Music has structure

Consider the structure of a pop/rock song:

- Musical Segments
 - Introduction, Bridges, Verses, Choruses, Outro
- Musical Boundary
 - between two musical segments
 - e.g., the end of a verse and the beginning of a chorus

Automatic Music Segmentation

Our goal is to automatically segment music:

- 1. Represent a song as a digital signal
- 2. Extract useful features from that signal
- 3. Automatically detect 'musical boundaries'

Purpose

- 1. More efficiently scan through songs
 - Smart Music Kiosk [Goto06]
- 2. Generate better musical thumbnails

- 3. Develop novel music information retrieval applications.
 - Temporal dynamics of music
 - Structural comparison

Related Work

Two Approaches:

- 1. Self-Similarity: identify similar audio content within a song
 - Traditional Approach
 - Unsupervised Approach
 - 1. Cluster short-term features of a song [Abdallah 06, Lu 04]
 - 2. Find repetitions within a song [Goto 06, Foote 02,...]
- 2. Edge Detection: find 'changes' in the audio content
 - Difference Features designed to reflect acoustic changes
 - Supervised Approach
 - learn a model for musical boundaries using human segmentations
 - User defines 'boundary' through the training data

Outline

- Difference Features
- Supervised Music Boundary Detection
 - Feature Generation
 - Boosted Decision Stumps
- Concluding Remarks

Outline

- Difference Features
- Supervised Music Boundary Detection
 - Feature Generation
 - Boosted Decision Stumps
- Concluding Remarks

Difference Features

Auditory cues indicate the end of one segment and the beginning of the next segment.

These cues are related to high-level musical notions:

- 1. Timbre new instrumentation
- 2. Harmony key change
- 3. Melody decreased intensity in the singers voice
- 4. Rhythm drum fill

We will design 'difference features' that attempt to model these cues.

Difference Features

- 1. Using two adjacent windows
 - 'Past' & 'Future' Windows
- 2. Calculate a feature within each window
 - Scalar: RMS or BPM
 - Matrix: Fluctuation Pattern
 - Time Series: MFCC or Chroma
- 3. Calculate dissimilarity between features in each window
 - Scalar, Matrix: → Euclidean distance
 - Time series: → KL divergence between distributions of samples

Difference Features

Slide adjacent windows over a song to generate a time series of difference features

- Hop Size = resolution of boundary detection
- Peaks represent changes in the audio content

Outline

- Difference Features
- Supervised Music Boundary Detection
 - Feature Generation
 - Boosted Decision Stumps
- Concluding Remarks

Feature Generation

1. Start with 52 time series

- 37 difference features, 15 additional features
- Each feature is a time series with a sampling rate of 0.1 seconds

2. Normalize each time series

Time series now is now mean = 0, and variance = 1

3. Generate multiple smoothed versions

1.6 sec, 6.4 sec, 25.6 sec Gaussian kernels.

4. Calculate 1st and 2nd derivatives

include absolute value of derivatives

The result is a set of 780 time series

- 52 features x 3 smoothings x 5 derivatives
- Each sample is represented by a 780-dimensional feature vector

Training Data

Supervised Framework

We extract hundreds of 780-dimensional feature vectors per song for 100 human-segmented songs.

- 600 vectors per minute of audio content
- Positive Examples: 7-15 vectors per song will be labeled as 'boundary' vectors
- Negative Examples: randomly picked vectors far from boundaries

We learn a boosted decision stump (BDS) classifier.

- Popular classifier for object boundary detection in images [Dollar et al. 06, Viola & Jones 02].
- Powerful discriminative classifier based on Adaboost algorithm [Freund 95]
- Useful for efficient and effective feature selection

Boosted Decision Stump (BDS) Classifier

Decision Stump: a simple classifier that predicts one class if the value of an individual feature is above a threshold.

Boosted Decision Stumps: an ensemble of decision stumps and associated weights.

- Learning: The decision stump (feature and threshold) that reduces the training set error is added to the growing ensemble at each iteration of the algorithm.
- The weight given to the decision stump is determined by the boosting algorithm (e.g., AdaBoost).
- Inference: The prediction is based on a weighted 'voted' from the ensemble.

Feature Selection: The order in which features are added to the ensemble can be interpreted as ranking of features.

Evaluation - Hit Rate

Output of BDS Classifier is a time series of scores

- Score reflects confidence of sample being a 'boundary'
- Boundary Estimates: smooth time series, pick the 10 highest peaks

Hit Rate: estimate is within a half second of a true boundary

Precision: % of estimates hit a true boundary

Recall: % boundaries are hit by estimates

F: harmonic average

Framework	Classifier	Precision	Recall	F
Baseline	Uniform Placement	0.04	0.05	0.04
Unsupervised	Peak Picking (MFCC-Diff)	0.26	0.36	0.30
Supervised	BDS	0.33	0.46	0.38

Evaluation - Directional Hamming Distance

Directional Hamming Distance (F-score):

- 'goodness of overlap' between two segmentations
- Between 0 and 1, 1 being perfect

Framework	Framework Classifier	
Baseline	Uniform Placement	0.71
Unsupervised Peak Picking (MFCC-Diff)		0.80
Supervised	BDS	0.82

- Rhodes et. al report DHD-F of 0.78 on a set of 14 songs using a unsupervised spectral clustering approach [ICASSP 06]
 - · Hard to compare on different corpus with different segmentations

Outline

- Difference Features
- Supervised Music Boundary Detection
 - Feature Generation
 - Boosted Decision Stumps
- Concluding Remarks

Summary

- 1. Difference features attempt to model acoustic cues that indicate boundaries within a song.
- 2. A supervised approach allows a user to explicitly define their a notion of 'musical segment' through their training segmentations.
- 3. Boosted decision stumps are used to
 - quickly identify music boundaries
 - produce good music segmentations
 - implicitly perform feature selection

Future Work

Address problems with dissimilarity measures

- Euclidean Distance assumes Euclidean vector space
- Reducing time series to a bag-of-features ignores temporal info

Use additional features

- Information theoretic features
- Beat Onset features e.g., Drum Fill Detector

Learn 'segment-specific' classifiers

- e.g., 'Chorus-Onset' classifier

Explore new applications

'chorus-based' music similarity and retrieval

A Supervised Approach for Detecting Boundaries in Music using Difference Features and Boosting

Douglas Turnbull

Computer Audition Lab
UC San Diego, USA

Gert Lanckriet, UC San Diego, USA
Elias Pampalk, AIST Japan
Masataka Goto, AIST, Japan

ISMIR September 24, 2007

Summary of Difference Features

We create 37 difference features

- A features is a time series of scalars sampled at 0.1 sample/sec.

Cue	Feature	Difference
	Spectral (6) • RMS, ZCR, harm, sc, perc, loud	Subtraction
Timbre	MFCC (4x3) • 1-5, 1-20, 2-5, 2-20 coef • original, delta, delta2	KL Distance
Harmony	Chroma (3x3) • 12, 24, 36 pitch classes • original, delta, delta2	KL Distance
Melody	F0 (2) • F0 and F0-Power	KL Distance
Rhythm	Fluctuation Pattern (8) G, f, max, sum, base, non aggr, LFD	Frobenius Norm Subtraction

Evaluation - Median Time

Median Time: time between estimates and true boundaries

- Measurement in seconds
- Lower times are better

Framework	Classifier	Estimate-to-True	True-to-Estimate
Baseline	Uniform Placement	8.6	6.4
Unsupervised	Peak Picking (MFCC-Diff)	5.1	3.7
Supervised	BDS	4.3	1.8