Word Alignment of Parallel Texts

Joshua Berney
Department of Computer Science
Swarthmore College
berney@cs.swarthmore.edu

Abstract

We induced a word-aligned dictionary of
English and French using parallel texts.
Our texts were the Hansards corpus and
a small literary text corpus. We performed
phrase alignment by the use of identical
words in both texts as anchor points and
improved the distribution of our anchor
points with lexically similar words. We
then performed statistical word-alignment
using ¢ statistical correlation to locate
translation word pairs in the parallel cor-
pora. Our results show that ¢ correlation
works reasonably well when a large hum-
ber of small parallel phrases are available.

1 Introduction

The goal of this project is to induce a translation dic-
tionary between two similar languages using parallel
corpora. The two languages we chose were English
and French, as they mostly share the same character
set and have significant linguistic similarities. One
ready source of large blocks of parallel texts in En-
glish and French are classic literary works that have
been translated. These have the advantages of being
in the public domain and are long documents with
consistent word usage and translation style through-
out. In addition, the translation of a literary text will
leave a large number of words untouched and un-
translated such as characters’ names, locations, etc.
We will need these and any French-English cognates
in our phrase alignment algorithm. The disadvan-
tages of using literary works is that the translators,

42

Jason Perini
Department of Computer Science
Swarthmore College
perini@cs.swarthmore.edu

in an attempt to reproduce the style of the original
texts, are less likely to produce exact translations,
will use less common words, and will repeat words
less often.

The literary text we used was “Swann’s Way”,
the first volume of Marcel Proust’s Remembrance of
Things Past, which is approximately 200,000 words
in French and English. We took the text from the
Project Gutenberg websitel. We also ran our sys-
tem against part of the Hansards corpus?, which is
the proceedings of the Canadian Parliament and is in
both English and French. This corpus was appealing
because it was already split into sentence alignments
and was very large (approximately 1 million words).

We started with phrase and sentence alignments
using anchor points, which were words that are iden-
tical in either text. We then increased the number of
anchor points we used by finding likely matches us-
ing lexical similarity. Armed with a large number of
aligned phrases, we then match likely pairs using the
¢ statistic correlation method.

2 PreviousWork

Dmitriy’s (2005) work has a number of similarities
to ours in his intentions, his system induces dictio-
naries for languages with few machine translation
resources from parallel texts in linguistically simi-
lar languages. He aligned his text on a character-to-
character basis, not word tokens, and he then per-

'Project Gutenberg main site: http://www.
gutenberg.org. The specific Proust text can be found
at: http://www.gutenberg.org/etext/2650 and
http://www.gutenberg.org/etext/7178

http://www.isi.edu/natural-language/
download/hansard/1

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 42-47
Computer Science Department, Swarthmore College

180000 T T T

. T T
“old.out" using 2:3 +
e " pd o+,
160000 ’;*Htrﬁ: LI £+§ *AT;I iy %+*+ L n
T +++¢++++$ TRy LYY
+ e ey
4

¥
+ Py
o PR e
Lo+ R T A
140000 f* g #ﬂjh L*ﬁ 1M++f ++++r+ s
[P e ¥ LT ff o BT
120000 |+ e e T
b o+ e TRET &wr Ft

W B
+ N

x
3
]
£ {n*f§++ AR 1 e %
5 100000 G’ s, T UERT et o ERRIG St o i o
S o o+ + +t + +, +
g I ey bt g +*§tﬁ+++ At e e Ty y&*
ho%
= 80000 -+t R L +++“‘¢¢ e %tj##t + % T
g T e The g R R I +ﬂﬂt}#++$ ERC ++f
3 o t
i [T T O A s S A Y A B
60000 [+ ¥y £ g e T TR Y Ty 7|
1+ F o I A A e et ¥
[+ 7 Lt s o T PR o T PR
+ B Ea *}3*4' A oo
PR 4 +
40000 [H¥ i &, & +§ % A o
T et BETLE B et D e
bt i P + p Ty

T+
&

20000

-

R U N
+ +F g+ +. Tty

ke BRI, o Tt #* Fefyy 4

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

English Anchor Index

Figure 1: Output from the original anchor alignment
procedure: English vs. French Anchor Position

forms a number of post-processing steps to improve
the matches he receives from the GIZA++ software,
which is a statistical alignment model updated by
Franz Joseph Och. One of these steps is the use of
lexically similar words, determined by edit distance,
as ‘seed’ words for the alignment models.

Melamed (1999) discusses a much more com-
plicated alignment process for bilingual parallel
corpora. He uses cognates and lexically similar
words with lexical similarity being determined by
the Longest Common Subsequence Ratio method.
The alignment is further refined using methods taken
from signal noise filtering, as well as several-pass
segment alignment and subsection deviations.

Gale and Church (1991) discuss using the ¢ statis-
tic for determining word correspondences. How-
ever, their paper is preliminary and provides only
vague numbers. There does not appear to be any
followup work.

3 Phrase Alignment

The first step in our system is finding equivalent
phrases in the source and target languages. This
is done to reduce the total number of comparisons
that must be made to find translations and to avoid
false matches of words that are very far apart from
each other in the text. Most post-segment-alignment
matching algorithms increase much faster than O(n),
where n is the number of words in a corpus, our
phrase-alignment method can significantly reduce
the time required later in the system.

Our algorithm relies on the fact that some words

are exactly lexically similar in the source and tar-
get languages, typically nouns. Common examples
of such words are places, names, and recently devel-
oped concepts. Using these words, we can divide the
source and target texts into equivalent phrases. Be-
fore beginning the main algorithm, we standardize
or eliminate most punctuation. Next, we locate the
indices of words that are exactly the same in the tar-
get and source language and record their indices. We
limit the minimum length of words to exclude which
are exactly lexically similar, but are actually differ-
ent words, such as the English ’a’ and French ’a’
(the English ’a’ is an indefinite article whereas ’a’
in French can mean the singular third-person conju-
gation of "avoir’, ’to have’). We also limit the num-
ber of occurrences of words in hopes of limiting the
number of times one word appears very close to it-
self and hence creates possible confusion over the
actual anchor pair matching.

Examining a plot of English vs. French position
generated from the above algorithm (Figure 1), we
see a relatively clear line through the origin (num-
ber of English words, number of French words) and
many scattered points throughout the plot. Consid-
ering the solid line in the figure and the structure of
language, we make the assumption that a linear re-
lation exists between the location of a given English
word and the French equivalent. Similarly, the loca-
tion of an English word should be approximately lin-
early related to the location of the equivalent French
word. However, we must also consider there will be
places where more English words per French word
occur than normal or vice versa. We are also con-
cerned with some target language sentences being
out of order with respect to source sentences.

Combining these concepts, we say a given pair
anchor points determined from the above algorithm
must satisfy:

¢ X $target_word_index
+v +af (1)

where ¢ = Snumber_source_words ' 3 jg some constant,

$number _target_words

a varies from -1 to 1,

$source_word_index =

a X ¢ X $target_word_index
+(1 — @) X Yola)

for each wvalid anchor pair examined in or-
der of occurrence and « is some constant.

TYnew =

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 42-47
Computer Science Department, Swarthmore College

180000

160000

140000

120000

100000

80000 [

French Anchor Index

60000 [

40000

20000

1 1 1 1 1 1 1 1 1
20000 40000 60000 80000 100000 120000 140000 160000 180000 200000
English Anchor Index

0
0

Figure 2: Output from the refined anchor alignment
procedure: English vs. French Anchor Position

$source_word_index is our approximation of where
the source word should appear. ~ represents the cur-
rent drift — that is the amount of deviation from a
linear translation. /3 is a small constant that allows
for some error in our approximation method. In
our implement a does not exist, we instead test that
$source_word_index without the 3 term fits within
the interval of 3. Equation 2 reflects that v must be
updated as anchor pairs as examined. We start with
an initial value of v at 0. Then we iterate through
potential anchor word pairs in order of their source
index. When a valid pair is found, the second equa-
tion is executed and v, is used until it is updated
by finding a new valid pair. Empirically, we have
found @ = 0.15 and 8 = 40 work well for the
Proust corpus. Due to the nature of the Hansards,
it has been difficult to determine optimal values.

Occasionally, a word that appears infrequently in
the text will occur very close to itself. Consider the
case of a character in a novel only encountered once.
This can lead to the algorithm picking up several
matches for the same word in a very small region
of the text. When this occurs, we take only the first
alignment for the word in the region. The output we
receive is shown in Figure 2. We use this output for
our later steps.

4 Lexical Word Alignment

For texts in similar languages, such as English and
French, using lexical similarities can improve the
alignment accuracy of other methods by finding
words that are likely to be matches. Very good

44

matches are added to the anchor point list along
with the lexically identical words and then the an-
chor point list is passed onto the ¢ statistic corre-
lation method. One simple method of finding lexi-
cally similar words is to measure their Levenshtein
distances.

The Levenshtein distance between two words is
the number of character alterations needed to change
one word into another. Each substitution, insertion,
or deletion of a character adds to the edit distance of
the words. The specific implementation of the Lev-
enshtein algorithm we used was written by Eli Ben-
dersky (2003). It employs a (M+1) x (N+1) matrix
where M and N are the lengths of the two strings.
The algorithm starts with the word in the source lan-
guage and calculates the cost for any move, follow-
ing the least costly path until the minimum transfor-
mation cost from one of the strings to the other is
found.

The way we used the Levenshtein distance mea-
sure to find potential matches followed a partial bag-
of-words approach. We looked at the two phrases
surrounding an anchor word as unordered list of
words, calculating the Levenshtein distance of each
word against every other word. We took several
steps to speed this process up and avoid calculating
distances uselessly. We decided that finding words
with a greater Levenshtein distance than 3 changes
would result in too many false matches, and so we
limited the length difference between two measured
words. Since our phrases could be fairly long, of-
tentimes over 200 words, we found that shortening
the window around the anchor word we looked at to
between 60 and 80 words in either direction reduced
the running time while keeping the algorithm from
possibly finding matches where they would be un-
likely to occur. We decided that translations would
rarely move a word over 120 words from the word
it was translated from. However, while most of the
words in most phrases will be analyzed by the al-
gorithm looking at the anchor points at the ends of
the phrase, this will result in the middle portions of
some large phrases being ignored. To capture these
‘lost” words we ran the entire lexical matching sys-
tem through several iterations, using the words we
decided were very good matches as new anchors,
thus reducing the size of the phrases.

The way we decided whether a match was ‘very

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 42-47
Computer Science Department, Swarthmore College

good’ was if the words in the match met three re-
quirements:

1. They had a Levenshtein distance of three or
less.

2. The ratio between the frequency of the words
was not too large in the corpus. For example,
if one word appears only two times, the word
it is matched with should not appear a hundred
times. For words with lexical distance of 1, the
ratio is 2:5; for 2, 3:5; for 3, 4:5.

3. The words, if they have a close numerical ratio,
should usually be matched with each other. In
other words, the matched words should not ap-
pear apart from each other too frequently. For
words with Levenshtein distance of 1, neither
word in the match can appear more than 30
times the number of times the match appears;
for 2, 20; for 3, 10.

These requirements were applied with differing
strictness depending on their Levenshtein distance.
Words that were very similar to each other were al-
lowed to vary in their unmatched appearances and
numerical ratio more than words that were less lexi-
cally similar.

5 ¢*Word Alignment

The ¢ statistic is used to determine correlation be-
tween two binary variables. After separating the
corpus into phrases, it is a generally good approx-
imation that a given word will appear only once per
phrase. By relating the occurrence (one or zero) of a
word in a phrase we can hope to find the equivalent
translated word in the target language.
The general form of the phi statistic is

ad — be
0= Vefoh ®)

where

| X~ | XT | Total
Y~ a b e
Y+ C d f
Total g h n

It can be seen ¢ is close to 1 if x and y frequently
do and do not occur in conjunction, near O if there
is no correlation, and if one rarely occurs when the
other occurs ¢ is close to -1. In practice, however,
computing the square root is relatively computation-
ally intensive. Furthermore, we make the assump-
tion that words will not be negatively related, that is,
the existence of one word in a source phrase should
not imply that some other word does occur in the tar-
get phrase. Making these assumptions, computation
time can be decreased by computing

(ad — be)?

2 _
o= efgh

(4)

An issue with using the ¢ statistic is computation
time. We must compute the ¢ value for every source,
target word pair. At initialization, we determine the
binary occurrence, either a word does or does not
exist per phrase, for each word in the source and tar-
get corpora. We iterate through each source phrase
for each source word counting the binary occurrence
of each target word in the equivalent target phrases.
From this, we learn d and using the pre-computed
binary occurrences for the entire corpus we can de-
termine the values of all variables. For each source
word and target word that occurs in some parallel
phrase to the source word, we compute a phi score.
We take the highest phi score and treat this as a
translation for the source word. A final refinement
is to only consider words source words which occur
greater than two times. If we consider source words
that only occur once, we will frequently receive a
large list of false good matches.

This algorithm works well for fairly limited size
corpus (<300,000 words), but as the size increases
the number of phrases a word occurs in increases
approximately linearly and thus the number of phi
ranks that must be computed increases very rapidly.
This has limited the size of corpus that may be used
for training. We believe in future work this problem
can be eliminated.

6 Dataand Results

We primarily used two corpora for testing: sections
from the 2001 Hansards and Swann’s Way by Mar-
cel Proust. Each of these documents are available

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 42-47
Computer Science Department, Swarthmore College

online in French and English. We also used a sen-
tence by sentence alignment of the 2001 Hansards.

6.1 PhraseAlignment

Phrase alignment has been found to be reasonably
precise. Due to the nature of phrase alignment we
have no standard data to which we can compare our
performance, but examination of parallel phrases re-
flect that it is generally good at picking out appropri-
ate anchor points. One problem is that not enough
anchor points are selected. For the Proust corpus of
approximately 200k words, 1000 anchor points are
found which translates into phrases of around 200
words. Increasing the parameters to allow the algo-
rithm to locate more anchor points greatly decreases
the quality of phrases.

6.2 Lexical Word Alignment

The lexical word alignment was only somewhat suc-
cessful. It did not end up adding many new anchor
points to our phrase alignments, as we needed to
constrain the matches greatly in order to reach a high
accuracy rate (approximately 70-80% correct). We
only allowed matches of up to a Levenshtein dis-
tance of 3 and small variations in their occurrence
ratios. This generally resulted in the introduction
of 400-600 new anchor points to a system with an
average of 4000 anchor points produced from using
identical words and our anchor phrase alignment al-
gorithm. All these results are on the Proust corpus.

6.3 ¢> Word Alignment

¢* word alignment was tested using our phrase
alignment system for the Proust and Hansards cor-
pora and using the sentence-aligned Hansards cor-
pus. Determining the total number of possible words
pairs would be by definition hence we do not include
recall numbers. Regardless of the phrase alignment
method, if we only considered alignment words with
a ¢2 value greater than 0.5 almost 80% of the words
pairs were correct. However, using our anchor point
based alignment system, we will receive less than
100 of >4000 unigue words which occur twice, re-
sulting in 90% precision, but a very low recall. Yet,
when using the sentence-alignment Hansards corpus
of 60,000 sentence pairs we find 4000 translation
pairs with a precision of 83% as found from a ran-
domly selected sample of 50 word pairs.

46

7 Conclusion

Two of the defining features of our dictionary induc-
tion system were the two texts we used and the ¢
correlation. As discussed in the results section, we
have found that ¢ correlation works well with a large
number of small parallel phrases. Our system would
work best on literary texts with many proper nouns,
which would give us better anchor point coverage.
Using the sentence-aligned Hansards text showed
us how critical having a well-aligned work is and
pointed towards one of the problems we had with
the non-sentence aligned literary work.

The results of our system are very promising.
While we found that lexical alignment did not im-
prove our results greatly, we found that a well
aligned corpora can be used to produce a very good
translational dictionary using a statistical method.
Future work using ¢ word alignment for sentence
aligned parallel corpora could provide a highly ac-
curate translation dictionary using no knowledge of
the text other than they are linguistically related.

8 FutureWork

8.1 Phrase Alignment

Phrase alignment based on sentence boundaries
should be examined in depth. While using lexically
identical words yields accurate parallel phrases, it
fails to yield enough of them. This is especially
crucial for ¢ word alignment where increasing the
number of phrases and decreasing their size im-
proves the accuracy and running time of the algo-
rithm. Cursory examination of the number of pe-
riods in the French vs. English version of Proust’s
corpus shows many more English than French sen-
tences. However, we can use the fact that on av-
erage a given number of English words occur per
French word and compare sentence lengths to deter-
mine sentence by sentence alignment. As is shown
in the results section for ¢? word alignment, if we
could improve parallel phrase alignment, we would
receive much better results.

8.2 Lexical Word Alignment

The lexical word alignment could undoubtedly be
improved in its accuracy and its production of ac-
curately matched words by more tweaking of the

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 42-47
Computer Science Department, Swarthmore College

various thresholds and restraints placed on the re-
sults. As for larger plans, using language-specific
rules and morphological knowledge would be good,
but would mean that we could not easily port the
system to other linguistically similar languages. A
more general approach that would greatly increase
the accuracy of our matches would be to use a cor-
pus with part-of-speech tagging, either pre-tagged
or done with a readily available part-of-speech tag-
ger. Lastly, testing the lexical word alignment al-
gorithm on other texts and more importantly, differ-
ent types of texts would reveal further improvements
that could be applied to our system.

8.3 ¢? Word Alignment

Several improvements can be made to the ¢ word
alignment algorithm. Clearly, this method will work
better with large amounts of data. However, we are
limited in the amount of data it can currently handle
due to the algorithm computing ¢ values for each
target word in a target phrase parallel to a source
phrase in which the source word exists. Examining
only the first approximately 10 phrases in which a
source word appears, we can determine the target
words that might be translations of the given source
word. From this, we can examine the rest of the
phrases for a source word and only compute ¢ val-
ues for the target words we have picked out. This
would significantly reduce time required to run this
algorithm and all us to examine very large corpora.

The ¢ correlation statistic is intended for use with
binary variables. Many sentences will contain mul-
tiple occurrences of a given word. This additional
information should be taken into account either by
using a different correlation statistic or somehow in-
corporating this information to the existing ¢ rank
statistic.

References

Genzel, D. 2005. Inducing a bilingual dictionary from
a parallel corpus in related languages. Submitted to
ACL-05.

Melamed, D. 1999. Bitext maps and alignment via pat-
tern recognition. Computational Linguistics 25(1).

Gale, W. and Church, K. 1991. Identifying Word Cor-
respondences in Parallel Texts Proceedings of the 4th
Foeech and Natural Language Workshop.

47

Bendersky, E. Levenshtein Distance Algorithm: Perl
Implementation, http://www.merriampark.
com/ldperl.htm

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 42-47
Computer Science Department, Swarthmore College

