Five Approaches to Collecting Tags for Music

Approach

Survey
- Experts are paid to annotate songs using a standard form

Social Tags
- Large community contributes tags using a social network
- Collective wisdom of crowds
- Unlimited vocabulary
- Provides social context

Game Tags
- Players produce tags as they play a video game
- Collective wisdom of the crowds
- Fast paced for rapid data collection

Webtags
- Analyze a corpus of music reviews, artist bios, blogs, discussion boards
- Large corpus of publicly-available documents
- Provides social context

Autotags
- Annotate audio content using signal processing and machine learning
- Not affected by cold-start problem
- No direct human involvement

Hybrid
- Combination of approaches

Weaknesses
- All Songs
 - Time consuming approach lacks scalability
 - Human-labor intensive
 - Small, predetermined vocabulary
- Weaknesses
 - Sparce/missing data in long tail
 - Produces weak labeling
 - Ad-hoc annotation behavior

Strengths
- All Songs
 - Strong labeling
 - High-quality annotations
 - Custom-tailored vocabulary

Example
- Songs using a standardized form
- Experts are paid to annotate
- The vocabulary consists of 109 tags that
- natunes.
- There are 87 “long tail” songs from
 Maim of 3 individuals.
- This data serves as the ground truth.

Algorithm

CAL 500 Data Set
- Paid 55 undergraduates to annotate 50 songs by 50 artists using a vocabulary of 100 tags
- Each song was annotated by a minimum of 3 individuals.

This data serves as the ground truth. There are 87 “long tail” songs from Mag-

ListenGame
- During a two week pilot study of Lis-
 tenGame, we collected 5,773 tags for 260
 of the CAL500 songs from 440 players.
- Each of the 27,250 song-tag pairs were
 presented 1.8 times on average.

Ad-hoc annotation behavior
- Produces weak labeling
- Sparse/missing data in long tail

Rank-Based Interleaving
- Given a tag, rank songs based on their best rank according to other approaches

Supervised Multilabel Model
- MFCC-Delta Feature Space
- One GMM per tag
- Mixture Hierarchies EM to train GMMs
- Produces “Semantic Multinomial” distribution over tag vocabulary for each novel song
- Top performing system in 2008 MIREX Audio Tag Classification Task

Other hybrid approaches
- Other hybrid approaches
 1. Kernel Combination
 2. RankBoost
 3. Calibrated Score Averaging

RankBoost
- Given a tag, rank songs based on their best rank according to other approaches

Calibrated Score Averaging
- Given a tag, rank songs based on their best rank according to other approaches

Hybrid
- Combination of approaches
 - Social feedback and audio content
 - Use strengths, remove weaknesses
 - Multi-threaded approach to cold-start problem

Combining high quality tagging data
- Based solely on audio content, no context

Data, Papers, and additional information can be found at:
http://cosmal.ucsd.edu/cal/