose ⟨[], eglob, ϵ⟩ −→
1

ι S . Suppose also that
S = S1 | |[⟨E, e, cL⟩, ⟨E

′, [c] | | e ′, c ′L⟩] | | S2 where c = (x1 =x2 ? etrue : efalse). Then E ′(x2) = β for some

β . Further: if e , [] then RetCl(e) = RetCl(eβ ); otherwise, e = [] and cL = RetCl(eβ ).

Proof. By induction on the length of the proof of ⟨[], eglob, ϵ⟩ −→
1

ι S . This proof proceeds exactly
as in Lemma C.25 above using a boolean value rather than a function and using the two branches

of the conditional rather than a function’s body. □

We show a similar property on functions and conditionals to satisfy a corresponding proof

obligation during the proof of soundness. These proofs have similar (but not identical) properties

and preconditions.

Lemma C.27. For any well-formed eglob and any ι, suppose ⟨[], eglob, ϵ⟩ −→∗
ι S such that S =

S1 | |[⟨E, e, c⟩] | | S2. If e = [], then let c ′′ = c ; otherwise, let c ′′ = RetCl(e). If c ′′ = RetCl(f ) for f
appearing in eglob then S2 = [⟨E ′, e ′, c ′⟩] | | S3 where e

′ = [x1 =x2 x3] | | e
′′
and E ′(x2) = ⟨f , E ′′⟩.

Proof. By induction on the length of ⟨[], eglob, ϵ⟩ −→
1

ι S . In the base case, Lemma C.17 gives us

that S = [⟨E, e, c⟩] and Lemma C.23 together with Definition 3.2 gives us that eglob = [c] | | e ; thus, c
does not appear within a function and this condition is vacuously satisfied.

In the inductive step, we have two cases: the topmost stack frame’s return clause (either the

return of its current expression or, if that expression is empty, the last executed clause) is the return

clause of a function in eglob or it is not. We begin by considering the case in which it is not.

When the top stack frame’s return clause is not the return clause for a function in eglob, the
Definition, Closure, Input, Alias, and Binop rules satisfy this property directly from the inductive

hypothesis: only the topmost stack frame changes and it induces no proof obligation.

When the Call rule is used, a new stack frame is added. This new stack frame contains an

expression taken from a function in the old top stack frame’s environment. By Lemma C.19, this

function appears in eglob, so the stack frame beneath it must have an expression beginning with an

application clause. Because the Call rule applies, we know this to be true.

When the Conditional Start rule is used, a new stack frame is added which contains an expression

taken from a conditional in the old top stack frame’s environment. By Lemma C.19, this conditional

appears in eglob. Because eglob is well-formed (and therefore alphatized), this expression cannot

appear as the return clause of a function in eglob and so no proof obligation is induced.

The Return and Conditional End rules remove a stack frame and therefore induce no new proof

obligations. The obligations imposed by the remainder of the stack are satisfied by the inductive

hypothesis.

Otherwise, the top stack frame’s return clause is the return clause for a function appearing in

eglob. We proceed again by case analysis on the rule used. These cases proceed exactly as above but

with an additional observation: each step of evaluation either does not change the expression of

the topmost stack frame or changes it by removing the first clause and moving it to the position of

the last executed clause. When the expression is empty, a step will remove the stack frame; when

an expression is a singleton, its return clause is moved to the last executed clause; and when an

expression is not a singleton, its return clause does not change. In each of these cases, the property

is preserved on the topmost stack frame; the property is preserved on the remaining stack frames

by the inductive hypothesis because they do not change (or, in the case of Return and Conditional

End, they change in the exact same fashion). □

We have a similar property for satisfying the soundness proof obligation for conditionals.
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Lemma C.28. For any well-formed eglob and any ι, suppose ⟨[], eglob, ϵ⟩ −→1

ι S such that S =
S1 | |[⟨E, e, c⟩] | | S2. If e = [], then let c ′′ = c ; otherwise, let c ′′ = RetCl(e). If c ′′ = RetCl(eβ ) for
c ′′′ = (x1 =x2 ? etrue : efalse) appearing in eglob then S2 = [⟨E ′, e ′, c ′⟩] | | S3 where e

′ = [c ′′′] | | e ′′.

Proof. By induction on the length of ⟨[], eglob, ϵ⟩ −→1

ι S . This proof proceeds exactly as

Lemma C.27 using a boolean value rather than a function. □

C.2.4 Properties of Determinism. In discussing the deterministic properties of the tracking opera-

tional semantics, we begin by proving simple determinism on that relation.

Lemma C.29. The relation S −→1

ι S ′ is deterministic for well-formed expressions. That is, if

[⟨[], eglob, ϵ⟩] −→
∗ S , S −→1

ι S
′
1
, and S −→1

ι S
′
2
then S ′

1
= S ′

2
.

Proof. By case analysis on the rules used in the proofs of S −→1

ι S
′
1
and S −→1

ι S
′
2
. □

More precisely, however, we demonstrate that each of the deterministic steps taken by this

relation can be uniquely identified by the c̃ in the topmost stack frame and the C name of the

remainder of the stack.

LemmaC.30. Suppose [⟨[], eglob, ϵ⟩] −→
∗
ι S1 and [⟨[], eglob, ϵ⟩] −→

∗
ι S2 such that S1 = [⟨E1, e1, c⟩] | | S

′
1

and S2 = [⟨E2, e2, c⟩] | | S
′
2
. Suppose further that StackName(S ′

1
) = StackName(S ′

2
). Then S1 = S2.

Proof. By LemmaC.29, there is only one computation sequencewith fixed start state [⟨[], eglob, ϵ⟩]
and so S1 is either before or after S2 in this sequence; if they are the same (neither before nor after),

it means we have our desired result, S1 = S2, so let us assume S1 , S2 and derive a contradiction.

Suppose w.o.l.o.g. then that S1 −→
∗
ι S2. By inspection of the rules and Lemma C.23, we know that

clause c fired twice in this computation, once immediately before S1 and once before S2. Since in
each case the clause c was removed, it means that two occurrences cannot be common (as per

Definition C.7). So, by Lemma C.8, StackName(S ′
1
) , StackName(S ′

2
), contradicting our hypothesis

and thus establishing the result. □

Lemma C.31. Let S = [ςn, . . . , ς0] and let S ′ = [ς ′m, . . . , ς
′
0
]. If S −→1

ι S ′ then, for each i ∈

{0, . . . ,n}, one of the following is true:

• ςi = ς ′i (when i < m)

• ςi = ⟨E, [Cl(x)] | | e, c̃⟩ and ς ′i = ⟨E | |[x 7→ Ûv], e, Cl(x)⟩ for some x (when i =m)

• i > m (and so the stack frame is removed)

Proof. By case analysis on the proof rule used. □

Lemma C.32. Suppose [⟨[], eglob, ϵ⟩] −→
∗
ι S1 and [⟨[], eglob, ϵ⟩] −→

∗
ι S2 such that

S1 = [⟨E1, e1, Pred(c)⟩] | | S
′
1
and S2 = [⟨E2, e2, c⟩] | | S

′
2
such that StackName(S ′

1
) = StackName(S ′

2
). Then

[⟨[], eglob, ϵ⟩] −→
∗
ι S1 −→

∗
ι S2.

Proof. By Lemma C.23 we have e1 = [c] | | e2. We conclude S1 , S2 immediately from this.

Because the operational semantics is deterministic (Lemma C.29, we have either S1 −→∗
ι S2 or

S2 −→
∗
ι S1. Assume for contradiction that S2 −→

∗
ι S1.

By induction on Lemma C.31, we have that expressions within a stack frame become monotoni-

cally smaller at each step; thus, a stack frame containing e2 will never contain e1 in a future step. By

Lemma C.30, we will not encounter a stack frame with the same name containing this expression

again in the future. This prevents S2 from stepping to S1, a stack with a strictly larger expression in

the same context. By this contradiction, we conclude S1 −→
∗
ι S2. □
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Finally, we use these properties to demonstrate the relationship between two different environ-

ments appearing in the same stack name of execution but at different clauses (no matter how many

steps or stack frames occur between them).

LemmaC.33. Suppose [⟨[], eglob, ϵ⟩] −→
∗
ι S1 and [⟨[], eglob, ϵ⟩] −→

∗
ι S2 such that S1 = [⟨E1, e1, c1⟩] | | S

′
1

and S2 = [⟨E2, e2, c2⟩] | | S
′
2
. Suppose further that StackName(S ′

1
) = StackName(S ′

2
) and that c1 = Pred(c2).

Then E2 = E1 | |[x 7→ Ûv] such that Cl(x) = c2.

Proof. By Lemma C.32 we have [⟨[], eglob, ϵ⟩] −→
∗
ι S1 −→∗

ι S2. Because c1 = Pred(c2) and by

Lemma C.23, we have that e1 = [c2] | | e2. Note that e1 is non-empty. Using Lemma C.31 by induction

on length of [⟨[], eglob, ϵ⟩] −→
∗
ι S2, we have that each step either does not affect the stack frame

⟨E1, e1, c1⟩ or reduces its expression by one clause to e2 while adding a mapping (x 7→ Ûv) to E1 to
produce E2. (This stack frame cannot be removed because e1 is non-empty, as per Lemma C.31.) □

C.3 Completeness of Reverse Lookup
We are now prepared to prove the completeness of reverse lookup. We begin by giving a definition

of a function called Extract which is designed to retrieve a value from a potentially nested sequence

of environments. The extraction function uses the lookup stacks X of the reverse lookup system

effectively to name the closure in which a particular value appears. This matches helpfully with the

manner in which the reverse lookup system uses the lookup stack to refer to non-local variables

(which are captured in a closure in a forward-running system).

Definition C.34. We denote the extraction of a value from an environment E using a location X
as Extract(E,X ). We define this function as follows:

• If X = [x] then Extract(E,X ) = E(x).
• If X = [x] | |X ′

and E(x) = ⟨f , E ′⟩ then Extract(E,X ) = Extract(E ′,X ′).

We also provide a helpful definition for relating environment values to program values.

Definition C.35. We define RawVal( Ûv) = v as follows:

• RawVal(v) = v
• RawVal(⟨f , E⟩) = f

We begin by proving completeness for the first step of evaluation (to serve as a base case for

induction later). This serves as a simple warm-up to how these systems relates but, more importantly,

addresses several corner cases which will simplify the inductive step below.

Lemma C.36. Suppose [⟨[], eglob, ϵ⟩] −→
1

ι S such that eglob = [c] | | e and c = (x =b). Then S =
[⟨E, e, c⟩] such that, for all Extract(E,X ) = Ûv , we have L(X , c, []) ≡ RawVal( Ûv).

Proof. By case analysis on the rule used in [⟨[], eglob, ϵ⟩] −→
1

ι S . By Lemma C.17, this will be

either the Definition rule or the Input rule.

If the Definition rule is used, then c = (x =v). Then S = [⟨[x 7→ v], e, c⟩]. By Definition C.1, E(x ′)

is defined only when x ′ = x . Note also that E(x) = v andv is not a closure. Thus, by Definition C.34,

Extract(E,X ) is only defined when X = [x]. It therefore suffices to show that L([x], c, []) ≡ v .
Because x = FirstV(eglob), this is true by the Value Discovery rule in Figure 6 and so this case is

finished.

Otherwise, the Input rule is used and so c = (x = input). The argument proceeds exactly as in the

Definition rule case, observing that the assigned value v is an integer (and therefore not a function)

and using the Input rule of Figure 6. □
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To prove the inductive step, we must formally relate the state of a forward-running program

with the properties demonstrated by the reverse lookup system. This relationship must span the

particular gap that reverse lookup is concerned only with one lookup at a time while the operational

semantics maintains entire environments. We establish this as follows:

Definition C.37. A program state S agrees with reverse lookup if, for all S1, S2, X , the conditions

• S = S1 | |[⟨E, e, c⟩] | | S2,
• Extract(E,X ) = Ûv , and
• C = StackName(S2)

imply that L(X , c,C) ≡ RawVal( Ûv).

Note that this property is a generalization of the conclusions of the base case lemma above.

We are now prepared to demonstrate that this property is preserved by evaluation.

Lemma C.38. For any well-formed eglob such that [⟨[], eglob, ϵ⟩] −→
∗
ι S and S agrees with reverse

lookup, if S −→1

ι S
′
then S ′ agrees with reverse lookup.

Proof. By case analysis on the rule used to show S −→1

ι S
′
.

Definition: If the Definition rule is used, then S = [⟨E, [c] | | e ′, c̃⟩] | | S0 where c = (x =v) and
S ′ = [⟨E ′, e ′, c⟩] | | S0 where E

′ = E | |[x 7→ v]. Note by Lemma C.22 that c̃ is some non-ϵ cL . Because
only the top stack frame changes between S and S ′, we only need to show the agreement property of

Definition C.37 for the topmost stack frame. Let C = StackName(S0). We begin by selecting without

loss of generality some X such that Extract(E ′,X ) = Ûv . Either X begins with x or it does not.

Suppose X begins with x . Note that v is not a closure. Therefore by Definition C.34, Ûv = v
and X = [x]. Let x ′ = FirstV(eglob). By Lemma C.18, we have that E(x ′) is defined; therefore,

Extract(E, [x ′]) is defined. Because S agrees with reverse lookup, we have L([x ′], cL,C) ≡ v ′
. By

Lemma C.23, cL = Pred(x), so L([x ′], Pred(x),C) ≡ v ′
. By Definition 3.3, this satisfies First(x, c,C).

Since RawVal( Ûv) = Ûv = v , we have by the Value Discovery rule of Figure 6 that L([x], c,C) ≡

RawVal( Ûv) and this case is finished.

Otherwise, theDefinition rule is used andX does not start withx .We observe that Extract(E ′,X ) =

Ûv = Extract(E,X ) by induction on the height of the proof of Extract(E ′,X ). Next, we observe that,

because S agrees with reverse lookup, we have L(X , cL,C) ≡ RawVal( Ûv). By Lemma C.23, we have

cL = Pred(x) and so L(X , Pred(x),C) ≡ RawVal( Ûv). This is the first premise of the Skip rule; we must

now demonstrate that we can look up x from Cl(x). This proceeds exactly as in the case above

when X starts with x . Therefore, by the Skip rule, L([x], c,C) ≡ RawVal( Ûv) and this case is finished.

Closure: If the Closure rule is used, then S = [⟨E, [c] | | e ′, c̃⟩] | | S0 where c = (x = f ) and S ′ =
[⟨E ′, e ′, c⟩] | | S0 where E

′ = E | |[x 7→ ⟨f , E⟩]. Note by Lemma C.22 that c̃ is some non-ϵ cL . Let
C = StackName(S0). As before, we only need to show the agreement property for the topmost stack

frame. We again select without loss of generality some X such that Extract(E ′,X ) = Ûv; it either
begins with x or it does not.

Suppose X begins with x ; that is, X = [x] | |X ′
. There are two subcases: either X ′ = [] or not.

If X ′ = [], then Ûv = ⟨f , E⟩. We aim to show L([x], c,C) ≡ f ; because RawVal( Ûv) = f , it suffices

to show by the Value Discovery rule of Figure 6 that First(x, Cl(x),C). Let x ′ = FirstV(eglob). We

have from Lemma C.23 that Pred(x) = cL ; as Cl(x ′) has no predecessor, we have x , x ′
and so by

Definition 3.3 it suffices to show that L([x ′], Pred(x),C) ≡ v ′
. By Lemma C.18, we have that E(x ′)

is defined; therefore, Extract(E, [x ′]) is defined. Because S agrees with reverse lookup, we have

L([x ′], Pred(x),C) ≡ v ′
. Thus, by the Value Discovery rule, L([x], c,C) ≡ RawVal( Ûv) and the subcase

of X ′ = [] is finished.

If X ′ , [], then recall that Extract(E ′,X ) = Ûv . By Definition C.34 and because X ′
is non-empty

and E ′(x) = ⟨f , E⟩, we have Extract(E,X ′) = Ûv . S agrees with reverse lookup, so L(X ′, cL,C) ≡
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RawVal( Ûv). Then by the Value Discard rule of Figure 6, we have L(X , c,C) ≡ Ûv and the subcase of

X ′ , [] (and thus the case of X beginning with x ) is finished.
Otherwise, X does not begin with x . This case proceeds exactly as in the Definition case above,

applying the Skip rule and appealing to the fact that other variables’ values have not changed in

this execution step.

Input: If the Input rule is used, then S = [⟨E, [c] | | e ′, c̃⟩] | | S0 where c = (x = input) and S ′ =
[⟨E ′, e ′, c⟩] | | S0 where E

′ = E | |[x 7→ ι(Cx)]. Because ι(Cx) is a non-function value, this case proceeds
exactly as in the Definition case above.

Alias: If the Alias rule is used, then S = [⟨E, [c] | | e ′, c̃⟩] | | S0 where c = (x =x ′) and S ′ =
[⟨E ′, e ′, c⟩] | | S0 where E ′ = E | |[x 7→ E(x ′)]. Note by Lemma C.22 that c̃ is some non-ϵ cL . Let
C = StackName(S0). As above, both stacks share S0 and so it suffices to show the agreement prop-

erty for the topmost stack frame. We again select without loss of generality some X such that

Extract(E ′,X ) = Ûv ; it either begins with x or it does not.

If X = [x] | |X ′
then by Definition C.34 and induction on the height of Extract(E ′,X ) we have

Ûv = Extract(E, [x ′] | |X ′). Because S agrees with reverse lookup, we have L([x ′] | |X ′, cL,C) ≡

RawVal( Ûv). By Lemma C.23, cL = Pred(x). From this and the Alias rule in Figure 6, we conclude

L(X , c,C) ≡ RawVal( Ûv). So in this case, S ′ agrees with reverse lookup.

Otherwise, X does not start with x . The Skip rule applies exactly as in the Definition case above.

Binop: If the Binop rule is used, then S = [⟨E, [c] | | e ′, c̃⟩] | | S0 where c = (x1 =x2 ⊙ x3) and
S ′ = [⟨E ′, e ′, c⟩] | | S0 where E

′ = E | |[x1 7→ Ûv1], Ûv1 = Ûv2 ⊙ Ûv3, E(x2) = Ûv2, and E(x3) = Ûv3. Note by
Lemma C.22 that c̃ is some non-ϵ cL . Let C = StackName(S0). Note also that none of Ûv1, Ûv2, or Ûv3 are
closures as our primitive binary operators do not include closures in their domains or codomains.

Let C = StackName(S0). Both stacks share S0, so it suffices to show the agreement property for the

topmost stack frame.We again select without loss of generality someX such that Extract(E ′,X ) = Ûv ;
it either begins with x or it does not.

Suppose X = [x1] | |X
′
. Because Ûv1 is not a closure, Definition C.34 gives us that X = [x1];

that is, X ′ = []. Because S agrees with reverse lookup, we have L([x2], cL,C) ≡ RawVal( Ûv2) and
L([x3], cL,C) ≡ RawVal( Ûv3). By Lemma C.23, cL = Pred(x). Because Ûv2 and Ûv3 are not closures,

RawVal( Ûv2) = Ûv2 and RawVal( Ûv3) = Ûv3. By the Binop rule of Figure 6, we have L(X , c,C) ≡ Ûv1 and
this case is finished.

Otherwise, X does not begin with x1 and the Skip rule applies as in the Definition case above.

Call: If the Call rule is used, then S = [⟨E, [c] | | e ′, c̃⟩] | | S0 where c = (x1 =x2 x3) and S ′ =
[⟨E ′′, e ′, (fun x4 ->)⟩] | | S where E(x2) = ⟨f , E ′⟩, f = [fun x4 ->] | | e

′
, E(x3) = Ûv , and E ′′ =

E ′ | |[x4 7→ Ûv]. Note by Lemma C.22 that c̃ is some non-ϵ cL . Because S agrees with reverse lookup,

it suffices to show that the agreement property for the new topmost stack frame. We again select

without loss of generality some X such that Extract(E ′′,X ) = Ûv ′
.

Before performing case analysis as above, we will show a general properly necessary for handling

all calls. Recall from above that E(x2) = ⟨f , E ′⟩. By Definition C.34, we have Extract(E, [x2]) =
⟨f , E ′⟩. By the inductive hypothesis, we have that L([x2], Pred(c), StackName(S0)) ≡ f . We now

consider two cases: either X begins with the parameter x4 or it does not.
SupposeX = [x4] | |X

′
. Note thatE(x3) = Ûv = E ′′(x4). By induction on the height of Extract(E

′′,X )

we have Extract(E, [x3] | |X
′) = Ûv ′

. Because S agrees with reverse lookup, we have

L([x3] | |X
′, cL, StackName(S0)) ≡ RawVal( Ûv ′). By Lemma C.23, we have cL = Pred(x) and so by

the Function Enter Parameter rule of Figure 6, we have L(X , c, StackName(S)) ≡ RawVal( Ûv ′). This

demonstrates the agreement property.

Otherwise, X does not start with x4. Let X
′ = [x2] | |X . Because S agrees with reverse lookup and

by Definition C.34, we have L(X ′, cL, StackName(S0)) ≡ RawVal( Ûv ′). By Lemma C.23, we have cL =
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Pred(x) and so by the Function Enter Non-Local rule of Figure 6, we have L(X , c, StackName(S)) ≡
RawVal( Ûv ′). This again demonstrates the agreement property and so this case is complete.

Return: If the Return rule is used, then S = [ς2, ς1] | | S0 where ς2 = ⟨E ′
2
, [], c̃ ′⟩, ς1 = ⟨E1, [c] | | e

′, c̃⟩,
c = (x1 =x2 x3), and E ′

2
= E2 | |[x 7→ Ûv]. Also S ′ = [⟨E ′

1
, e ′, c⟩] | | S0 where E

′
1
= E1 | |[x1 7→ Ûv]. Note

by Lemma C.22 that c̃ is some non-ϵ cL and c̃
′
is some non-ϵ c ′L . Because both stacks share S0, it

is sufficient to show the agreement property for the topmost stack frame in S ′. Without loss of

generality, we select X such that Extract(E ′
1
,X ) = Ûv ′

. Either X begins with x1 or it does not.
SupposeX = [x1] | |X

′
. By induction on the height of Extract(E ′

1
,X )wehave Extract(E ′

2
, [x] | |X ′) =

Ûv ′
. Because S agrees with reverse lookup, we have L([x] | |X ′, c ′L, StackName([ς1] | | S0)) ≡ RawVal( Ûv ′).

By Lemma C.25, we have c ′L = RetCl(f ) where E1(x2) = ⟨f , E ′⟩. This is the first lookup premise of

the Function Exit rule in Figure 6. Because S agrees with reverse lookup, we have

L([x2], cL, StackName(S0)) ≡ f . By Lemma C.23, cL = Pred(x1). These two lookups are the premises of

the Function Exit rule, so we conclude L(X , c, StackName(S0)) ≡ RawVal( Ûv ′) and this case is finished.

Otherwise, X does not begin with x1. Because [ς1] | | S0 agrees with reverse lookup, this case

proceeds by using the Skip rule as in the Definition case above.

Conditional Start: If the Conditional Start rule is used, then S = [⟨E, [c] | | e, c̃⟩] | | S ′ where
c = (x1 =x2 ? etrue : efalse) and S ′ = [⟨E, e ′, c ′⟩] | | S where c ′ = (x1 ! β) and E(x2) = β . Note
by Lemma C.22 that c̃ is some non-ϵ cL . Because S agrees with reverse lookup, it suffices to show

that the agreement property for the new topmost stack frame. We again select without loss of

generality some X such that Extract(E,X ) = Ûv .
Because Extract(E,X ) = Ûv and S agrees with reverse lookup, we have L(X , cL,C) ≡ RawVal( Ûv).

By Lemma C.23, we have cL = Pred(c) and so L(X , Pred(c),C) ≡ RawVal( Ûv). Because E(x2) = β
we have by Definition C.34 that Extract(E, β) and so, as S agrees with reverse lookup, we have

L(X , Pred(c),C) ≡ β . These two lookups satisfy the premises of the Conditional Top rule of Figure 6,

so we conclude L(X , c ′,C) ≡ RawVal( Ûv) and this case is finished.

Conditional End: If the Conditional End rule is used, then S = [ς2, ς1] | | S0 where ς2 = ⟨E2, [], c̃
′⟩,

E2 = E ′
2
| |[x 7→ Ûv], ς1 = ⟨E ′

1
, [c] | | e, c̃⟩, and c = x1 =x2 ? etrue : efalse. Further, S

′ = [⟨E1, e, c⟩] | | S0
where E1 = E ′

1
| |[x1 7→ Ûv]. Let C = StackName(S0) and note by Definition C.14 that

C = StackName([ς1] | | S0). Note also that, by Lemma C.22, c̃ is some non-ϵ cL and c̃
′
is some non-ϵ

c ′L . As before, we select without loss of generality some X such that Extract(E1,X ) = Ûv ′
. We have

two cases: either X begins with x1 or it does not.
Suppose X = [x1] | |X

′′
. By induction on the height of the proof of Extract(E1,X = Ûv ′), we

have Extract(E1,X ) = Ûv ′ = Extract(E2, [x] | |X
′). Because S agrees with reverse lookup, we have

L([x] | |X ′, c ′L,C) ≡ Ûv ′
. By Lemma C.26 we have that E ′

1
(x2) = β for some β and that RetCl(eβ ) = c

′
L .

Because S agrees with reverse lookup, we have L([x2], cL,C) ≡ β . By Lemma C.23, we have

cL = Pred(x1) and so L([x2], Pred(x1),C) ≡ β . These lookups are the premises of the Conditional

Bottom rule of Figure 6, so we conclude L([x1] | |X
′′, c,C) ≡ RawVal( Ûv ′) and this case is finished.

Otherwise, X does not begin with x1. Because [ς1] | | S0 agrees with reverse lookup, this case

proceeds by using the Skip rule as in the Definition case above. □

Finally, we can assemble the two lemmas above to show the completeness of reverse lookup

with respect to the operational semantics.

Lemma C.39 Strong Completeness. For any well-formed eglob, if [⟨[], eglob, ϵ⟩] −→
∗
ι S then S

agrees with reverse lookup.

Proof. By induction on the size of the proof of forward evaluation. Lemma C.36 proves the base

case (for a single step of evaluation); Lemma C.38 proves the inductive step. □
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C.4 Soundness of Reverse Lookup
We now show the soundness of reverse lookup with respect to the operational semantics. The

key difference between this proof and the completeness proof is our need to merge multiple

instantiations of the inductive hypothesis. As we consider the proof tree of reverse lookup, we

discover several different runs of the forward operational semantics and, in each run, we have

some set of facts about the environments or expressions in the stack. We use the properties of

determinism discussed above to show that this information transfers between runs, allowing us to

demonstrate that the various lookups in the premises of the rules in Figure 6 apply to the same

forward execution of the program.

Lemma C.40. For some well-formed eglob, suppose L(X , c,C) ≡ v . Then [⟨[], eglob, ϵ⟩] −→
∗
ι S such

that S = [⟨E, e, c⟩] | | S ′ and StackName(S ′) = C and also RawVal(Extract(E,X )) = v .

Proof. By induction on the size of the proof of L(X , c,C) ≡ v and then by case analysis on the

rule used.

Value Discovery: If the Value Discovery rule is used, then X = [x], c = (x =v), and First(x, c,C).
We have two cases: either x = FirstV(eglob) or not.

If x = FirstV(eglob) then First(x, c,C) gives that C = []. Note that eglob is well-formed and so v is

not a function. By the Definition rule of Figure 16, we know [⟨[], eglob, ϵ⟩] −→
1

ι [⟨E, e, c⟩] where
E = [x 7→ v] and eglob = [c] | | e . So, by Definition C.15, this subcase is finished.

Otherwise, x , FirstV(eglob) and so First(x, c,C) implies that L([FirstV(eglob)], Pred(c),C) ≡ v ′
. By

the inductive hypothesis, we have that [⟨[], eglob, ϵ⟩] −→
∗
ι S0 such that S0 = [⟨E0, e0, Pred(c)⟩] | | S

′
0

where StackName(S ′
0
) = C . By Lemma C.23 we have e0 = [c] | | e .

We have two cases: eitherv is a function or it is not. Ifv is a function, the Closure rule of Figure 16

applies; otherwise, the Definition rule applies. In both cases, have that S0 −→
1 [⟨E, e, c⟩] | | S ′

0
where

E = E0 | |[x 7→ Ûv] such that RawVal( Ûv) = v . Note that RawVal(Extract(E, [x])) = v . We let S ′ = S ′
0

and, by Definition C.15, this case is finished.

Input: If the Input rule is used, then X = [x], c = (x = input), ι(Cx) = v , and First(x, c,C). This
case proceeds exactly as in the Value Discovery case with a non-function v .

Value Discard: If the ValueDiscard rule is used, thenX = [x] | |X ′
, c = (x = f ), andL(X ′, Pred(x),C) ≡

v . By the inductive hypothesis, we have [⟨[], eglob, ϵ⟩] −→
∗
ι S0 such that S0 = [⟨E0, e0, Pred(x)⟩] | | S

′
0

and StackName(S ′
0
) = C and RawVal(Extract(E0,X

′)) = v . By Lemma C.23 we have e0 = [c] | | e . The
Closure rule of Figure 16 applies: S0 −→

1

ι [⟨E, e, c⟩] | | S
′
0
such that E = E0 | |[x 7→ ⟨f , E0⟩]. We let

S ′ = S ′
0
so that StackName(S ′) = C .

It remains to show that RawVal(Extract(E,X )) = v . By Definition C.35 and because E(x) = ⟨f , E0⟩,
we have Extract(E,X ) = Extract(E0,X

′). As we have RawVal(Extract(E0,X
′)) = v from above, this

case is finished.

Alias: If the Alias rule is used, then X = [x] | |X ′
, c = (x =x ′), and L([x ′] | |X ′, Pred(x),C) ≡. By

the inductive hypothesis, we have [⟨[], eglob, ϵ⟩] −→
∗
ι S0 such that S0 = [⟨E0, e0, Pred(x)⟩] | | S

′
0
and

StackName(S ′
0
) = C and RawVal(Extract(E0, [x

′] | |X ′)) = v . By Lemma C.23 we have e0 = [c] | | e . The
Alias rule of Figure 16 applies: S0 −→

1

ι [⟨E, e, c⟩] | | S
′
0
such that E = E0 | |[x 7→ Ûv] where Ûv = E(x ′).

We let S ′ = S ′
0
so that StackName(S ′) = C . By induction on the height of Extract(E0, [x

′] | |X ′), we

have that Extract(E, [x] | |X ′). We let S ′ = S ′
0
(so that StackName(S ′) = C) and this case is finished.

Binop: If the Binop rule is used, then X = [x1], c = (x1 =x2 ⊙ x3), L([x2], Pred(x1),C) ≡ v2,
L([x2], Pred(x1),C) ≡ v3, andv1 = v2⊙v3. By the inductive hypothesis, we have that [⟨[], eglob, ϵ⟩] −→

∗
ι

S0 such that S0 = [⟨E0, e0, Pred(c
′)⟩] | | S ′

0
and StackName(S ′

0
) = C ′

and RawVal(Extract(E0, [x2])) = v2.
By the inductive hypothesis and by Lemma C.30, we also have that RawVal(Extract(E0, [x3])) = v3.
By Lemma C.23 we have e0 = [c] | | e .
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Becausev1,v2, andv3 are in the domain of a binary operator, none of them are functions; thus, by

Definition C.34 we have E0(x2) = v2 and E0(x3) = v3. The Binop rule of Figure 16 applies. Let E =
E0 | |[x1 7→ v1], let S

′ = S ′
0
, and note that RawVal(Extract(E1, [x1])) = Extract(E1, [x1]) = E1(x1) = v1.

This case is therefore complete.

Function Enter Parameter: If the Function Enter Parameter rule is used, then X = [x] | |X ′
,

c = (fun x ->), and C = [c ′] | |C ′
where c ′ = (x1 =x2 x3), L([x3] | |X

′, Pred(c ′),C ′) ≡ v , and
L([x2], Pred(c

′),C ′) ≡ f . Further, we have f = [c] | | e . By the inductive hypothesis, we have

[⟨[], eglob, ϵ⟩] −→
∗
ι S0 such that S0 = [⟨E0, e0, Pred(c

′)⟩] | | S ′
0
and StackName(S ′

0
) = C ′

and

RawVal(Extract(E0, [x3] | |X
′)) = v . By Lemma C.23 we have e0 = [c ′] | | e . By the inductive hypothe-

sis and Lemma C.30, we also have RawVal(Extract(E0, [x2])) = f . So by Definition C.34, we have

E0(x2) = ⟨f , E ′⟩.

The Call rule of Figure 16 applies. Let E = E ′ | |[x 7→ E0(x3)] and let S
′ = S0. Note that, as c

′
is a call

site, StackName(S ′) = [c ′] | | StackName(S ′
0
) = C; note also that Extract(E,X ) = Extract(E0, [x3] | |X

′),

so RawVal(Extract(E,X )) = v . This case is therefore complete.

Function Enter Non-Local: If the Function Enter Non-Local rule is used, then X = [x] | |X ′
, c =

(fun x ′′ ->), andC = [c ′] | |C for x ′′ , x where c ′ = (x1 =x2 x3) and L([x2, x] | |X
′, Pred(c ′),C ′) ≡ v .

By the inductive hypothesis, we have [⟨[], eglob, ϵ⟩] −→
∗
ι S0 such that S0 = [⟨E0, e0, Pred(c

′)⟩] | | S ′
0

and StackName(S ′
0
) = C ′

and RawVal(Extract(E0, [x2, x] | |X
′)) = v . By Lemma C.23 we have e0 =

[c ′] | | e . By the inductive hypothesis and by LemmaC.30, we also have that RawVal(Extract(E0, [x2])) =
f where f = [fun x ′′ ->] | | e . By Definition C.34, we have E0(x2) = ⟨f , E ′⟩. By Lemma C.20, because

x3 appears free in e0 we have that E0(x3) = Ûv ′
.

The Call rule of Figure 16 applies. Let E = E ′ | |[x ′′ 7→ E0(x3)] and let S ′ = S0. Note that, as c
′
is a

call site, StackName(S ′) = [c ′] | | StackName(S ′
0
) = C . It remains to show that RawVal(Extract(E,X )) =

Ûv .
Recall from above that RawVal(Extract(E0, [x2, x] | |X

′)) = v . Because X = [x] | |X ′
, we have

RawVal(Extract(E0, [x2] | |X )) = v . By Definition C.34 and because E0(x2) = ⟨f , E ′⟩, we have

RawVal(Extract(E ′,X )) = v . Because x , x ′′
and by induction on the height of Extract(E ′,X ),

we have RawVal(Extract(E,X )) = v and this case is finished.

Function Exit: If the Function Exit rule is used then X = [x] | |X ′
, c = (x1 =x2 x3),

L([x ′] | |X ′, c ′, [c] | |C) ≡ v , and L([x2], Pred(c),C) ≡ f where f = [fun x ′′ ->] | | e and RetCl(e) =
c ′ = (x ′ =b). By the inductive hypothesis (on the former lookup), we have [⟨[], eglob, ϵ⟩] −→

∗
ι S1

such that S1 = [⟨E1, e1, c
′⟩] | | S2 and StackName(S2) = [c] | |C and RawVal(Extract(E1, [x

′] | |X ′)) = v .
By Lemma C.24, c ′ cannot be the predecessor for any clause because c ′ = RetCl(f ). Therefore by
Lemma C.23 we have e = [] and by Lemma C.27 we have S2 = [⟨E2, [c] | | e2, c

′′⟩] | | S3. Note that
StackName(S3) = C .

The Return rule of Figure 16 applies. Let E = E2 | |[x1 7→ E1(x
′)] and let S ′ = S3. By Definition C.34,

we have RawVal(Extract(E,X )) = v by induction on the height of the proof of Extract(E1, [x
′] | |X ′)

and so this case is finished.

Skip: If the Skip rule is used, then X = [x] | |X ′
, c = (x ′′ =b), x , x ′′

, L(X , Pred(x ′′),C) ≡ v , and
L([x ′′], c,C) ≡ v0. By the inductive hypothesis (on the latter lookup), we have [⟨[], eglob, ϵ⟩] −→

∗
ι S

such that S = [⟨E, e, c⟩] | | S ′ and StackName(S ′) = C . By the inductive hypothesis (on the former

lookup), we have [⟨[], eglob, ϵ⟩] −→
∗
ι S

′′
such that S ′′ = [⟨E ′, e ′, Pred(c)⟩] | | S ′′′, StackName(S ′′) = C ,

and RawVal(Extract(E ′,X )) = v . By Lemma C.33, we have that E = E ′ | |[x ′′ 7→ v ′], so by induction

on the proof of Extract(E ′,X ) we have RawVal(Extract(E,X )) = v . This case is therefore complete.

Conditional Top: If the Conditional Top rule is used, then c = x1 ! β , Cl(x1) = (x1 =x2 ? etrue : efalse),
L([x2], Pred(x1),C) ≡ β , and L(X , Pred(x1),C) ≡ v . By the inductive hypothesis, we have

[⟨[], eglob, ϵ⟩] −→
∗
ι S0 such that S0 = [⟨E0, e0, Pred(x1)⟩] | | S

′
0
and StackName(S ′

0
) = C and
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RawVal(Extract(E0,X )) = v . By Lemma C.30 and the inductive hypothesis, we have

RawVal(Extract(E0, [x1])) = β and so, by Definitions C.35 and C.34, we have E0(x1) = β .
The Conditional Start rule of Figure 16 applies. We let E = E0 and let S ′ = S0. Note that by

Definition C.14 we have StackName(S ′) = StackName(S ′
0
) = C because Cl(x1) is not an application

clause. Note also that RawVal(Extract(E,X )) = RawVal(Extract(E0,X )) = v , so this case is finished.

Conditional Bottom: If the Conditional Bottom rule is used, then X = [x1] | |X
′
,

c = (x1 =x2 ? etrue : efalse), L([x2], Pred(x1),C) ≡ β , RetCl(eβ ) = Cl(x ′) for some x ′
, and

L([x ′] | |X , Cl(x ′),C) ≡ v . By the inductive hypothesis on the latter lookup, we have [⟨[], eglob, ϵ⟩] −→
∗
ι

S0 such that S0 = [⟨E0, e0, Cl(x
′)⟩] | | S ′

0
and StackName(S ′

0
) = C ′

and RawVal(Extract(E0, [x
′] | |X ′)) =

v . By Lemma C.24, there is no predecessor of Cl(x ′); thus, by Lemma C.23, we have e0 = [].

By Lemma C.28, we have S ′
0
= [⟨E ′

0
, e ′

0
, c ′

0
⟩] | | S ′′

0
where e ′

0
= [c] | | e ′′

0
and E ′

0
(x2) = β . Note that

StackName(S ′
0
) = StackName(S ′′

0
) = C and that, by Lemma C.23, we have c ′

0
= Pred(c).

The Conditional End rule of Figure 16 applies. We let E = E ′
0
| |[x1 =E0(x

′)] and let S ′ = S ′′
0
.

By Definition C.34 we have by induction on the height of RawVal(Extract(E0, [x
′] | |X ′)) = v that

RawVal(Extract(E,X )) = v and so this case is finished. □

C.5 Correctness of Reverse Lookup
At last, we can assemble the soundness and completeness into a single result which achieves the

goal of this appendix.

Theorem C.41. For any well-formed eglob and any input map ι, [⟨[], eglob, ϵ⟩] −→
1

ι [⟨E, e
′, c⟩] | | S

if and only if L([FirstV(eglob)], c,C) ≡ v for some v .

Proof. By Lemmas C.39 and C.40, specializing to the lookup stack X = [FirstV(eglob)]. □
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