
Tagging Products using Image Classification

ABSTRACT
Associating labels with online products can be a labor-
intensive task. We study the extent to which a standard
“bag of visual words” image classifier can be used to tag
products with useful information, such as whether a sneaker
has laces or velcro straps. Using Scale Invariant Feature
Transform (SIFT) image descriptors at random keypoints,
a hierarchical visual vocabulary, and a variant of nearest-
neighbor classification, we achieve accuracies between 66%
and 98% on 2- and 3-class classification tasks. We show that
we can improve performance over standard k-nearest neigh-
bor (k-NN) by modifying it to consider all other images while
giving the most weight to the closest ones. We also increase
accuracy by combining information from multiple views of
the same product.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.1 Con-
tent Analysis and Indexing; H.3.3 Information Search and
Retrieval; I.4.8 [Image Processing and Computer Vi-
sion]: Scene Analysis—Object recognition

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Content-based image classification, bag of visual words,
distance-weighted k-nearest neighbor

1. INTRODUCTION
Online merchants like eBay and Amazon attach descrip-

tive labels to their products in order to facilitate customer
searches. Product suppliers provide much of this metadata:
product name, price, weight, etc. However, some poten-
tially interesting features of a product are not labeled. For
example, women’s high-heeled shoes on Amazon contain no

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

explicit textual information to indicate whether the toe is
pointy or rounded; this can only be determined by browsing
through the product images. Customers could benefit from
a tab filter on traits like toe-pointyness, strap type, and so
on. Dedicating employees to manually label or classify these
products could be expensive, so it would be desirable to add
these labels automatically.

This paper explores the feasibility of describing consumer
products through supervised image classification. Some
product characterization tasks should be easier than others:
For instance, the visual difference between baseball shoes
and ballet shoes will likely be more pronounced than that
between sneakers with laces and sneakers with velcro straps
(see Table 1). Most of the object-classification literature
has worked with clearly distinct categories (e.g., bikes vs.
airplanes); the main challenge has been scaling up the num-
ber of classes, from 4 in the PASCAL Visual Object Classes
Challenge 2005 [1], to 20 with the PASCAL VOC 2007 [2],
to 101 with the Caltech 101 database [3], to 256 with the
recent Caltech 256 [4]. Our task, in contrast, focuses on
learning subtle distinctions for a smaller number of classes,
often with more “tame” pictures (object centered against a
white background) than natural images.

Our paper is organized as follows. Section 2 describes pre-
vious work with the standard bag-of-visual-words approach
to image classification. Section 3 details our method of ex-
tracting features and creating visual words for an image,
while Section 4 explains our method of classifying products
using a variant of k-nearest neighbor (k-NN). Our exper-
imental setup and results are described in the Sections 5
and 6, and Section 7 concludes with suggestions for future
research.

2. RELATED WORK
One of the most popular approaches to the problem of

image classification is to use local bag-of-visual-words [5,
6]. Most bag-of-visual-words methods, including [5, 6, 7,
8], begin with Scale Invariant Feature Transform (SIFT) de-
scriptors [9], as well as additional features in some cases.

Computing SIFT descriptors for each image produces a
set of thousands of 128-dimensional feature vectors at vari-
ous keypoints. While in theory one could use, say, a näıve
Bayes classifier or SVMs with these thousands of vectors as
input, computational speed would likely be prohibitive.1 As
a solution, Sivic and Zisserman [11] demonstrated the fea-
sibility of vector quantization, that is, clustering a sample

1However, one recent paper [10] presents a contrary view.

of feature vectors into groups that can be thought of as “vi-
sual words.” Each feature vector in an image can be mapped
to the closest of these cluster centers, thus creating a “bag
of words” for that image. Sivic and Zisserman proceeded
to apply standard text-retrieval methodology to retrieving
frames in movies using TF-IDF scoring of word frequencies,
cosine similarity between document vectors, and stop lists
for very common or uncommon visual words.

Nistér and Stewénius [12] took this visual-vocabulary
scheme one step further. Unlike linguistic words, visual
words are arbitrary cluster centers formed by quantizing a
set of feature vectors. So instead of creating a single set
of several thousand words, Nistér and Stewénius pointed
out, one can just as well cluster in a hierarchical man-
ner, creating a vocabulary tree. For instance, starting from
the raw feature vectors, one can apply the k-means algo-
rithm with, say, k = 10 to generate 10 children and then
apply the process recursively on each of them. Continu-
ing for six levels, the authors created 106 leaf nodes and
106 + 105 + . . . + 101 + 100 = 1, 111, 111 total words in the
vocabulary. This was two orders of magnitude more than
were used in [11], allowing for higher precision and recall of
ground-truth movie frames. At the same time, the efficient
tree indexing structure allowed for sub-second queries.

The standard SIFT approach is to sample descriptors at
keypoints identified through an interest-point detection al-
gorithm [9]. For instance, Sivic and Zisserman [11] sam-
pled at affine-covariant locations corresponding to “Shape
Adapted” or “Maximally Stable” regions. However, Nowak
et al. [7] noted that these locations are not chosen directly
to optimize SIFT performance, so the assumption that inter-
est points make good SIFT-descriptor points had not been
verified. Nowak et al. compared Laplacian-of-Gaussian and
Harris-Laplace keypoints against randomly chosen keypoints
and found that the latter performed almost as well for small
numbers of locations sampled. However, because there are
only so many interest points in an image, the former meth-
ods tend to saturate at about 1,000 points per image, while
the performance of random keypoints continues to increase
with the number of points sampled. On account of this
finding, Vedaldi [8] used random sampling of keypoints in
his bag-of-visual-words image classifier. Figure 1, inspired
partially by [13, p. 24], illustrates the bag-of-visual-words
approach.

3. FEATURE EXTRACTION
We base our feature-extraction and classification system

on the open-source Matlab package called “Bag of fea-
tures” developed by Vedaldi [8]. The program makes use
of “SIFT++” [14], an open-source C++ implementation of
Lowe’s SIFT feature-extraction method [9].

3.1 Keypoint Selection
We first choose 10,000 candidate keypoint locations at

which to evaluate SIFT descriptors. Each location (x, y)
is chosen uniformly at random throughout the image and is
associated with a random scale σ. Larger scales correspond
to more blurring, whereas smaller scales pick out more de-
tailed local structure. Since nearby points with large scales
will have similar descriptor values, we need fewer total large-
σ points than small-σ points. In particular, we choose a

given σ with probability proportional2 to 1/σ over an inter-
val [1, σmax], σmax equal to one-tenth of the smaller of the
width and height of the image. Figure 2a shows an example
of random keypoints.

While Nowak et al. [7, p. 496] found that the perfor-
mance of interest-point detectors saturated at around 1,000
keypoints while random sampling showed continued perfor-
mance improvements with more points sampled, the authors
did not consider the possibility of combining the approaches:
Starting with keypoints from an interest-point detector and
then adding more random points. Though it was not our
default approach, we experimented with this idea, using the
output of Koo’s Canny edge detector [15] set to its default
parameters. This typically gave 1,000-2,000 points, with the
remaining 8,000-9,000 keypoints sampled randomly as before
(see Figure 2b).

3.2 SIFT Descriptors
Once the keypoints are selected, we convert the input

image to grayscale (PGM). This is processed by SIFT++
to give m 128-dimensional descriptor vectors for an image,
where m ≤ 10, 000 is the number of accepted keypoints. We
use the default parameter settings of SIFT++, with no rejec-
tion of points having small values for the Difference of Gaus-
sian function. However, because many product images have
quite a huge proportion of white space area–which are not
informative for our classification task, we later reject key-
points whose SIFT descriptors have `2 norms smaller than a
given threshold, experimentally chosen to be 50. This typ-
ically reduces the number of keypoints by 1,000-2,000 (see
Figure 2c).

3.3 Constructing Visual Words
Given a collection of feature vectors for all training images,

we construct a visual codebook using the method of Nistér
and Stewénius [12]. This involves recursively applying the k-
means algorithm to the collection of feature vectors in order
to generate a tree of visual words. If the number of data
points in a group falls below k before we reach the leaf layer
of the tree, we stop calling k-means and simply assign each
of those points to its own cluster.

There are a few questions to consider in constructing the
vocabulary tree.

• What fraction of the original data points should be
included? Vedaldi’s original implementation retained
a random 10% of the feature vectors to reduce com-
putational time while clustering. We tried increasing
this fraction to 100% and did find slight performance
improvement; however, this considerably slowed the
process of tree construction and required excessive
amounts of RAM. We also experimented with reduc-
ing the fraction of feature vectors retained below 10%.
In fact, using as few as 0.5% of the original feature
vectors, we were able to maintain reasonable accuracy
without incurring a large computational burden during
cross-validation. We used 0.5% of the feature vectors
for the results in this paper. (We do this only dur-
ing tree construction; for evaluating frequency counts

2In fact, we tried probabilities proportional to
`

1
σ

´p
for p

between 0.5 and 2.0. Empirically, p between 1.0 and 1.25
gave roughly equally optimal performance, but we settled
on p = 1.0 for simplicity.

of visual words in each image, as described in Section
3.4, we always use 100% of the feature vectors.)

• In order to ensure “fairness” among the different cate-
gories, we include the same number of feature vectors
from each category in the set of features that is clus-
tered to form the codebook. For example, if a large
class has twice as many images (and hence approxi-
mately twice as many feature vectors) as a small class,
only about half as many feature vectors are taken from
each image of the large class.

• What should be the branching factor of the tree, i.e.,
the k in k-means? Nistér and Stewénius [12, p. 10]
used 10. We found performance improvements for
larger values and settled on 100.

• What should be the approximate number of leaves
of the tree? After trying values between 250 and
20,000, we settled on 1,000, although using 5,000-
10,000 tended to give comparable performance. In-
cidentally, 1,000 leaves was found by Nowak et al. [7,
p. 497] to be a rough optimum between having too
few visual words on the one hand and overfitting on
the other hand.

3.4 Image Signatures
In the tree of feature vectors computed as above, each

node (including intermediate and leaf nodes) represents a
visual word. Each image (“document”) has a set of m SIFT
descriptors; each of these has its own path down the tree
and, hence, its own set of words. The words corresponding
to intermediate nodes in the tree have higher counts than
those corresponding to leaves because more descriptors pass
through them.

For each image, we compute a signature s, that is, a vec-
tor of term frequency-inverse document frequency (TF-IDF)
scores, exactly as in [11, p. 4]. The wth entry of the vector
is

sw = nwi ln

„
N

nw

«
,

where nwi is the number of times word w appears in image
i (the number of SIFT descriptors in i that pass through
node w), nw is the number of images containing word w
(the number of images with any SIFT descriptor passing
through node w), and N is the number of images. We post-
process the signature vectors by cutting off values above a
threshold and then normalizing.

4. CLASSIFICATION
Classification proceeds by a nearest-neighbor algorithm

applied to the signatures of each image. Below we describe
the design details, including our choice of distance function,
our use of a weighting scheme, and our method for combining
information from multiple views of a product.

4.1 Distance Functions
We evaluated three functions for the distance d between

a pair of signatures, s1 and s2:

• d(s1, s2) =
P
j |s1[j]− s2[j]|, where si[j] is the jth

component of the vector si. This is the `1 norm of
the difference of the two signature vectors. Nistér and

Stewénius [12, p. 6] found it to give better results than
cosine similarity.

• d(s1, s2) = 1 − cos(θ(s1, s2)), where cos(θ(s1, s2)) :=
s1·s2
‖s1‖‖s2‖

. Cosine similarity is standard in information

retrieval and was used by Sivic and Zisserman [11, p.
4].

• d(s1, s2) = 1 − exp
“
− 1
µ
χ2(s1, s2)

”
, where χ2 stands

for chi-square distance, and µ is the average of all such
distances over each pair of images. A chi-square-based
kernel was proposed in [16] and used in [17, p. 4].

While the cosine and chi-square distances performed sim-
ilarly, cosine was faster to compute, so we used it as the
default.

4.2 Weighted Nearest Neighbor
A standard k-NN classifier assigns a test image t to that

category with the plurality of votes among the k closest
training images. One intuitive extension to this approach
is to weight the votes of the training images by their close-
ness to the test image [18]. While theoretically less accurate
on an infinite set of training examples [19], certain distance-
weighted k-NN approaches have been found to perform bet-
ter in practice [20].

We try a weighting scheme that we call “z-score voting.”
Let k be a value between 1 and the total number of training
images. For each image i among the k closest, image i votes
for its own category label with a weight wi given by

wi = −z-score(d(st, si)) =
µt − d(st, si)

σt
,

where µt and σt are, respectively, the mean and standard
deviations of all the distances from image t. Images that
are closer to t will have more negative z-scores and hence
larger numbers of votes; images that are far will actually
get a negative number of votes. As an illustration, consider
a two-class problem with training-image classes (1, 1, 2, 2).
If the associated negative z-scores were (0.5, 0.5,−1.5, 0.5)
and if k = 4, we would give class 1 a total of 0.5 + 0.5 = 1
vote and class 2 a total of −1.5 + 0.5 = −1 votes. Class 1
has more votes, so we predict that t belongs to class 1.

We experimentally found best performance when we set k
equal to the entire number of training images. In this case,
the z-score procedure has an interesting interpretation: it
chooses the class c that maximizesX
i : class(i)=c

wi =
X

i : class(i)=c

µt − d(st, si)

σt
∝
`
µt − dc

´
Nc,

where Nc is the number of images in class c (excluding t)
and dc is the average of the d(st, si) values for c. Thus,
the procedure rewards classes with small average distances,
and the Nc factor gives more weight to classes with large
numbers of labeled examples (helping them if dc < µt and
hurting them otherwise).

4.3 Combining Views
A number of products on Amazon have multiple associ-

ated images, corresponding to views of the object from dif-
ferent orientations. We included all of the views of each
product in our database of images, except in cases where

Ballet shoes with legs A pair of baseball shoes

Table 3: Examples of non-standard ‘viewpoints.”

the viewpoint available of the image is obviously unhelpful—
e.g., a picture of the underside of a shoe when we were trying
to discriminate shoes with lace from velcro, or the back of a
high-heeled shoe when we wanted to determine whether the
toe was pointy or not.

Given this database, one approach is to ignore multiple
views entirely, pretending that each image corresponds to a
different product. However, this fails to take into account
information from other viewpoints available and may even
lead to inconsistent decisions if one view is assigned to a
different category than another view of the same product.

One way to combine the information from each view might
be the following: Classify each view on its own, pretending
that we have only one view of the product available; then,
each of those decisions counts as a vote, and we choose the
product’s category to be of the one with the most votes.
However, this approach fails to consider the fact that some
views may be more informative than others because it gives
equal weight to every view. To fix this, one might assign
weights to the votes of each view in inverse proportion to
their distances to their near neighbors. Even after weighting
the votes, there remains another problem: If we compare by
analogy the different views of an image to different states
in the USA, then it’s possible that one category could win
the majority of votes among views (“win the electoral vote”),
but—on account of “close elections” in those views—still be
farther away from its category label than another category
would have been when we average over the distances of all
views to all training images (“losing the popular vote”).

As a result, we take a slightly different approach. We
calculate the distance from each view of a given product to
all views of other products and concatenate those distances
into one long list of distances to which z-score voting can be
applied as usual. More informative views will have generally
higher z-scores and so will automatically get more say in the
final decision.

5. EXPERIMENTAL SETUP

5.1 Data Collection
We downloaded approximately four thousand product im-

ages from the shoe and men’s shirt departments of Amazon
and other online stores, manually labeling them with tags
for category, viewpoint, and product number. Table 1 shows
the categories among which we wanted to distinguish; ver-
tical lines separate the groups within which we wanted to

classify images. For instance, we tried classifying “velcro vs.
laced” sneakers, “pointy vs. nonpointy” high-heeled shoes,
etc. The only one of these classification problem for which
Amazon already provides separate tags is“ballet vs. boating
vs. baseball”. Amazon provides multiple images for most
of its shoes; examples of various views are shown Table 2.
Some of the views were non-standard as Table 3 shows, but
we included a few of them in our data sets to make the tasks
more realistic.

5.2 Evaluation
We test our classifier using 5-fold cross-validation; on each

fold, we build our vocabulary tree from the first 4/5 of the
images and classify on the remaining 1/5. Each image is
assigned to the category of its near neighbors among the
training images.3

The natural performance metric in this context is classifi-
cation accuracy. While we could evaluate overall accuracy,
doing so gives more weight to classes with smaller total num-
ber of images. For this reason, we instead follow Nowak et al.
[7, p. 494] in reporting class-size-adjusted accuracies: i.e.,
a simple average of within-class accuracy over each class.
For example, if our classifier predicted 10 out of 100 boat-
ing shoes and 5 out of 10 ballet shoes, the overall accuracy
would be 10+5

100+10
= 13.6%, while the class-size-adjusted ac-

curacy would be 1
2

`
10
100

+ 5
10

´
= 30%.

6. RESULTS AND DISCUSSION
In tables in this section, we report class-size-adjusted ac-

curacies averaged over the five classification tasks in Table
1. (This is despite the fact that some of our problems have
a baseline accuracy of 50% and others, 33%.) We combine
the standard errors from 5-fold crossvalidation among the in
five problems in quadrature as

overall SE =
1

5

vuut 5X
i=1

(SE for problem i)2.

In figures, we report separate standard errors for each prob-
lem, but averaged in quadrature over all the parameter set-
tings.

6.1 Number of Keypoints
Various figures in Nowak et al. [7, p. 495] show that

accuracy tends to peak at around 10,000 keypoints, which
is the default number that we used. Table 4 confirms this
finding, showing that varying the number of keypoints in
either direction does not make a large difference.

6.2 Number of Training Examples
Figure 3 shows how performance improves with increasing

numbers of product training examples from each category.
We constructed it by artificially reducing the size of our
labeled data to random subsets.

6.3 z-Score Voting
3In theory, it would be permissible to use both training and
testing images to build the vocabulary tree and then clas-
sify in a leave-one-out fashion without cross-validation; this
is because construction of the vocabulary tree is unsuper-
vised. However, such an approach requires having all test-
ing images available when the classifier is built, which is
unrealistic in many applied settings.

Category Velcro Laces Pointy Nonpointy Short Sleeve Long Sleeve

Sample image
Num. products 75 75 77 63 150 147

Num. individual images 299 390 414 360 152 152
Avg. views per product ∼ 4 ∼ 5 ∼ 5 ∼ 6 ∼ 1 ∼ 1

Category Ballet Boating Baseball Collar V-Neck Crew

Sample image
Num. products 50 98 66 100 97 100

Num. individual images 53 453 205 100 99 105
Avg. views per product ∼ 1 ∼ 5 ∼ 3 ∼ 1 ∼ 1 ∼ 1

Table 1: The product categories we collected. Our goal was to distinguish individual categories from among those categories
grouped by the vertical lines.

Back Front Top Left Top Right Bottom Left

Bottom Right Left-Angled Right-Angled Left Lateral Right Lateral

Table 2: Different viewpoints available for shoes. Not all were available for all products. Moreover, not all of those available
were used; for instance, we didn’t include “back” views for the pointy-nonpointy classification even though they were available.

Num. keypoints Accuracy ± SE (%)

5,000 81.5± 0.9
10,000 81.9± 0.9
15,000 81.8± 0.8

Table 4: Class-size adjusted accuracies as we increase the
number of keypoints.

Figure 3: Class-size-adjusted accuracies improved as we in-
creased the number of products in our training set.

Table 5 shows the performance of a k-NN classifier with
k set to 5%, 10%, and 20% of the total number of product
images. However, the z-score voting procedure—which takes
into account not just whether each training image is a “near
neighbor” but how far it is from the test image—results in
significantly higher performance.

Our basic z-score-voting procedure uses the distances to
all other images, but we could modify it to use only a certain
fraction of the closest neighboring images, as with regular k-
NN. This idea sounds like it might be particularly helpful for
those categories (in our case, the shoes) that have multiple
views, because we might imagine that very different views of
a shoe will have large distances regardless of category and,
hence, will contribute little information. However, we found
that doing this degraded performance, even for multiple-
view classification tasks.

6.4 Keypoint Detector
Table 6 reports the results of using a Canny edge detector

combined with random selection of keypoints rather than
entirely random keypoints. While the Canny+random ap-
proach appears to do well, the variations from task to task
are too large to draw firm conclusions, as is evident from the
fact that classification with 10,000 random keypoints hap-
pened to do worse on average than with only 2,000.

6.5 Multiple Views

Classification method Avg. acc. ± Avg. SE (%)

k-NN, k = 5% all products 76.8± 1.2
k-NN, k = 10% all products 71.7± 1.3
k-NN, k = 20% all products 61.4± 1.3
z-score voting, all products 81.6± 0.8

Table 5: The z-score voting procedure outperforms standard
k-NN for k = 5%, 10%, and 20% of the images.

Keypoint detector Avg. acc. ± Avg. SE (%)

Only Canny (∼2,000 keypoints) 82.9± 0.9
Only random (∼2,000 keypoints) 83.1± 1.1
∼2,000 Canny, ∼8,000 random 83.8± 0.9

∼10,000 random 81.4± 0.7

Table 6: Performance for various choices of keypoint-
detection method.

Figure 4 shows the improvement in performance that re-
sults from using more and more views of each product, where
information from the views is combined as described in Sec-
tion 4.3. We chose random subsets of the views to artificially
reduce the number of views available.

7. FUTURE DIRECTIONS
We achieved accuracies between 66% and 98% on 2- and 3-

class classification problems, showing that at least for some
tasks, tagging products based solely on their images can be
done in an automated fashion.

Even though we optimized the parameters of our classi-
fier, its basic structure was relatively simple. Recent work
in image classification has begun moving “Beyond bags of
features”—as one paper put it [21]—toward methods that
preserve information about the locations of features within
an image. One simple and popular way to do this is “spa-
tial pyramids,” i.e., dividing an image into sub-rectangles
and computing histograms over each of those regions sep-
arately in addition to over the entire image [21]. Bosch et
al. [17] have recently demonstrated state-of-the-art perfor-
mance on the Caltech 101 and 256 data sets, including 96.6%
accuracy on Caltech 101 (p. 22), using a spatial-pyramid
approach with histograms of both visual words computed
from SIFT descriptors as well as oriented gradient vectors.
It would be interesting to see whether this extension would
improve product-image classification. Utilizing information
about spatial locations in an image could be particularly
helpful in our case because, unlike natural images, product
images (at least from the same view) have relatively con-
stant locations for salient points, e.g., the toe of a woman’s
high-heeled shoe.

Finally, we should note that despite our system’s good
performance on some tasks, commercial application of our
image classifier could be harder due to our lack of control
over image dataset. For instance, when we searched for
“sneakers” on Amazon in order to find examples of some
with laces and some with velcro, we also found a number
of products that didn’t fall neatly into either category, such
as shoes with no straps at all, and “sneaker balls” for odor
removal. We didn’t include such images in our data set, but
a real-world classifier would have to deal with them.

Figure 4: Accuracy improved as we increased the number of
views used for each product.

8. REFERENCES
[1] M. Everingham, A. Zisserman, C. K. I. Williams,

L. Van Gool, M. Allan, C. M. Bishop, O. Chapelle,
N. Dalal, T. Deselaers, G. Dorko, et al. The 2005
PASCAL Visual Object Classes Challenge. Lecture
Notes in Computer Science, 3944:117, 2006.

[2] M. Everingham, L. Van Gool, CKI Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object
Classes Challenge 2007 (VOC2007) Results, 2007.

[3] Li Fei-Fei, R. Fergus, and P. Perona. Learning
generative visual models from few training examples:
An incremental bayesian approach tested on 101
object categories. page 178, 2004.

[4] G. Griffin, A. Holub, and P. Perona. The caltech-256.
Technical report, California Institute of Technology,
2007.

[5] Jutta Willamowski, Damian Arregui, Gabriella
Csurka, Christopher R. Dance, and Lixin Fan.
Categorizing nine visual classes using local appearance
descriptors. In In ICPR Workshop on Learning for
Adaptable Visual Systems, 2004.

[6] Jianguo Zhang, Marcin Marszalek, Svetlana Lazebnik,
and Cordelia Schmid. Local features and kernels for
classification of texture and object categories: A
comprehensive study. In CVPRW ’06: Proceedings of
the 2006 Conference on Computer Vision and Pattern
Recognition Workshop, Washington, DC, USA, 2006.
IEEE Computer Society.

[7] Eric Nowak, Frédéric Jurie, and Bill Triggs. Sampling
strategies for bag-of-features image classification.
pages 490–503. 2006.

[8] Andrea Vedaldi. Bag of features,
http://web.me.com/vedaldi/code/bag/bag.html.

[9] David G. Lowe. Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, November 2004.

[10] O. Boiman, I. Rehovot, E. Shechtman, and M. Irani.

In Defense of Nearest-Neighbor Based Image
Classification. In Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on,
pages 1–8, 2008.

[11] Josef Sivic and Andrew Zisserman. Video google: A
text retrieval approach to object matching in videos.
In ICCV ’03: Proceedings of the Ninth IEEE
International Conference on Computer Vision,
Washington, DC, USA, 2003. IEEE Computer Society.

[12] David Nistér and Henrik Stewénius. Scalable
recognition with a vocabulary tree. In CVPR ’06:
Proceedings of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition, pages 2161–2168, Washington, DC, USA,
2006. IEEE Computer Society.

[13] A. Bosch. Image classification for a large number of
object categories. PhD thesis, Departament
d’Electrònica, Informàtica i Automàtica, Universitat
de Girona, 2007.

[14] Andrea Vedaldi. Sift++: A lightweight c++
implementation of sift,
http://vision.ucla.edu/ vedaldi/code/siftpp/siftpp.html.

[15] John Koo. Canny edge detector algorithm and matlab
codes,
http://black.csl.uiuc.edu/ yima/imgproc/cacode.html.

[16] A. Bosch, A. Zisserman, and X. Munoz. Representing
shape with a spatial pyramid kernel. In Proceedings of
the 6th ACM international conference on Image and
video retrieval, pages 401–408. ACM Press New York,
NY, USA, 2007.

[17] A. Bosch, A. Zisserman, and X. Munoz. Image
classification using rois and multiple kernel learning.
IJCV 2008, 2008.

[18] S. Dudani. The distance-weighted k-nn rule,”. IEEE
Trans. Syst, Man Cybern, 6(4):325–327, 1976.

[19] T. Bailey and AK Jain. A note on distance-weighted
k-nearest neighbor rules. IEEE Transactions on
Systems, Man, and Cybernetics, 8(4):311–313, 1978.

[20] JES Macleod, A. Luk, and DM Titterington. A
Re-Examination of the Distance-Weighted k-Nearest
Neighbor Classification Rule. Systems, Man and
Cybernetics, IEEE Transactions on, 17(4):689–696,
1987.

[21] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing
natural scene categories. In Proc. CVPR, volume 2,
page 1, 2006.

Figure 1: Illustration of the bag of visual words approach that we use for classification. The first row shows the process of
learning a vocabulary of visual words by (i) selecting keypoints from each image, (ii) - (iii) computing SIFT descriptor vectors
at those keypoints, and (iv) clustering the entire collection of SIFT descriptors into groups whose centers will define the visual
words. We cluster into k groups (k = 3 shown, k = 100 used) and then recursively cluster each of those groups to create a tree
of cluster centers. The second row shows how we use the visual-word tree. (v) Given an image, we (vi) again compute SIFT
descriptors at keypoints and then (vii) walk each descriptor down the vocabulary tree using the closest cluster centers. Each
time a descriptor walks through a cluster center, we increment the frequency count for that visual word. (viii) The result is
a histogram of visual-word counts.

(a) Random (b) Random plus Canny (c) Small-SIFT points removed

Figure 2: Illustrations of chosen keypoints by red circles, whose radius is equal to the scale σ. To avoid clutter, these figures
show only keypoints with σ ≤ 10 pixels; however, the maximum possible σ is actually 1

10
min {280, 280} = 28 pixels for this

280 x 280 image. Panel 2a shows roughly 5,000 random keypoints. 2b shows random keypoints plus points found by the
Canny edge detector, such that the total number of keypoints is the same as in 2a. 2c is the same as 2b except that points
are removed that have SIFT descriptors with `2 norm less than 50. This removes about 1,000 keypoints in pure white space.
Some points remain on white space in the figure because their descriptor values are influenced by pixels that lie outside of the
one-σ radius shown.

