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‘Age of Music Proliferation’ 
More Consumers 

–  110 Million Apple iPods sold worldwide 

•  40,000 Songs on a 160 GB handheld device 

–  7 Million Users on Pandora 

–  700K daily Facebook iLike users  

More Producers 

–  12 Millon Songs indexed by AMG All Music 

–  100,000 Artist have uploaded free MP3s to LastFM 

–  1 million downloads per month of Audacity 

•  Free Music Editing Software   

How do we connect music producers with consumers?    
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How do we find music? 

•  Query-by-Metadata - artist, song, album, year 

–  We must know what we want 

•  Query-by-(Humming, Tapping, Beatboxing) 

–  Requires talent 

•  Query-by-Song-Similarity 

–  Collaborative Filtering, Acoustic Similarity 

–  Lacks interpretablilty 

•  Query-by-Semantic-Description 

–  Google seems to work pretty well for text 

–  Semantic Image Labeling is a hot topic in Computer Vision 

–  Can it work for music? 
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Semantic Music Annotation and Retrieval 

Our goal is build a system that can 

1.   Annotate a song with meaningful tags 

2.   Retrieve songs given a text-based query 

Plan: Learn a probabilistic model that captures a 
relationship between audio content and tags.  

Retrieval 

‘Jazz’ 
‘Male Vocals’ 

‘Sad’ 
‘Mellow’ 

‘Slow Tempo’ 

Annotation Frank Sinatra 
‘Fly Me to the Moon’ 
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Collecting an Annotated Music Corpus 

1.  Text-mining web documents 
•  2,100 song reviews from AMG All Music 

•  Extracted a vocab of 317 words 
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Collecting an Annotated Music Corpus 

1.  Text-mining web documents 

  Cheap, tons of data 

X  Noisy, opinionated, unnatural disconnect  
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Collecting an Annotated Music Corpus 

1.  Text-mining web documents 

2.  Conducting a survey 
•  174-tag hierarchical vocab - genre, emotion, usage, … 

•  Paid 55 undergrads to annotate music for 120 hours 

•  CAL500: 500 songs annotated by a minimum of 3 people 
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Collecting an Annotated Music Corpus 

1.  Text-mining web documents 

2.  Conducting a survey 

  Reliable, Precise, Tailored to Application 

X  Expensive, Laborious, Not Scalable 
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Collecting an Annotated Music Corpus 

1.  Text-mining web documents 

2.  Conducting a survey 

3.  Deploying a ‘Human-Computation’ game 
•  Web-based, multi-player game with real-time interaction 

•  ESPGame by Luis Von Ahn 

•  Listen Game [ISMIR 07] 
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Collecting an Annotated Music Corpus 

We have explored three techniques 

1.  Text-mining web documents 

2.  Conducting a survey 

3.  Deploying a ‘Human-Computation’ game 

  Cheap, Scalable, Precise, Personalized 

X  Need to create a viral user experience 
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Semantic Representation: y 

Choose vocabulary of ‘musically relevant’ tags 

–  Instruments, Genre, Emotion, Rhythm, Energy, Vocal, Usages 

Each annotation is converted to a real-valued vector 
–  ‘Semantic association’ between a tag and the song. 

Example: Frank Sinatra’s “Fly Me to the Moon” 

Vocab  = {funk, jazz, guitar, female vocals, sad, passionate} 

y   = [0/4 , 3/4, 4/4 , 0/4 , 2/4, 1/4] 
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Acoustic Representation: X 
Each song is represented as a bag-of-feature-vectors 

–  Pass a short time window over the audio signal 

–  Extract a feature vector for each short-time audio segment 

–  Ignore temporal relationships of time series 

X =  ,  . . .  , xt x3 , x1 , x2 
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Audio Features 

We calculate MFCC+Deltas feature vectors 
–  Mel-frequency Cepstral Coefficients (MFCC) 

•  Low dimensional representation short-term spectrum 

•  Popular for both representing speech, music, and sound effects 

–  Instantaneous derivatives (deltas) encode short-time 
temporal info 

–  5,200 39-dimensional vectors per minute 

Numerous other audio representations 

–  Spectral features, modulation spectra, chromagrams, …  
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Statistical Model 

Supervised Multi-class Labeling model 
–  Set of probability distributions over the audio feature space  

–  One Gaussian Mixture Model (GMM) per tag - p(x|t) 

–  Key Idea: Estimate parameters for GMM using the set of 
training songs that are positively associated with the tag 

Notes: 
–  Developed for image annotation 

–  Scalable and Parallelizable  

–  Modified for real-value semantic weights rather than binary 
class labels 

–  Extended formulation to handle multi-tag queries  
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Modeling a Song   
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Algorithm 
1.  Segment audio signals 

2.  Extract short-time feature vectors 

3.  Estimate GMM 

•  expectation maximization algorithm 
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Modeling a Tag 
Algorithm: 

1.  Identify songs associated with tag t 
2.  Estimate a ‘song GMM’ for each song - p(x|s) 
3.  Use the Mixture Hierarchies EM algorithm [Vasconcelos01] 

•  Learn a ‘mixture of mixture components’  

Benefits 
+ Computationally efficient for parameter estimation and inference 
+ ‘Smoothed’ song representation → better density estimate  

romantic 

Tag Model Mixture 
Hierarchies  

EM 

p(x|w) 

Standard  
EM 

romantic 
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Assuming 

 1. Uniform word prior P(t) 
 2. Vectors are conditionally independent given a tag 

 3. Geometric average of  likelihoods  

Given a novel song X = {x1, …, xT}, calculate the probability 

of each tag given the song: 

Annotation 

Semantic Multinomial: 
•  Conditional probabilities, P(t|X), defines multinomial over the 
vocabulary 

Annotation: pick peaks of  the semantic multinomial 
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Annotation 

Semantic Multinomial for “Give it Away” by the Red Hot Chili Peppers 
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Annotation: Automatic Music Reviews 

Dr. Dre (feat. Snoop Dogg) - Nuthin' but a 'G' thang 
This is a dance poppy, hip-hop song that is arousing and exciting. It 

features drum machine, backing vocals, male vocal, a nice acoustic 
guitar solo, and rapping, strong vocals. It is a song that is very 
danceable and with a heavy beat that you might like listen to while at 
a party. 

Frank Sinatra - Fly me to the moon 

This is a jazzy, singer / songwriter song that is calming and sad. It 
features acoustic guitar, piano, saxophone, a nice male vocal solo, 
and emotional, high-pitched vocals. It is a song with a light beat and 
a slow tempo that you might like listen to while hanging with friends.  
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Retrieval 
1.  Annotate each song in corpus with a semantic multinomial p 

•  p = {P(t1|X), …, P(t|V||X)} 

2.  Given a text-based query, construct a query multinomial q 

•  qi = 1/|t| , if tag t appears in the query string 

•  qi = 0, otherwise 

3.  Rank all songs by the Kullback-Leibler (KL) divergence 



39 

Retrieval 

The top 3 semantic multinomials for the query “‘pop’, 
‘female lead vocals’, ‘tender’”  
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Retrieval: Query-by-Semantic-Description 

‘Tender’ Crosby, Stills and Nash - Guinevere 
Jewel - Enter from the East 
Art Tatum - Willow Weep for Me 
John Lennon - Imagine 
Tom Waits - Time 

‘Female Vocals’ Alicia Keys - Fallin’ 
Shakira - The One 
Christina Aguilera - Genie in a Bottle 
Junior Murvin - Police and Thieves 
Britney Spears - I'm a Slave 4 U 

‘Tender’ 

AND 

‘Female Vocals’ 

Jewel - Enter from the East  
Evanescence - My Immortal  
Cowboy Junkies - Postcard Blues  
Everly Brothers - Take a Message to Mary  
Sheryl Crow - I Shall Believe 

Query Retrieved Songs 



41 

Digression: Music Similarity 

Query-by-semantic-similarity [ICASSP 07] 

–  KL divergence between 2 semantic multinomials 

–  3rd Place in 2007 MIREX Similarity Task 

•  No statistical difference between top 4 teams 

Advantages: 

1.  Semantically Interpretable Comparisons 

•  What makes two songs similar? 

2.  Heterogeneous queries 

•  “Find me ‘sad’ songs that are like ‘Hey Jude’ ”  



42 

System Overview 

Parameter 
Estimation: 
EM Algorithm 

T 
T 

Annotation 

Training Data 

Data 

Audio-Feature 
Extraction (X) 

Vocabulary 

Annotation Vectors (y) 

Features 

Parametric Model: 
one GMM per tag 

Modeling 

Evaluation 

Evaluation 

Inference 

Music 
Review 

Novel Song 

(annotation) 

Text  
Query (retrieval) 



43 

Quantifying Annotation 

Our system annotates the Cal-500 songs with 10 tags from 
our 174-tag vocabulary. 

–  ‘Consensus Annotation’ Ground Truth 

Metric: ‘Tag’ Precision & Recall 

Mean Tag Recall and Tag Precision are the averages over 
all tags in our vocabulary. 

Precision  = 
# songs correctly annotated with t  

 # songs annotated with t 

# songs correctly annotated with t 

# songs that should have been annotated t 
Recall = 
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Quantifying Annotation 

Our system annotates the Cal-500 songs with 10 tags from 
our 174-tag vocabulary. 

Method Precision Recall 

Random 0.14 0.06 

Upper Bound 0.71 0.38 

Our System 0.27 0.16 

Human 0.30 0.15 

Compared with a human, our model is  

•  worse on objective categories - instrumentation, genre 

•  about the same on subjective categories - emotion, usage  
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AROC = 5/6 

Quantifying Retrieval 

Rank order test set songs 
–  KL between a query multinomial and semantic multinomials 
–  1-, 2-, 3-word queries with 5 or more examples 

Metric: Area under the ROC Curve (AROC) 

Mean AROC is the average AROC over a large number of  queries. 

Rank Label TP FP 

1 

2 

3 

4 

5 0 

1 

1 
False Positive Rate 

True Positive Rate 

R 

- 

R 

- 

- 

1/2 0 

1/2 1/3 

1 1/3 

1 2/3 

1 1 

Rank by ‘Romantic’ 
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Quantifying Retrieval 

We rank order song according to songs once for each 
query. 

Model AROC 

Random 0.50 

Upper Bound 1.00 

Our System - 1 Tag 0.71 

Our System - 2 Tags 0.72 

Our System - 3 Tags 0.73 
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CAL Music Search Engine  



The BIG picture 

DATABASE 

annotation 
data 

Music Fans 

GAMES SEARCH & 
DISCOVERY 

annotations 
power search  

COMPUTER 
AUDITION 

T T 
CA system learns to 
annotate new songs 

search influences 
game design 
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What’s on tap… 

Research Challenges 
1.  Explore song similarity 

•  Query-by-semantic-example - ICASSP 07, MIREX 07  

2.  Model correlation between tags 

3.  Explore discriminative approaches 

4.  Combine heterogeneous data sources 
•  Game Data, Semantic Tags, Web Documents, Popularity Info 

5.  Focus on individuals / groups rather than population 
•  Emotional state of listener 
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“Talking about music is like dancing 
about architecture” 

      - origins unknown 

Douglas Turnbull 
Computer Audition Lab 

UC San Diego 

dturnbul@cs.ucsd.edu 
cs.ucsd.edu/~dturnbul 



52 

References 

Semantic Annotation and Retrieval  [SIGIR 07, IEEE TASLP 08] 

Music Annotation Games [ISMIR 07] 

Query-by-Semantic-Similarity [ICASSP 07, MIREX 07] 

Tag Vocabulary Selection [ISMIR 07] 

–  Sparse Canonical Correlation Analysis 

Work-in-Progress: 

1.  (More) Social Music Annotation Games 

2.  Combining Tags from Multiple Sources 

3.  Music Similarity with Semantics 
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What’s up next… 

Building ‘Commercial Grade’ system 
1.  Collecting data 

•  ‘Legally’ collecting music 

•  Herd It Game - [ISMIR 07] 

2.  Vocabulary expansion  
•  LastFM - 25,000 tags 

•  Vocab selection using Sparse CCA - [ISMIR 07] 

•  Web Documents - All words   

3.  User interface design 
•  Natural language music search engine  

•  Customizable radio player 

4.  Automated ‘Large Scale’ System 
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Gaussian Mixture Model (GMM) 

A GMM is used to model probability distributions 
over high dimensional spaces: 

A GMM is a weighted combo of  R Gaussian distributions  

•  πr is the r-th mixing weight  

•  µr is the r-th mean  

•  Σr is the r-th covariance matrix  

These parameters are usually estimated using a ‘standard’ 
Expectation Maximization (EM) algorithm. 
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Three approaches for estimating p(x|w) 
1. Direct Estimation 

1.  Identify songs associated with w 

2.  Union of feature vectors for these songs 
3.  Estimate GMM using ‘standard’ EM 

Problem: Direct Estimation is computationally difficult and 
empirically converges to poor local optima. 

Word Model 

p(x|w) 

Standard  
EM 

romantic 

Union  
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2. Model Averaging Estimation 
1.  Identify songs associated with w 
2.  Estimate a ‘song GMM’ for each song - p(x|s)  
3.  Use all mixture components from ‘song GMMs’ 

Problem: As the training set size grows, evaluating this 
distribution becomes prohibitively expensive. 

Three approaches for estimating p(x|w) 

romantic 

Standard  
EM 

Word Model Model 
Averaging 

p(x|w) 

romantic 
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A biased view of Music Classification 

2000-03: Music classification (by genre, emotion, instrumentation) 
becomes a popular MIR task 
–  Undergrad Thesis on Genre Classification with G. Tzanetakis  

2003-04: MIR community starts to criticize music classification 
problems 
–  ill-posed problem due to subjectivity 
–  not an end in itself 
–  performance ‘glass ceiling’   

2004-06: Focus turns to Music Similarity research 
–  Recommendation 
–  Playlist generation 

2006-07: We view Music Annotation as a supervised multi-class 
labeling problem 
–  Like classification but with large, less-restrictive vocabulary   
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Acoustic Representation 

Calculating Delta MFCC feature vectors 
–  Calculate a time-series for 13 MFCCs 
–  Append 1st and 2nd instantaneous derivatives 
–  5,200 39-dimensional feature vectors per minute of audio content 
–  Denoted by X = {x1,…, xT} where T depends on the length of the song 

Short-Time  
Fourier Transform 

Time Series of MFCCs 

Reconstructed based on MFCCs  
(log frequency) 
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Quantifying Retrieval 

We rank order test set songs according to KL divergence between a 
query multinomial and the semantic multinomials. 

–  1-, 2-, 3-word queries with 5 or more examples 

Metric: Area under the ROC Curve (AROC) 

–  An ROC curve is a plot of the true positive rate as a function of 
the false positive rate as we move down this ranked list of 
songs. 

–  Integrating the curve gives us a scalar between 0 and 1 where 
0.5 is the expected value when randomly guessing. 

Mean AROC is the average AROC over a large number of queries. 
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Listen Game Demo 
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