Grammar Checking using POS Tagging and Rules Matching

Zac Rider
Computer Science Department
Swarthmore College
Swarthmore, PA 19081
rider@cs.swarthmore.edu

Abstract

This paper is an examination of various
techniques that could be used for grammar
checking and the description of the results
that were generated using a simple rules
matching system. To generate the rules
for this system, two techniques were con-
sidered: hand construction and an algo-
rithm that randomly generates large num-
bers of rules and uses comparison against
large corpora to find valid rules. While in-
dividual construction of rules proved to be
effective for addressing specific errors, the
random algorithm proved to be effective
for a larger number of grammatical errors.

1 Introduction

There’s something wrong with the sentence: Mi-
crosoft company should big improve Word grammar
check, but Word 2004 thinks that the only prob-
lem is that company should be capitalized. Gram-
mar checking is one of the more complicated tasks
for word processing, and the more irregular and
exception-filled the language, the more difficult the
problem becomes. Problems such as a noun-verb
mismatch: one of the mistakes are bad, or adjectives
incorrectly used as adverbs: | can’t read so good,
are much easier to find than a somewhat ambiguous
mistake such as: The badger was acted upon (pas-
sive voice).

The simplest method of fixing grammatical er-
rors, which was used for the experiments for this

14

project, is the process of rules matching, that is,
constructing a rule that applies to a given gram-
mar and then checking that the given input follows,
or does not follow, that rule. Using lexigraphi-
cally aided finite state machines is another, more
complicated method, that combines a bootstrapped
learning algorithm with parsing and POS tagging
(Sofkova Hashemi et al., 2003). Other methods
include syntactic analysis and parse tree analysis
(Bender et al., 2004).

One thing that differs in the methods of gram-
mar checking systems is whether or not the system
is checking for negative or positive grammar. Intu-
itively, it seems like it might be easier to define the
properties that are correct in a grammatr, as there are
a set number of grammatical configurations that are
correct and an infinite number of configurations that
are incorrect. The problem is that describing all of
the correct configurations for a grammar checker re-
quires that for every check, it must look at every sin-
gle rule to see if a given example is in the grammar.
This process is necessarily slower than a system that
uses a relatively few rules per check to see if some-
thing is not in the grammar. Since speed is not of
great concern for the system in this paper, the rules
checking could have been implemented either way,
but for simplicity, we chose to implement rules that
check for specific errors in grammar instead of using
a model of correct grammar to find incorrect exam-
ples. For a small system, it is easier to describe a
few things in English that are grammatically incor-
rect than every rule that is correct.

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 14-19
Computer Science Department, Swarthmore College

2 Reated Work

One approach to checking grammar relies on a
technique called aligned generation (Bender et al.,
2004). However, this process is not used in the ev-
eryday sort of grammar checking that might be used
in a word processor, rather it is a complicated pro-
cess that takes a fair amount of time and is used for
generating language learning systems. The system
takes mal-rules and mal-lexical types and entries
given by the user and uses feature structure gram-
mar analysis, which is an extensive search of mul-
tiple parse trees for errors based on the given rules.
The majority of the work in the system is the pars-
ing itself, in which the input sentence is put into ev-
ery possible configuration, and then those configu-
rations are rated, and an acceptable configuration is
chosen. One concern with this method is that the
process of creating the parse trees for analysis is po-
tentially time consuming.

Finite state machine analysis has the interest-
ing property of not being a rules based system,
rather it is a bootstrapped learning system that
uses regular expressions along with FSMs to at-
tempt to judge the correctness of lexically deter-
mined phrases (Sofkova Hashemi et al., 2003). The
phrases generated by the system’s lexicon are strings
mapped to a tag containing part-of-speech and other
feature information. While this method has 92% re-
call, it only has approximately 45% precision. This
could prove cumbersome for a word processor sys-
tem, as the user could be presented with many cases
that the checker flags as errors that are, in fact, cor-
rect. However, for the task described in this pa-
per, the recall percentage is acceptable. The random
rules generator described in this paper is an approx-
imation of this type of analysis, but the system de-
tailed in this paper has no lexigraphical aids.

The system that this paper attempts to emulate is
the Granska rules matching system (Domeij et al.,
1999), which makes a point of not using Hidden
Markov models and simply using what the author
calls error rules to locate errors and helping rules to
attempt to determine the best correction, and thus the
best fitting rule for a given error. The Granska sys-
tem has precision and recall of approximately 80%
for the problems that it was designed for, namely
noun-phrase disagreement and incorrectly split com-

15

pounds in Swedish. The issue with the Granska sys-
tem, however, is that while it has good results for
these two problems, it turns out that the methods
used in Granska do not translate well to all problems
in grammar.

3 Partsof a Grammar Checker

A typical grammar checker that might be found
in a word processor consists of three different
pieces. First, a processor has to be able to sepa-
rate the input into individual sentences. Then, it
needs a part-of-speech (POS) tagger that can ac-
curately label the data that it has. Charniak has
an excellent analysis of POS tagging (Charniak
et al., 1993) that is used by the makers of the
Granska system. The particular POS tagger that
is used for this system was taken from the Stan-
ford website http://www-nlp.stanford.
edu/links/statnlp.html (Toutanova and
Manning, 2000; Toutanova et al., 2003) and works
in log linear time. The speed of this system sub-
stantially speeds up training and test, as tagging is a
necessary preprocessing step.

One issue that is of some concern for this system
is that of POS tagger granularity. Some of the gram-
matical errors in English are fairly fine grained (ie.
was vs. were), and because a POS tagger may not
differentiate between the two, it makes it very dif-
ficult to attempt to detect problems associated with
them. From a tagging perspective, the sentence |
wish | was dead is the same as | wish | were dead,
while from the perspective of a grammar checker,
the second is correct and the first is not. While this
particular example is not difficult to correct, it is a
recurring problem that highlights the fact that when
hand-constructing error rules it is easy to for them
to become over-trained. When the granularity of the
POS tagger isn’t fine enough, a grammar checker
which relies solely on POS tags will not be able to
distinguish between many pairs of grammatical and
ungrammatical sentences such as the ones illustrated
above.

Finally, the system needs a method of identifying
grammatical errors. In the case of Granska (Domeij
et al., 1999), they exclusively use error rules match-
ing. Rules matching has the convenient properties
of being fast, easy to implement, and accurate for

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 14-19
Computer Science Department, Swarthmore College

the set of problems that the rules are constructed for.
The regular expression analyzer and aligned gener-
ation systems are more suitable for larger scale sys-
tems that attempt to evaluate grammars as a whole.

4 Procedure

4.1 RuleConstruction by Hand

Taking heavily from the ideas of the Granska sys-
tem, the grammar checker created for this project
essentially searches for a set of grammatical condi-
tions and then flags something as an error if those
conditions are found. For example, for a noun-verb
mismatch the checker searches for a noun and then
a verb. If the noun is singular and the verb is plural
or vice versa, the phrase is noted as incorrect and the
rules that are violated are recorded. What makes the
process of rule constructing difficult, is that no rule
is ever without exception. In addition to looking for
a noun and a verb, the checker must also be able to
ignore any possible prepositional phrase in between.

The rules system takes a given sentence and then
runs every single rule in sequence. Rules can be
added or subtracted depending on which grammat-
ical error the user is looking for. Essentially, every
rule is a small finite state machine. Rather than us-
ing actual words, the rules only check the POS tags
of words. The size of a given rule is the number of
POS tags that the rule contains. For each sentence,
the grammar checker invokes each rule, which then
checks itself against the sentence. This method has
been implemented as a depth-first search of the sen-
tence. First, the rule checks to see whether the tag
of the current word in the sentence matches the first
tag in the rule. If it does, the checker cycles to the
next word to see if its tag matches the next tag of the
rule, and so on for the whole sentence. In the case
of a wild card tag, the checker simply cycles until it
detects that the tag it is considering is the next tag
in the sequence of the rule. If the next tag is never
found, then the machine simply returns false.

For example, one of the specific rules for noun-
verb mismatch contains the POS tags: {NNS, PP, *,
NN, VBZ}. This rule, containing 5 POS tags, is size
5, and the **’ symbol stands for a wild card. For the
sentence The dogs of war is released, the rule iden-
tifies dogs as the noun, then the preposition, which
is of. The next noun is the object of the preposition,

16

war, but there may be any number of POS tags in
between of and war, because of the wild card tag.
After war, the verb, is, is associated with the noun
dogs, which is grammatically incorrect. Since the
POS tags in the sentence follow the sequence in the
rule, the sentence is flagged.

In the case of the sentence, The dogs is eating
the food, a different rule is needed to catch the mis-
take. A rule containing the sequence: {NNS, VBZ}
would work in theory, but then the sentence The
problem with the dogs is that they are bad. would
also be flagged as incorrect even though it is not. Ex-
amples such as these necessitate different levels of
rules. This system has three different classifications
of rules: specific, general, and improbable. Specific
rules, such as: {NNS, PP, *, NN, VBZ} have the
longest definitions. Specific rules have the highest
probability of finding actual errors and not mistak-
ing good sentences for bad sentences. General rules
typically are just a little simpler than specific rules.
If a specific rule would examine five tags, a general
rule would examine two tags with a wildcard like:
{NNS, *, VBZ}. Improbable rules are rules that
more often than not are actually grammatically cor-
rect, but could be incorrect, like the example: {NNS,
VBZ}.

For some problems such as noun-verb disagree-
ment, it’s a simple matter to figure out that the sys-
tem should be looking for a singular noun followed
by a plural verb, or vice versa, but for something like
the they’re, there, their problem, it’s more compli-
cated. Some rules used for this system can be found
at EduFind Online: http://www.edufind.
com/english/grammar/, but require a sub-
scription to use. While the definitions on EduFind
Online are more like a grammar primer than a pro-
grammer’s guide to grammar checking, the rules that
it has are fairly comprehensive and can easily be
converted to POS tag following rules. For exam-
ple, the description given for nouns, in which the
site lists rules for each different form of noun. The
rules include which forms of verbs are correct which
forms of nouns, as well as exceptions to each rule
and example sentences for each rule.

This kind of rules matching for the English lan-
guage can become very complicated, and for trickier
grammatical errors, the process of defining specific
rules can be very difficult. Trying to process higher

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 14-19
Computer Science Department, Swarthmore College

level/difficulty errors requires the test cases to be so
specific that the entire point of having generalized
rules is lost.

4.2 Random Rule Construction

To try to extend the kind of rules matching in
Granska to a larger scale, the other method at-
tempted for determining rules was random rules
generation. Writing upwards of 100,000 rules by
hand is a daunting process, so the system randomly
assigns POS tags to rules of a user defined size. One
issue with the generation process is that it could cre-
ate a rule of size 5 such as {VB, VBG, VBP, VB,
VBG}. While this rule is trivially incorrect, the fact
remains that it is incorrect. Therefore, while this
generation system does create rules that don’t exist,
it is always possible that a person will write a pattern
that should not exist that must be marked as incor-
rect. However, the generator might make a rule such
as: {NN, PP, *, NN, VB}, which is grammatically
correct.

In order to remove all of the rules that reflect cor-
rect grammar, the system tests the randomly gener-
ated rules against a corpus of correct English and
then eliminates all of the rules that generate flags in
the corpus, thus leaving a set of tags that hopefully
do not reflect proper grammar. Using sheer num-
bers, this method attempts to keep all of the rules
that reflect whatever English isn’t. This method
takes away the issue of having to write out rules
by hand at the expense of rule precision and trans-
parency. For this method, each rule is weighted
equally, and there are no specific, general, or im-
probable rule designations. This particular method
also has a fairly long training process.

5 Reaults

One of the difficulties of the hand-constructed rules
was actually measuring the effectiveness of the re-
sult. For a rule like noun-verb mismatch, it is very
difficult to actually be able to tell how well the sys-
tem can find errors, because it is easier to find cor-
pora that are correct than corpora that intentionally
make mistakes and then make note of those mis-
takes. The system was tested on 50 manually gener-
ated sentences that contained noun-verb mismatches
followed by 50 sentences that were grammatically

17

correct.

The specific rules for noun-verb mismatches
flagged 22/50 of the incorrect sentences and 1/50
of the correct sentences as incorrect. General rules
flagged 37/50 the incorrect sentences and 26/50 of
the correct sentences. The improbable rules flagged
48/50 of the incorrect sentences and 39/50 of the
correct sentences as incorrect. The precision and re-
call of the different rule types are shown in Figure
1.

The system was also tested on the
their/there/they’re and the then/than problem.
Although these problems are actually contextual
spelling errors, they can still be found with this
system. The tests using these problems generated
results similar to the noun-verb mismatch problem.
The major issue with dealing with results for these
specific rules, is that if a specific or general case
doesn’t trigger for a given data set, it is easy to
simply write the rule that covers that particular
problem, thus boosting the percentages. Having
the system flag above 90% of the incorrect sen-
tences with improbable rules is not an especially
noteworthy or difficult task.

The random comparison algorithm was trained on
approximately half of the translated Proust corpus
from the Gutenberg Project, which totals approxi-
mately 100,000 words. For comparison, the system
was trained for grammar rules containing two,
three, four, five, and six POS tags (rules of size 2-6).
Then the system was run on two grammatically
correct paragraphs and a short message obtained
from http://faculty.washington.edu/
sandeep/check/demofile.doc that goes
through Microsoft Word 2002 without causing any
error messages. While the random system does
trigger on both documents, it triggers at a signifi-
cantly higher rate for the grammatically incorrect
document, although it still misses a lot of rules.

Figure 2 shows a comparison of the number of
rules triggered for a grammatically correct docu-
ment versus a grammatically incorrect document.
The results for Figure 2 are encouraging, as they
suggest that the algorithm, despite not being per-
fect, has actually done something. For this graph,
all of the duplicate rule triggers have been removed.
At all levels, except for six where both are zero,
the grammatically poor document has more triggers

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 14-19
Computer Science Department, Swarthmore College

Percent of Precision, Recall, and Accuracy for Noun-Verb Mismatch

100
Recall ——

Precision ---x---
Accuracy --- %7

Percent

40

Rule Generalization

Figure 1: This graph shows precision and recall that
each generalization of rule produced. On the x-axis,
specific rules are 1, general rules are 2, and improb-
able rules are 3.

than the grammatically sound document. So, while
this method of random generation may not isolate
rules, it may be a fairly decent measurement of the
overall correctness of the grammar in a given docu-
ment.

6 Conclusions

Grammar checking is not a simple problem. The
Granska system works for two specific grammatical
errors in Swedish, detecting them rapidly and ac-
curately, and the two systems that were referenced
earlier each had various problems that made them
somewhat suboptimal. By writing out rules by hand,
this system achieves results that are directly propor-
tional to the number and accuracy of the rules that
are written for a given problem. Some problems re-
quire more rules than others, but in order to hit every
possible grammatical error this way, it is necessary
to construct an unrealistic number of rules. A sim-
ple problem like noun-verb disagreement took this
system 35 rules: 20 specific, 10 general, and 5 im-
probable. Describing something more complicated
such as passive voice, or something more nebulous
such as run-on sentences would require many more
rules. On top of that, it is nearly impossible to tell
if all of the rules of a given problem have been de-
fined. On the other hand, the second random com-
parison method is dependent on many factors, such
as the quality and size of the corpus that it’s training
on.

18

Random Rules Generation Performance on Two Documents
80

"le§| dat" using 1:2 —+—
“test.dat" using 1:3

70 - A
60
50

40

30

Number of flags per document

Rule size (POS tags per rule)

Figure 2: Random rules performance on two docu-
ments of 291 words. The upper line is the number of
rule triggers for an intentionally incorrect message.
The lower line is the number of rule triggers for two
normal paragraphs of correct text.

In conclusion, while it is possible to use a straight
rules based system to create a grammar checker, it
requires a large number of resources to create all
of the rules necessary to properly define grammar
problems. Using a random method obscures the rule
creation process, but hopefully generates a rules set
that has some bearing on what is grammatically in-
correct. This system’s random algorithm has a ten-
dency to generate terminal cases that don’t help de-
fine a grammar. By modifying the algorithm to in-
clude some stochastic processes, it may be possible
to make the algorithm substantially better.

7 Future Work

The random comparison algorithm in this paper is
fairly simple and could definitely use some adjust-
ment. Currently, all rules that do not trigger on the
training corpus are used while the rest are culled.
This is a completely arbitrary decision, and it may be
more effective to use a threshold greater than zero.
Also, training from the Proust corpus was perhaps
not the most efficient way to check for grammat-
ically correct English. Generating rules from the
Brown corpus and then testing them could generate
very different results.

Finally, the main issue with a rules-based system
is a lack of good ways to test it, short of having peo-
ple purposefully write grammatically incorrect sen-

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 14-19
Computer Science Department, Swarthmore College

tences and manually test them. This is both tedious
and of limited use. There are a relatively few cor-
pora that are intentionally incorrect and although the
knowledge that the grammar checker won’t misfire
is useful, manual construction of rules can only be
viable if there is a good body of data to test them on.
Therefore, a good extension to this project would be
to attempt to generate corpora that include grammat-
ically incorrect sentences along with correct ones for
the system to train on.

References

E. Bender, D. Flickinger, S. Oepen, A. Walsh, and
T. Baldwin. 2004. Arboretum: Using a precision
grammar for grammar checking in CALL. In Proceed-
ings of the InSTIL/ICAL Symposium: NLP and Speech
Technologies in Advance Language Learning Systems.

E. Charniak, C. Hendrickson, N. Jacobson, and
M. Perkowitz. 1993. Equations for part-of-speech tag-
ging. In Proceedings of the Eleventh National Confer-
ence on Artificial Intelligence, pages 784-789.

R. Domeij, O. Knutsson, J. Carlberger, and V. Kann.
1999. Granska — an efficient hybrid system for
Swedish grammar checking. In Nordic Conference of
Computational Linguistics, pages 49-56.

S. Sofkova Hashemi, R. Cooper, and R. Andersson.
2003. Positive grammar checking: A finite state ap-
proach. In CICLing-2003: Conference on Intelligent
Text Processing and Computational Linguistics.

K. Toutanova and C. Manning. 2000. Enriching
the knowledge sources used in a maximum entropy
part-of-speech tagger. In Proceedings of the Joint
SIGDAT Conference on Empirical Methods in Nat-
ural Language Processing and Very Large Corpora
(EMNLP/VLC-2000).

K. Toutanova, D. Klein, C. Manning, and Y. Singer.
2003. Feature-rich part-of-speech tagging with a
cyclic dependency network. In Proceedings of HLT-
NAACL 2003, pages 252-259.

19

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 14-19
Computer Science Department, Swarthmore College

