
BEAT-SYNC-MASH-CODER: A WEB APPLICATION FOR REAL-TIME CREATION OF
BEAT-SYNCHRONOUS MUSIC MASHUPS

Garth Griffin, Youngmoo E. Kim

Drexel University
Music & Entertainment Technology Laboratory

Philadelphia, PA

Douglas Turnbull

Swarthmore College
Computer Science Department

Swarthmore, PA

ABSTRACT
We present the Beat-Sync-Mash-Coder,1 a new tool for
semi-automated real-time creation of beat-synchronous mu-
sic mashups. We combine phase vocoder and beat tracker
technology to automate the task of synchronizing clips. Free-
ing the user from this task allows us to replace the tradi-
tional audio editing paradigm of the Digital Audio Worksta-
tion with an intuitive clip selection interface. The applica-
tion is completely web-based and operates in the ubiquitous
cross-platform Flash framework. The efficiency of our im-
plementation is reflected in performance tests, which demon-
strate that the system can sustain real-time phase vocoding of
5-9 simultaneous audio signals on consumer-level hardware.
This allows the user to easily create dynamic, intricate and
musically coherent acoustic soundscapes. Based on an ini-
tial user study with 24 high school students, we also find that
the Beat-Sync-Mash-Coder is engaging and can get students
excited about music and technology.

Index Terms— music, interactive systems, phase
vocoder, beat tracker, mashup

1. INTRODUCTION

The practice of combining many snippets of video or au-
dio into a new piece of digital art is a phenomenon that has
recently been gaining interest. For example, Israeli musi-
cian and producer Ophir Kutiel (stage name ‘Kutiman’) re-
ceived international media attention [1] for his ingenious mu-
sic videos comprised entirely of fragments from YouTube
clips.2 Projects like Kutiman’s have been dubbed mashups,
a term we will adopt throughout this paper.

Creating a mashup is laborious and time-consuming.
Source material must be located, cut up, and spliced together
into a new work of art. For the result to be musically co-
hesive, every shred must be meticulously synchronized. We
focus exclusively on audio mashups and look to the domain
of Digital Signal Processing (DSP) for ways to help facilitate
the creative process.

1http://music.ece.drexel.edu/bsmc
2http:// www.thru-you.com

In general, mashups are created in one of two ways. The
first is by combining very small units of sound (100-200ms)
into an audio collage according to some criteria. The user
specifies the desired audio output (e.g. recreating Led Zep-
pelin’s “Stairway to Heaven” from chime and bell sounds),
and the computer chooses samples and constructs the wave-
form. This affords limited control and restricts creativity. The
second is to have the user manually splice and layer the raw
audio using a Digital Audio Workstation (DAW). A DAW is
a digital version of the analog mixing board used in recording
studios, and can be found in such products as GarageBand or
ProTools. While the DAW is a powerful tool for manipulating
an individual track, combining multiple tracks is a laborious
process of innumerable miniscule adjustments. Our system
uses DSP to automatically combine audio clips in a musically
meaningful way. This provides the best of both worlds: the
user chooses what clips are played when, thereby retaining
expressive potential, but is freed from the burden of manually
aligning and layering the clips.

The algorithms we need are quite computationally de-
manding. Most web applications requiring intensive DSP
handle the computation on a powerful server using a fast
native language like C. This centralized model fails to har-
ness clients’ increasingly powerful hardware, and lacks the
scalability of performing the DSP on the client. However,
platform-independent frameworks suitable for web devel-
opment (such as Flash) typically add substantial overhead,
which drastically restricts how much DSP can be done by the
client. We circumvent this difficulty by using a new frame-
work from Adobe called Alchemy, which allows C code to be
compiled to optimized bytecode that can be executed in the
cross-platform Flash environment. This provides the power
of C without loss of platform independence, enabling our sys-
tem to perform all the DSP client-side. This represents a new
model for web-based DSP that improves scalability, lowers
cost, and expands access [2].

2. RELATED WORK

There are a variety of audio collage applications. Zils and
Pachet’s Musical Mosaicing [3] treats sample selection as a



constraint problem, where the constraints could be a target
song or a measure of concatenation quality for possible sam-
ple pairings. Lazier and Cook’s MoSievius [4] selects clips
with a technique called sound sieving and uses overlap/add to
make an evolving audio mosaic with real-time control.

There are a number of websites that cater to DAW users,
such as Jamglue3, Kompoz4, ACIDplanet5, and ccMixter6.
Typically, a website such as these bills itself as a commu-
nity of users who share their music specifically so that other
people can make remixes with it. They offer standard web
community features such as message boards and searching,
often with file upload/dowload capability, and a few even in-
clude an online DAW.

3. SYSTEM DESIGN

The system relies on two DSP modules, a phase vocoder and
a beat tracker. The core functionality of the system is the
automatic, synchronized playback of multiple clips using the
phase vocoder (Fig. 1C, Fig. 2). In order to perform this
operation, the system must have the beat locations for each
playing clip. We obtain this information with the beat tracker
whenever a user adds a new clip (Fig. 1A). The server (Fig.
1B) stores both the audio and beat data for every clip, but does
not perform any DSP. We use the de facto audio standard of
44100 samples per second.

3.1. Phase Vocoder
Phase vocoding enables pitch-invariant time-scaling. This al-
lows the system to change the tempo of each clip to match
the user-specified target during playback, while minimally
changing the user’s perception of the pitch and timbre.

Our implementation is similar to [5], and consists of al-
tering the phases of specific ranges in the frequency domain
such that the perceived pitch of the signal is changed by a tar-
get ratio without changing the length of the audio. This time-
invariant pitch-shifting can be combined with resampling for
pitch-invariant time-scaling. For example, to scale a clip from
102 bpm to 110 bpm, we would need a pitch-invariant time-
scaling of 110

102 = 107.8%. This can be achieved by first re-
sampling at a factor of 107.8% to reach the desired speed, and
then pitch-shifting at a factor of 102

110 = 92.7% to correct the
change in pitch. Changing the order of the two operations
does not noticeably affect the audio.

Our system allows real-time control by operating incre-
mentally. For a given call to the phase vocoder module we
only compute enough output to fill the output buffer. As is
standard practice, we overlap and add every frame with its
predecessors. This necessitates dedicated input and output
buffers for every active clip, allowing interruption and re-
sumption without loss of data. We use a window of length

3http://www.jamglue.com
4http://www.kompoz.com
5http://www.acidplanet.com
6http://www.ccmixter.org

clip 1

... Phase 
Vocoder

clip n

clip 1 at 
tempo

...

clip n at 
tempo

target 
tempo

playback

uploading

local audio file

Beat Tracker

beat file

client
server

beat 
corpus

music 
corpus

C

B A

Fig. 1. Overview of system architecture: (A) A typical entry
point is the user uploading a clip they wish to use in a mashup.
The client-side beat tracker module analyzes the clip to find
the beat locations. (B) Both the audio data and the beat data
are uploaded to the server. The user may select several clips
from the server to be mashed together. (C) Given a tempo
input from the user, the system uses the beat information to
determine the timescale ratio and start time for each clip, and
the client-side phase vocoder module is used to play each clip
at the target tempo, synchronized with the other clips.

1024 samples (23 ms) and overlap 75%. These parame-
ters were determined experimentally to maximize the number
of simultaneous audio tracks without degrading the acoustic
quality of the output.

3.2. Beat Tracker
Beat tracking enables the system to detect the locations of
beats in an audio clip. The system must synchronize the beats
of every clip during playback to ensure that the overall output
is perceived as musically coherent. When a user uploads a
clip, it is first analyzed by a beat tracker. The beat tracker is a
modular component, and so the system can be configured to
work with any beat tracking algorithm.

The first approach we tried was an implementation by
Ellis [6] that uses dynamic programming. We found that it
required ad-hoc post-processing tailored to our dataset. The
second implementation was based on a technique developed
by Scheirer [7], which uses a large bank of comb filters act-
ing as resonators. This approach had better accuracy on our
dataset, and is currently implemented in the system. However,
our system can easily be configured to work with any num-
ber of beat-tracking approaches. As proof of concept for the
modularity of the system, we also tested a third algorithm, de-
veloped by Jehan [8], which uses autocorrelation on a timbre-
based auditory spectrogram. This algorithm is made publicly
available as an API through EchoNest7, and our system can
use this API as well.

7http://echonest.com



output 1 (8 beats, 120 bpm)

input 1 (8 beats, 150 bpm)

output 1 (8 beats, 120 bpm)

input 1 (8 beats, 150 bpm)

output 1 (8 beats, 120 bpm)

input 2 (8 beats, 90 bpm)

output 2 (8 beats, 120 bpm)

output 1 (8 beats, 120 bpm) output 1 (8 beats, 120 bpm)

output 2 (8 beats, 120 bpm)

input 1 (8 beats, 150 bpm)

output 1 (8 beats, 120 bpm)

1 2 3 4 5
cli

p 
1 

(a
cc

om
pa

ni
m

en
t)

cli
p 

2 
(le

ad
)

ou
tp

ut
Target beats at 120 bpm

Fig. 2. Playback scenario for two clips: The first is an eight-
beat accompaniment clip, which is looping. The second is
an eight-beat lead clip, which is played once starting in the
second measure. Both clips are timescaled from their original
tempi to match the target of 120. Though the target tempo in
this example is shown as constant, the user could change the
tempo parameter at any time during playback and the system
would adjust without needing to recompute any audio data.

3.3. Music and Beat Corpora

Fig. 3. Users select clips
from the server-side reposi-
tory and upload clips from
their local machines.

Clips are the auditory build-
ing blocks of our system.
Currently, they are divided
into two conceptual groups,
designated “lead parts” and
“accompaniment parts”. Ex-
amples of lead parts are
solo vocal tracks or solo
melodic instruments. Ex-
amples of accompaniment
parts are drum and bass
tracks or chordal instrument
parts. The system is de-
signed such that additional
categories could easily be
implemented for increased specificity.

Whenever a user wishes to add a clip to the system, the
clip must be uploaded to the server. The system first analyzes
the new track with a beat-tracker, and then uploads both the
audio and the beat information. The user is also required to
indicate the category of the clip (e.g. lead or accompaniment).
Once a clip is uploaded to the server, it becomes part of the
music corpus that is accessible to every user.

Each clip in the music corpus must have a corresponding
entry in the beat corpus, which stores the location of each beat
in the clip. In order to minimize server load, the beat-tracking

computation is done on the client side before the audio is up-
loaded. Once computed, the beats are stored on the server so
that the information is available to anyone wishing to use the
clip. The beat locations are quantized by sample number.

3.4. Playback

Fig. 4. A master control
panel handles automatic ad-
dition and removal of clips,
as well as the global tempo
parameter.

Playback begins with clip
selection. The user can
manually choose each clip,
instruct the system to ran-
domly choose a number of
each type of clip (e.g. two
accompaniment and three
leads), or have a mix of
manually and automatically
selected clips. Clips can
be toggled between modes
while playing. Automati-
cally chosen clips are pe-
riodically swapped out ac-
cording to the user’s parameters. For example, A DJ might
have the system automatically play a randomly chosen ac-
companiment that changes every 16 measures and manually
add lead parts.

Fig. 5. Loaded clips are dis-
played with status informa-
tion and buttons to control
playback.

Once a clip has been se-
lected, its audio and beat
data are read from the server
into local memory. Up-front
loading eases server demand
and allows faster access to
the audio data during play-
back. Flash does not have
built-in support for multi-
threading, so when neces-
sary we handle concurrent
task execution by incremen-
tally operating on each task
once per render frame.

In order to adapt quickly to changes in parameters, the
system computes output audio incrementally with a 4096-
sample (92 ms) buffer. Increasing the length of the buffer
would result in more efficient computation but also increase
the latency associated with changing parameters. When
nearly all the data in the buffer has been played, the system
computes enough output to refill it.

The system keeps track of how long it has been since the
last beat occurred, L. The tempo value specified by the user
allows us to calculate the desired beat length, B. How much
of the current beat has already been played is then A = L

B .
For each clip i, we keep track of which beat was last played,
and so can access its location as beatsi[j]. The length of the
current beat in the original audio is then bi = beatsi[j + 1]−
beatsi[j]. Thus, the ratio ri = B

bi
represents the timescaling

ratio for clip i to be at the desired tempo. We calculate the



Table 1. Performance on consumer-level hardware

Processor Memory
Speed Size Speed Maximum
(gHz) Type (gb) (mHz) simultaneous

2.16 Intel core duo 2 667 5
2.0 Intel core 2 duo 1 667 6
2.4 Intel core 2 quad 8 800 7

2.66 Intel core 2 duo 4 800 9

location of playback within clip i as si = riA + beatsi[j].
We now instruct the phase vocoder module to compute frames
clip i, timescaled at ratio ri, starting from si, until the output
is the length of the buffer. The phase vocoder module updates
the position in the source audio as it operates, ensuring that j
is updated as necessary. When this process has been done for
every clip, all the outputs are summed and normalized, and
the result is sent to the output buffer.

If the user moves the tempo slider, only B changes in the
above calculations. Adding or removing a clip is simply a
matter of updating which clips are in the above loop. As soon
as the buffer is refilled, the user will hear the change. We need
not discard any of the audio that has already been computed,
and the latency is at most 92 ms, which is barely perceptible
to the human ear.

When a clip is added it must be aligned with the clips that
are already playing. Currently, we assume that all clips are
in 4/4 time. We set the playback position this clip such that
its first beat will occur at the next perceived downbeat, with
the effect of either truncating some samples or padding with
silence. We can achieve a similar alignment when starting in
the middle of the track by matching the next beat of the clip
that is an even multiple of four with the location of the next
perceived downbeat. Figure 2 shows the alignment operation
of the system over a period of several measures.

4. PERFORMANCE EVALUATION

4.1. Benchmarks
We tested the performance of our system on various proces-
sors by adding clips to the playback stream at 120 bpm until
the system could no longer play the audio (Table 1). These re-
sults were consistent across the major browsers and operating
systems. They show that top of the line hardware is not neces-
sary for this system to handle several simultaneous real-time
phase vocoder operations.

4.2. User Study
In addition to the laboratory tests for speed, we also per-
formed a user study. The subjects were high school students
participating in a free one-week educational program.8 Appli-
cants were selected based on a demonstrated interest in mu-
sic and technology, but not necessarily on the basis of skill

8Summer Music Technology. Drexel University, Philadelphia PA.
http://www.drexel.edu/smt

in those areas. The program was divided into sessions, one
of which was dedicated to the Beat-Sync-Mash-Coder. The
students were given an hour to experiment with minimal as-
sistance and supervision. Overall, students seemed to enjoy
the experience, and understood the functionality provided by
the system. In their feedback, some students offered general
praise, writing “the whole concept is pretty cool” and “it was
easy to use.” Others indicated that they especially enjoyed the
“tempo adjust” or “timestretching capability”. One student
said they liked that “you could choose which songs to load
and pick sections that you wanted”. Several ranked the Beat-
Sync-Mash-Coder session as their favorite part of the five-day
program.

5. CONCLUSION

We present this system as a new interface for music mashup
creation, breaking the paradigm of the traditional DAW
through novel use of two DSP technologies. Delivering beat-
tracking and real-time phase vocoding over the web brings
cutting-edge technology to the fingertips of those who might
not otherwise benefit from these technologies. We believe this
system, and others like it, could serve as an inspiration to stu-
dents at all educational levels with an interest in music and
technology, enriching their lives and motivating discovery in
the field of signal processing as a whole.

6. REFERENCES

[1] V. Heffernan, “World music,” New York
Times, 29 Apr 2009, 10 Sept 2009 http:
//www.nytimes.com/2009/05/03/magazine/
03wwln-medium-t.html.

[2] T. Doll, R. Migneco, J. Scott, and Y. Kim, “An audio dsp
toolkit for rapid application development in flash,” in In-
ternational Workshop on Multimedia Signal Processing,
Brazil, 2009.

[3] A. Zils and F. Pachet, “Musical mosaicing,” in Confer-
ence on Digital Audio Effects, Paris, 2001.

[4] A. Lazier and P. Cook, “Mosievius: Feature driven inter-
active audio mosaicing,” in Conference on Digital Audio
Effects, London, 2003.

[5] M. Dolson, “The phase vocoder: A tutorial,” Computer
Music Journal, vol. 10, no. 4, pp. 14–27, 1986.

[6] D. Ellis, “Beat tracking by dynamic programming,” New
Music Research, vol. 36, no. 1, pp. 51–60, 2007.

[7] E. Scheirer, “Tempo and beat analysis of acoustic musical
signals,” Journal of the Acoustical Society of America,
vol. 103, no. 1, pp. 588–601, Jan 1998.

[8] T. Jehan, “Event-synchronous music analysis/synthesis,”
M.S. thesis, MIT, Massachusetts, USA, Sept 2001.


