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ABSTRACT

We improve upon query-by-example for content-based audio
information retrieval by ranking items in a database based on
semanticsimilarity, rather than acoustic similarity, to a query
example. The retrieval system is based on semantic concept
models that are learned from a training data set containing
both audio examples and their text captions. Using the con-
cept models, the audio tracks are mapped into a semantic fea-
ture space, where each dimension indicates the strength of
the semantic concept. Audio retrieval is then based on rank-
ing the database tracks by their similarity to the query in the
semantic space. Finally, we experiment with both semantic-
and acoustic-based retrieval systems on a sound effects data-
base, and show that the retrieval of the semantic-based system
improves both quantitatively and qualitatively.

Index Terms— computer audition, audio retrieval, se-
mantic similarity

1. INTRODUCTION

It is often joked that “writing about music is like dancing
about architecture”. Explaining the intangible qualities of an
auditory experience using words is an ill-posed problem with
many different solutions that might satisfy some, and few or
none that are truly objective. Yet using semantics is a com-
pact medium to describe what we have heard, and a natural
way to describe content that we would like to hear from an
audio database. An alternative approach is query-by-example
(QBE), where the user provides an audio example instead of
a semantic description and the system returns audio content
that is similar to the query. The key to any QBE system is in
the definition of audiosimilarity.

Many approaches to audio information retrieval consider
similarity in the audio domain by comparing features extracted
from the audio signals. In [1], songs are represented as HMM’s
trained on timbre- and rhythm-related features, and song sim-
ilarity is defined as the likelihood of the query features under
each song model. Similarly in [2], each song is represented
as a probability distribution of timbre feature vectors, and
the audio similarity is based on the KL divergence between

the query feature distribution and those of the database. Fi-
nally, state of the art genre classification results [3], based on
nearest-neighbor clustering of spectral features, suggest that
the returns of purely acoustic approaches are reaching a ceil-
ing and that a higher-level understanding of the audio content
is required.

In many cases, semantic understanding of an audio query
enables retrieval of audio information that, whileacoustically
different, issemanticallysimilar to the query. For example,
given a query of a high-pitched, warbling bird song, a sys-
tem based on acoustics might retrieve other high-pitched, har-
monic sounds such as a door bell ringing. On a other hand, the
system based on semantics might retrieve sounds of different
birds that hoot, squawk or quack.

Indeed, recent works based on semantic similarity have
shown promise in improving the performance of retrieval sys-
tems over those based purely on acoustic similarity. For ex-
ample, the acoustic similarity between pieces of music in [2]
is combined with similarities based on meta-data, such as
genre, mood, and year. In [4], the songs are mapped to a se-
mantic feature space (based on musical genres) using a neural
network, and songs are ranked using the divergence between
the distribution of semantic features. In the image retrieval lit-
erature, [5] learns models of semantic keywords using train-
ing images with ground-truth annotations. The images are
represented as semantic multinomials, where each feature rep-
resents the strength of the semantic concept in the image. Re-
sults from [5] show that this retrieval system returns more
meaningful images than using visual similarity. For exam-
ple, a query of a red sunset image returned both red sunsets
and orange sunsets, while the retrieval system based on visual
similarity returned only red sunsets.

In this paper, we present a query-by-example retrieval sys-
tem based on semantic similarity. While any semantic anno-
tation method could be used, we base our work on the models
of [6, 7] which have shown promise in the domains of au-
dio and image retrieval. In Section 2, we present probabilis-
tic models for the audio tracks and their semantic labels, and
in Section 3, we discuss how to use the models for retrieval
based acoustic similarity and semantic similarity. Finally, in
Section 4 we compare the two retrieval methods using exper-
iments on a sound effects database.



2. MODELING AUDIO AND SEMANTICS

Our audio models are learned from a database composed of
audio tracks with associated text captions that describe the
audio content:

D = {(A(1), c(1)), ..., (A(|D|), c(|D|))} (1)

whereA(d) andc(d) represent thed-th audio track and the
associated text caption, respectively. Each caption is a set of
words from a fixed vocabulary,V.

2.1. Modeling Audio Tracks

The audio data for a single track is represented as abag-
of-feature-vectors, i.e. an unordered set of feature vectors
A = {a1, . . . ,a|A|} that are extracted from the audio sig-
nal. Section 4.1 describes our particular feature extraction
methods.

Each database trackd is compactly represented as a prob-
ability distribution over the audio feature space,P (a|d). The
track distribution is approximated as aK-component Gaussian
mixture model (GMM);

P (a|d) =
K∑

k=1

πkN (a|µk,Σk),

whereN (·|µ,Σ) is a multivariate Gaussian distribution with
meanµ and covariance matrixΣ, andπk is the weight of com-
ponentk in the mixture. In this work, we consider only diag-
onal covariance matrices since using full covariance matrices
can cause models to overfit the training data, while scalar co-
variances do not provide adequate generalization. The para-
meters of the GMM are learned using the Expectation Maxi-
mization (EM) algorithm [8].

2.2. Modeling Semantic Labels

The semantic feature for a track,c, is abag of words, repre-
sented as a binary vector, whereci = 1 indicates the pres-
ence of wordwi in the text caption. While various methods
have been proposed for annotation of music [6, 9] and animal
sound effects [10], we follow the work of [6, 7] and learn a
GMM distribution for each semantic conceptwi in the vocab-
ulary. In particular, the distribution of audio features for word
wi is anR-component GMM;

P (a|wi) =
R∑

r=1

πrN (a|µr,Σr),

The parameters of the semantic-level distribution,P (a|wi),
are learned using the audio features from every songd, that
haswi in its captionc(d). That is, the training setTi for word
wi consists of only thepositiveexamples:

Ti = {A(d) : c(d)
i = 1, d = 1, . . . , |D|}

Learning the semantic distribution directly from all the fea-
ture vectors inTi can be computationally intensive. Hence,
we adopt the strategy of [7] and use an extension of EM,
the hierarchical EM algorithm [11], to efficiently and robustly
learn the word-level distributionsP (a|wi) from all the song-
level distributionsP (a|d) associated with wordwi.

The final semantic model is a collection of word-level dis-
tributionsP (a|wi), that models the distribution of audio fea-
tures associated with the semantic conceptwi.

3. AUDIO RETRIEVAL BY EXAMPLE

In this section, we describe two systems for retrieving audio
by query example. While the first is based on retrieving audio
that isacousticallysimilar to the query, the second utilizes the
semantic word models to retrieve audio tracks that areseman-
tically similar to the query track.

3.1. Query by acoustic example

The query-by-acoustic-example (QBAE) system is based on
retrieving audio that is acoustically similar to the query. The
score used to rank the similarity of database tracks to the
query track is based on the likelihood of the audio features of
the query under the database track distributions. Intuitively,
the database tracks are ranked according to how likely the
query features were generated from the particular database
track. Formally, given the features from the query track,A(q),
the likelihoods are computed for each database track,d =
1, . . . , |D|,

`d = P (A(q)|d) =
|A(q)|∏
i=1

P (a(q)
i |d)

Finally, the database tracks are then rank ordered by decreas-
ing likelihood. Note that retrieval by acoustic example is
computationally intensive because it requires computing the
likelihood of a large set of features (on the order of tens of
thousands) under the song models for each song in the data-
base.

3.2. Query by semantic example

In contrast to QBAE, the query-by-semantic- example (QBSE)
paradigm [5] utilizes semantic information to retrieve seman-
tically meaningful audio from the database. QBSE is based
on representing an audio track as a semantic feature vector,
where each feature represents the strength of each semantic
concept from a fixed vocabularyV. For example, the seman-
tic representation of the sound of a gun firing might have high
values in the “shot”, “weapon” and “war” semantic dimen-
sions, and low values for “quiet”, “telephone” and “whistle”.

The semantic feature vector is computed using an annota-
tion system that assigns a weight for the presence of each se-
mantic concept. Although any annotation system that outputs



Table 1. Mean average precision for query-by-semantic-
example (QBSE) and query-by-acoustic-example (QBAE).

QBSE QBAE
MAP 0.1753±.006 0.1594±.005

weighted labels could be used, when using the probabilistic
word models described in the previous section, the semantic
feature vectors are multinomial distributions with each feature
equal to the posterior probability of that concept occurring
given the audio features. Formally, given the audio features
A, the semantic multinomial isπ = {π1, . . . , π|V|} with each
entry given by;

πi = P (wi|A) =
P (A|wi)P (wi)∑|V|

j=1 P (A|wj)P (wj)

where we have applied Bayes’ rule to compute the posterior.
The semantic multinomials are points in a probability sim-

plex orsemantic space. A natural measure of similarity in the
semantic space is the Kullback-Leibler (KL) divergence [12]
between the semantic multinomials;

KL(π(q)‖π(d)) =
|V|∑
i=1

π
(q)
i log

(
π

(q)
i

π
(d)
i

)

Query-by-semantic-example is performed by first represent-
ing the database tracks as semantic multinomials, and then,
given a query track, retrieving the database tracks that mini-
mize the KL divergence with the query. The bulk of QBSE
computation lies in calculating the semantic distribution for
the query track so that complexity grows with the size of the
vocabulary rather than with the size of the database in QBAE.

In practice, some regularization must be applied to the se-
mantic multinomials in order to avoid taking the log of zero.
This regularization is achieved by adding a small positive con-
stant to all the multinomial dimensions (followed by renor-
malization), and is equivalent to assuming a uniform Dirichlet
prior for the semantic multinomial.

4. EXPERIMENTS

4.1. Semantic and Audio Features

This work examines queries on a general sound effects corpus
taken from 38 audio compact discs of the BBC Sound Effects
library. Our data set comprises 1305 audio tracks (varying in
length from 3 seconds to 10 minutes) with associated descrip-
tive text captions up to 12 words long.

Each sound effect’s caption,c, is represented as abag of
words: a set of words that are found in both the track caption
and our vocabularyV. The vocabulary is comprised of all
terms which occur in the captions of at least 5 sound effects
and does not include common stop words (e.g. ‘the’, ‘into’,

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
re

ci
si

on

Recall

QBSE
QBAE

Fig. 1. Precision-Recall curves for query-by-semantic-
example (QBSE) and query-by-acoustic-example (QBAE).

‘a’). In addition, we preprocess the text with a custom stem-
ming algorithm that alters suffixes so that words such as ‘bi-
cycle’, ‘bicycles’, ‘bike’ and ‘cycle’ are mapped to the same
semantic concept. The result is a vocabulary with|V| = 346
semantic concepts.

For each 22050Hz-sampled, monaural audio track in the
data set, we compute the first 13 Mel-frequency cepstral co-
efficients as well as their first and second instantaneous deriv-
atives for each half-overlapping short-time (∼12 msec) seg-
ment [13], resulting in about 5000 39-dimensional feature
vectors per 30 seconds of audio content.

4.2. Results

For each query track, our system orders all database tracks by
their similarity to the query. Evaluation of this ranking (and
of most auditory similarity systems) is difficult since acoustic
and semantic similarity is a subjective concept. Rather than
rely on qualitative evaluation, we divide the data into 35 dis-
joint categories (each corresponding to a BBC sound effects
CD with 3 categories spanning 2 CDs) and consider all audio
tracks within the same category to be similar. This allows us
to compute precision and recall for the database ranking due
to each query track. Given a query track from categoryG,
if there are|GT | total tracks from categoryG in the data-
base and the system returns|Gauto| tracks from that cate-
gory, where|GC | are correct, recall and precision are given
by: recall = |GC |

|GT | , precision = |GC |
|Gauto| . Average preci-

sion is found by moving down this ranked list (incrementing
|Gauto|) and averaging the precisions at every point where a
new song is correctly identified. The mean average precision
(the mean over all songs) for QBSE and QBAE are shown in
Table 1 and precision-recall curves are displayed in Figure 1.
Results are averaged over 10-folds of cross-validation where
90% of the audio tracks are used to compute the word-level
models and the remaining 10% are used as testing examples
for querying the retrieval system.



Table 2. Sample queries and retrieved database tracks using query-by-semantic-example (QBSE) and query-by-acoustic-
example (QBAE). Words initalics are dimensions of our semantic vocabulary. Words inbold overlap with the query caption.

BBC SFX CD Caption

Query Sound Effects bicycles passwith bell from right to left
Sound Effects bicyclesapproachandskid

QBSE Sound Effects bicycles passfrom left to right
Sound Effects bicycles passwith bell from left to right
Sound Effects bicycles passwith bell from left to right

QBAE Babies monthold girl feeling unwell while coughing
Babies monthold boy wordsvarious

Query Bang alarms electronic alarm rapidpips
Bang alarms electronic alarmwail with a wobble ontop

QBSE Bang alarms electronic alarmurgent
Electronic emergencyalarm with slight phasing

Bang alarmsburglaralarm bell
Bang alarms electronic alarmwail with a wobble ontop

QBAE Babies weekold boyhystericalcrying
Africa Natural World rwanda marsh andtree frogs early evening

Sound Effects ringtailed lemur withinsects

Query Transport underground railroadlondonon platformtrain arrivesanddeparts
Transport tramsamsterdam axleexterior passright to left

QBSE Transport underground railroadlondon interior doors close run doors open
Transport tramsamsterdam axleexterior doors closewith bell departs
Transport helicopter bellexecutiveexterior approach land switchoff
Transport underground railroadlondon interior doors close run doors open

QBAE Comedy Fantasy and Humor legendsdragon burns its fingers
Ships and Boats beam fishingtrawler catch being hauled aboard

Comedy Fantasy and Humor colliding ships

The quantitative results show the difficulty of the audio
query-by-example task. Sound effects from different BBC
categories often have strong similarities (e.g.{“Horses and
Dogs”, “Horses” and “Livestock”} or {“China”, “America”
and “Exterior Atmospheres”}) and many tracks could easily
fit in multiple categories. Without a reliable ground-truth, au-
tomatically evaluated results are bound to be poor. Though
recall and precision scores are low, QBSE shows a significant
improvement over QBAE (e.g. a 23% relative improvement in
precision at 0.2 recall). Table 2 illustrates the results of both
QBSE and QBAE for a number of example audio queries. It
can be seen that, while tracks returned by QBAE could be
expected to sound similar to the query, the results of QBSE
have more semantic overlap and often return database tracks
that might sound different (e.g. the sound of a helicopter in
response to a train sound query) but have a strong semantic
connection (both are modes of transport).
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