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Abstract—This paper explores the automatic classification of audio tracks into

musical genres. Our goal is to achieve human-level accuracy with fast training and

classification. This goal is achieved with radial basis function (RBF) networks by

using a combination of unsupervised and supervised initialization methods. These

initialization methods yield classifiers that are as accurate as RBF networks

trained with gradient descent (which is hundreds of times slower). In addition,

feature subset selection further reduces training and classification time while

preserving classification accuracy. Combined, our methods succeed in creating an

RBF network that matches the musical classification accuracy of humans. The

general algorithmic contribution of this paper is to show experimentally that RBF

networks initialized with a combination of methods can yield good classification

performance without relying on gradient descent. The simplicity and computational

efficiency of our initialization methods produce classifiers that are fast to train as

well as fast to apply to novel data. We also present an improved method for

initializing the k-means clustering algorithm which is useful for both unsupervised

and supervised initialization methods.

Index Terms—Radial basis function network, musical genre, initialization method,

feature subset selection.
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1 INTRODUCTION

THE classification of music by genre is difficult to automate. Each
listener has an experience that is different from that of other
listeners when listening to the same piece of music. Our complex
perception of sound is influenced by auditory memory, emotions,
and social context. Creating a deep representation of emotion or
social context is beyond the reach of current artificial intelligence
methods, but we show here that an automated musical classifica-
tion system can extract information from previously heard audio
tracks in order to recognize the genre of new tracks.

Our system uses radial basis function (RBF) networks for music

classification [2], [11]. RBF networks have two advantages over

other classifiers. First, in addition to supervised learning methods,

we are able to use unsupervised learning methods to find clusters

of audio sounds without presupposed class labels. For example,

much of Elvis Presley’s music is thought of as rock and roll, even

though it is closely derived from the blues music tradition.

Unsupervised learning will allow the King’s music to be clustered

with blues or rock based strictly on audio content. The RBF

network distinguishes between these two genres using weights

that are learned after the class labels for the samples are included.
The second advantage is that, given good initialization

methods, RBF networks do not require much training time when

compared with other classifiers. Traditionally, the training of an

RBF network requires a large amount of training time because it

involves finding good basis function parameters using gradient

descent. We show that training time can be reduced by combining

multiple initialization methods to provide parameters for the basis

functions. Training time is further reduced by using feature subset

selection to eliminate unneeded features.

After a brief introduction to RBF networks and audio feature
extraction in Section 2, we develop multiple methods for
initializing radial basis functions, as well as describe gradient
descent and feature subset selection in Section 3. Section 4
compares classification results using various combinations of
initialization methods, using different feature subset sizes, and
incorporating gradient descent. The final section contains a
discussion of the results and outlines ideas for future research.

2 RBF NETWORKS AND MUSICAL FEATURE
EXTRACTION

Radial basis function networks generally have a basis function
layer and a linear discriminant layer, as shown in Fig. 1. The input
to our RBF network is a vector x of extracted features, x1; . . . ; xd
from an audio signal. We choose M basis functions for our
network, where each function computes the distance from x to a
prototype vector �. We use unnormalized Gaussians for our basis

functions: �jðxÞ ¼ exp
n
� jjx��j jj

2

2�2j

o
. The parameters �j and �j for

each function are determined using methods discussed in Section 3.

2.1 Original Image Code

The top layer is a linear discriminant that outputs a weighted
sum of the basis functions. The equation for a single output yk is
ykðxÞ ¼

PM
j¼1 wkj�jðxÞ þ wk0, where wk0 is the weight of the bias.

We find the optimal weights by minimizing the sum of squares
error function

E ¼ 1

2

X
n

X
k

ðykðxðnÞÞ � t
ðnÞ
k Þ

2; ð1Þ

where ykðxðnÞÞ is the value of the kth output node for the nth data
point and t

ðnÞ
k is the target value of the kth output node for nth data

point. The target value for t
ðnÞ
k is 1 if the nth data point is labeled as

class k. Otherwise, t
ðnÞ
k is 0. To solve (1), we use a method presented

in Section 3.4.3 of [1] that computes the pseudoinverse of the
matrix �, where ð�Þnj ¼ �jðxðnÞÞ.

Each of the output nodes, y1; . . . ; yC , represent a musical genre.
When the network is presented with an input vector of the
extracted features from an audio sample, the genre that matches
the output node with the highest value is picked to be the genre for
that audio sample. The percentage of correctly classified novel
input vectors determines the classification performance of a
network.

For our music classification system, the input feature vector x is
made up of features from three categories: timbral texture,
rhythmic content, and pitch content features [15]. Timbral texture
features are standard features used for music-speech discrimina-
tion and speech recognition. These include Mel-frequency cepstral
coefficients (MFCC) and features based on the short time Fourier
transform (STFT) of the audio signal. The STFT features include
spectral centroid, spectral roll-off, spectral flux, and zero-crossings
over the texture window. The rhythmic content features involve
beat strength, amplitude, and tempo analysis. The pitch content
features contain information about the pitches, such as the
frequency of the dominant chord and the pitch intervals between
secondary pitches.

3 CONSTRUCTING RBF NETWORKS

Constructing a good RBF network for classification involves a
number of decisions. First, the dimension of the input vector can be
manipulated using feature selection. (This is discussed in
Section 3.5.) We also need to determine the number of radial basis
functions present in the middle layer of the RBF network. If we
choose too few, the network will not be able to separate the data. If
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we choose too many, the network will overfit the data. In practice,

the number of basis functions is related to the initialization

methods we decide to use. Finally, once the parameters are

initialized, they can be refined using gradient descent.

3.1 Unsupervised RBF Initialization

Unsupervised initialization is based on finding clusters within the

training set. Amajor problemwith clustering algorithms is that they

converge to a poor local optimum due to a bad initialization [10].
We propose a new initialization technique called subset furthest

first (SFF). The standard furthest first algorithm starts with a

randomly chosen center and iteratively adds the next center by

finding the point that has the largest minimum distance to all

previously selected centers [7]. One drawback of this technique is

that it tends to find the outliers in the data set; these are typically

not representative of the true clusters. Our improvement is to

apply the furthest first algorithm to a subset of the data points.

Using a smaller subset, the total number of outliers that furthest-

first can find is reduced and, thus, the proportion of nonoutlier

points obtained as centers are increased. The size of the subset is

dck ln ke where k is the number of clusters and c is a constant

greater than one. For our application, c ¼ 2works well. This subset

size is the number of data points we must sample in order to obtain

with high probability at least one sample point from each of

k clusters, assuming that the clusters are equal in size. See the

Appendix for a proof of this result.
Once the initial locations of the centers have been determined,

the standard k-means algorithm finds their final locations [4], [9].

We take each cluster center to represent a radial basis function. The

d-dimensional vector � for the basis function is the location of the

cluster center and the scalar � is the standard deviation of the

distance from the cluster center to each of the points that are

assigned to that center. Alternatively, a d� d covariance matrix �

could be used in place of � for each of the basis functions, but

doing so would increase excessively the number of free parameters

in the classifier.

3.2 Supervised RBF Initialization

Supervised initialization uses known class information about the

training data to suggest parameters for the basis functions. Our

first supervised initialization method uses maximum likelihood

estimation to find the parameters of a Gaussian model (MLG) for

each class. Using MLG, we construct one radial basis function for

each class by averaging all the points within that class. Let Classk
be the set of all the data points belonging class k. Then, �Classk

¼
1

jClassk j
P

xðnÞ2Classk
xðnÞ and �2Classk

¼ 1
jClassk j

P
xðnÞ2Classk

jjxðnÞ � �kjj
2,

where jClasskj is the number of data points in class k.

The second supervised method, in-class k-means (ICKM),
divides the training set into subsets based on class. The k-means

algorithm, using subset furthest first initialization, is run on each of
the subsets to obtain cluster centers. Again, each cluster center
represents a radial basis function in the network. Note that ICKM
with one cluster per class produces the same prototypes as MLG.

ICKM is less complex than other supervised clustering
methods, such as Learning Vector Quantization (LVQ) [6], in that
prototypes for each class only depend on data points within that
class. This means that we may end up with multiple prototypes

from different classes that are located close to one another. This
may be a problem if we are concerned with directly classifying
novel points with these prototypes. However, we learn the upper
layer weights of the RBF network to adjust for the fact that

prototypes may be close to one another.

3.3 Multiple Initialization Methods

While other researchers have explored various initialization

methods for RBF networks [1], [8], none, to our knowledge, have
suggested using a combination of initialization methods to build
an RBF network. For example, if we have 10 classes, we could
create a network with 46 radial basis functions where 10 are

determined from MLG, 6 are found using KM, and 30 are found
using ICKM.

Note that all three of our initialization methods are implemen-
ted by KM. Once we have a fast and effective implementation of

KM [4], we gain the benefit of using all three initialization methods
without much additional implementation. In addition, alternative
clustering algorithms can be substituted for KM [5].

3.4 Improving Parameters with Gradient Descent

It is possible to improve the performance of an RBF network by
iteratively updating the means and standard deviations of the

radial basis functions using gradient descent [1]. This is done by
calculating the derivative of the error function (1) with respect to �j
and �ji for each basis function j and feature i. The formula for
@E
@�j
ðxðnÞÞ is

X
k

n
ykðxðnÞÞ � t

ðnÞ
k

o
wkj exp �

jjxðnÞ � �jjj
2

2�2j

 !
jjxðnÞ � �jjj

2

�3j

and the formula for @E
@�ji
ðxðnÞÞ is

X
k

n
ykðxðnÞÞ � t

ðnÞ
k

o
wkj exp �

jjxðnÞ � �jjj
2

2�2j

 !
ðxðnÞi � �jiÞ

�2j
:

We update the means and standard deviations by moving them

against the gradient: �j  �j � �1
@E
@�j

and �ji  �ji � �2
@E
@�ji

, where
�1 and �2 are small, decreasing values called the learning rates. For
each epoch, we update �j and �ji for each data point using online

learning. An epoch is defined as using all of the data points once

during training. For online learning, we randomly shuffle all the
data points at the beginning of an epoch and then update the
parameters �j and �ji by using one data point at a time. We repeat
this process for a fixed number of epochs.

Overfitting can occur when network parameters (RBF para-
meters and upper level weights) are trained to reflect the specific
training data set rather than general phenomena. This is corrected
by reserving a section of the training data, called the hold-out set,

that is not used for the training of the parameters. Instead, the error
on the hold-out set is calculated using (1). The network parameters
for the epoch in which the hold-out set error is the smallest are
saved and restored after gradient descent stops running. If there is
a large number of consecutive epochs in which the hold-out error

increases, we can stop gradient descent before it reaches the
predefined fixed number of epochs.
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Fig. 1. The structure of a generic radial basis function (RBF) network with a

d-dimensional input vector, M radial basis function nodes, and C output nodes.



A second method to prevent overfitting is regularization.
Overfitting tends to occur when the weights in the upper layer
of the RBF network begin to take on large positive and negative
values to reduce the error function. These large values create a
large variance for the classification accuracy. One way to avoid this
is to shrink the values of the weights using ridge regression [6].
However, our experiments with ridge regression did not produce
better classification results.

3.5 Feature Subset Selection

We can sometimes improve accuracy, as well as reduce the amount
of computation, by using a subset of the features. This can be
particularly useful when there are redundant and/or noisy
features. The key task is to determine which features are useful
and which features are unneeded. The brute force method is to try
all possible combination of features. Instead, we use Forward
Stepwise Selection [6] as our heuristic for finding good subsets of
features. First, we train d networks, each with one of the features.
The feature used for training the network with the best
performance is selected. The next feature is selected by training
d� 1 networks, each with the previously selected “best” feature
and one of the remaining features. The second feature is selected
based on the network with the best performance. Each feature is
added one at a time by constructing networks and testing their
performance. The total number of networks constructed using
Forward Stepwise Selection is d2=2.

In addition, we may be able to further reduce computation
using other dimensionality reduction techniques, such as principal
component analysis (PCA) [6]. However, this was not explored
since we were interested in identifying informative features in the
original set of features. PCA involves creating new features that are
linear combinations of our original features. It is often hard to
understand the meaning of each of these features and the number
of original features required is not actually reduced.

4 EXPERIMENTAL RESULTS

Using a data set created by Tzanetakis and Cook [15], we start with
1,000 30-second audio samples, where each of the 10 musical
genres has 100 examples. Using the feature extraction techniques
implemented in MARSYAS [14], we extract a vector of 30 values
where 19 values are timbral texture features (10 MFCC and 9 STFT
features), six are rhythmic content features, and five are pitch
content features.

Each trial is done with 10-fold cross-validation. In each of the
10 trials, we break the data set into three sets: training, hold-out,
and test. The training set uses 800 samples to find the parameter
for the RBF network. The hold-out set of 100 samples is used
during gradient descent to prevent over-fitting. The test set of
100 samples is used after the network parameters have been found.
Classification accuracy for an experiment is the average fraction of
novel samples from the test set that are correctly matched to their
known genre.

Note that in 11 of the following 12 trials, we construct
networks with 90 basis functions. (The first trial, Trial A, has
10 basis functions since it must have exactly one basis function
per class.) Our goal is to fix the number of basis functions and
examine the performance of networks for different initialization
methods, various feature subset sizes, and the effect of gradient
descent. Our goal is not optimal model selection [8]. The number
90 is used because it shows decent performance and does not
cause overfitting.

4.1 Supervised versus Unsupervised Initialization
Methods

Table 1 shows the results for networks initialized with different

combinations of the three initialization methods. We use a fixed

subset of 15 features for all trials, chosen using Forward Stepwise

Selection as explained in the next section.
Trials A, B, and C show performance using only one

initialization method. MLG gives the poorest performance, but it

is able to produce 57.5 percent classification accuracy with only

10 basis functions. ICKM produces better results than KM with the

same number of basis functions. We expect this behavior since

ICKM uses class information during clustering.
Trials D, E, and F use two of the three methods to initialize the

basis functions. Trial G uses all three methods and produces the

best results. However, the improvement is not statistically sig-

nificant compared with the results from Trials C through F .

Statistical significance is defined by viewing each trial as n ¼ 1; 000

Bernoulli events. We compute the symmetric two-tailed 95 percent

confidence interval for each trial using the formula that the

expected standard deviation of the number of successes observed

is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p
, where p � 0:7 is the average classification accuracy.

4.2 Feature Subset Selection

For feature subset selection, we fix the RBF network structure and

iteratively add new features to a growing set of previously selected

features using forward subset selection. (See Section 3.5.) In Table 2,

we show the classification performance for networks that are

constructed using the same basis function initialization methods

but varying in feature subset size. Trial G from Table 1 is included

for comparison.
Trial I shows that good classification can be achieved with a

subset of 10 features. Using more than 10 features does not

significantly improve classification accuracy. This is not surprising

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005 3

TABLE 1
Accuracy Using Multiple Initialization Methods
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Subsets of Features: All Trials Use the Same
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in that we expect some features to be redundant due to the close
coupling between various features. Other features may be noisy
and may degrade performance.

It is interesting to note which features are chosen first by the
subset selection method. The first six features are timbral texture
features (five STFT and one MFCC), but there is both a rhythmic
content and a pitch content feature selected in the first 10 features.

4.3 Multiple Initialization Methods versus Gradient
Descent

One of our central goals is to test the hypothesis that networks
using multiple initialization methods can perform as well as
networks that are trained using gradient descent. If so, we can
quickly train an effective classifier because computing the weights
of the upper layer of the RBF network is a closed form operation
and the initialization methods are fast compared to gradient
descent.

In Table 3, we repeat three trials from Table 1 and run gradient
descent to improve network performance. In each trial, creating a
network without gradient descent takes seconds, whereas apply-
ing gradient descent takes hours to compute given the same
workstation. In two of the three trials, we see an improvement
using gradient descent as expected. However, the classification
accuracy of a network initialized using all three methods (Trial G)
is approximately the same as the best performance found using
networks that have been improved with gradient descent.

One interesting result is that good classification occurs with a
small network (Trial A) that is improved using gradient descent.
By observing the hold out set, we see that the parameters of the
smaller network migrate over the course of many (� 100) epochs,
whereas overfitting in larger networks (Trials B and Trial G)
occurs after just a few epochs (< 10).

The small network will be preferred in situations where the
amount of training time is not an issue, there is a high premium on
the evaluation time of novel data, or if storage is an issue. The
larger classifier will be preferred when we want to limit training
time.

5 DISCUSSION

In an equivalent test using the same data set, Tzanetakis and Cook
found that humans achieved 70 percent music classification
accuracy [15]. Using RBF networks, we are able to achieve
71.5 percent classification accuracy. This performance is compar-
able to that found by Tzanetakis and Li (71 percent) using support
vector machines and linear discriminant analysis with the same
data and extracted features [16]. It is not our opinion that the
classification of music into genres is limited to 71 percent accuracy,
but rather that the method of collecting and labeling the audio
samples provides an upper bound.

One suggestion for improvement is to work with expert
musicologists and cognitive scientists to first develop a better
system for labeling music and then build a data set that captures
this system. RBF networks are a good choice of classifier because

they are well-suited to work with flexible labeling systems. For
example, they can allow for multiple class labels per music sample
and real-valued targets depending on the strength of association
between a sound sample to a class. For example, Elvis’ Heartbreak
Hotel can be given strength of 0.6 in Blues and a strength of 0.7 in
Rock. With the current data set, every song is given a strength of
1.0 for one genre and 0.0 for all other genres. A more flexible
classification system is cognitively plausible in that we as humans
often classify and subclassify music into a number of genres,
streams, movements, and generations that are neither mutually
exclusive nor always agreed upon.

We have shown that feature subset selection can be used to
improve classification. The next step is to use feature extraction
technology to automatically extract many more features (� 10; 000)
and then use feature selection to obtain a set of features that is
better than the human-selected set used in this paper. This has
been a successful technique used by computer vision researchers to
classify images (see [13], [17]). Features from images are auto-
matically extracted by taking subimages of different sizes and
locations, altering resolution and scaling factors, and applying
image filters. In the case of an audio file, we can extract similar
features by taking sections of different lengths and starting
locations, playing with pitches and tempos in the frequency
domain, and applying any number of digital filters such as comb
filters.

APPENDIX

PROOF OF SFF SUBSET SIZE

In Section 3.1, we introduced a new k-means initialization
method called Subset Furthest First (SFF). In this Appendix,
we show why we choose a subset of size dck ln ke. The problem,
as stated below, is a variant of the Coupon Collector Problem,
which is addressed in [12].

Consider a data set of n points that consists of k clusters where
each cluster has the same number of data points. Our initialization
method starts by randomly selecting a subset of m points. Our goal
is to determine how large m must be so that we know with high
probability that at least one point from each of the k clusters is
contained within the subset. Before we can prove this statement,
we start with the following:

Lemma 1. For all k > 1, ð1� 1=kÞk � e�1.

Proof. Proposition B.3 of [12]. tu

Let Em
i be the event that we have not picked a point from

cluster i in our subset of m points. Let Em be the event that there is
at least one of the k clusters for which we have not picked a point.
That is, Em is the union of Em

i for 1 � i � k.

Lemma 2. The probability of event Em is at most ke�
m
k .

Proof. The proof makes use of Lemma 1, the union bound,1

and assumes that each cluster is equally represented in the
data set. tu

Pr½Em� ¼ Pr

"[k
i¼1

Em
i

#
�
Xk
i¼1

Pr½Em
i � ¼ k � 1� 1

k

� �m

� k � e�m
k :

When we set m ¼ dck ln ke for some constant c > 1, we find that
the probability of Em is at most k1�c. In this paper, we use c ¼ 2.
This assures us that the probability of Em falls off with the number
of clusters. For example, with k ¼ 20, c ¼ 2, and, thus, m ¼ 120, the
probability that we have not selected at least one point from each
cluster is less than 0.05.
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TABLE 3
Accuracy Before and After Basis Function Parameters

�j and �ji are Modified Using Gradient Descent

1. The union bound is the fact that the probability of a union of events is
at most the sum of the probabilities of the individual events. This fact is true
even if the events are not independent.
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