
Computer Science Department
CPSC 097

Class of 2005
Senior Conference

on Natural Language
Processing

Proceedings of the Conference

Spring 2005
Swarthmore College

Swarthmore, Pennsylvania, USA

Order copies of this proceedings from:

Computer Science Department
Swarthmore College
500 College Avenue
Swarthmore, PA 19081
USA
Tel: +1-610-328-8272
Fax: +1-610-328-8606
richardw@cs.swarthmore.edu

ii

Introduction

About CPSC 097: Senior Conference

This course provides honors and course majors an opportunity to delve more deeply into a particular
topic in computer science, synthesizing material from previous courses. Topics have included advanced
algorithms, networking, evolutionary computation, complexity, encryption and compression, and
parallel processing. CPSC 097 is the usual method used to satisfy the comprehensive requirement for a
computer science major.

During the 2004-2005 academic year, the Senior Conference was led by Richard Wicentowski in the
area of Natural Language Processing.

Computer Science Department

Charles Kelemen, Edward Hicks Magill Professor and Chair
Lisa Meeden, Associate Professor
Tia Newhall, Associate Professor
Richard Wicentowski, Assistant Professor
Benjamin Kuperman, Visiting Assistant Professor

Program Committee Members

Joshua Berney
Nicholas Guerette
Frederick Heckel
America Holloway
Andrew Lacey
Benjamin Mitchell
Jason Perini
Zachary Pezzementi
Zac Rider
Jiwon Shin
Nicolas Ward
Richard Wicentowski

Conference Website

http://www.cs.swarthmore.edu/˜richardw/cs97-s05/

iii

Conference Program

Tuesday, April 21

1:15-1:40 A Simple Probabilistic Approach to Ranking Documents by Sentiment
Andrew Lacey

1:40-2:05 Table Recognition and Evaluation
Jiwon Shin and Nick Guerette

2:05-2:30 Grammar Checking using POS Tagging and Rules Matching
Zac Rider

Thursday, April 23

1:15-1:40 Political Blog Analysis Using Bootstrapping Techniques
Fritz Heckel and Nick Ward

1:40-2:05 Developing a Morphological Segmenter for Russian
America Holloway

2:05-2:30 Report on Political Leaning Classification
Ben Mitchell and Zach Pezzementi

Tuesday, April 28

1:15-1:40 Word Alignment of Parallel Texts
Joshua Berney and Jason Perini

iv

Table of Contents

A Simple Probabilistic Approach to Ranking Documents by Sentiment
Andrew Lacey .1

Table Recognition and Evaluation
Jiwon Shin and Nick Guerette .8

Grammar Checking using POS Tagging and Rules Matching
Zac Rider . 14

Political Blog Analysis Using Bootstrapping Techniques
Fritz Heckel and Nick Ward . 20

Developing a Morphological Segmenter for Russian
America Holloway. .28

Report on Political Leaning Classification
Ben Mitchell and Zach Pezzementi . 34

Word Alignment of Parallel Texts
Joshua Berney and Jason Perini . 42

v

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

A Simple Probabilistic Approach to Ranking Documents by Sentiment

Andrew Lacey
Department of Computer Science

Swarthmore College
Swarthmore, PA 19081

lacey@cs.swarthmore.edu

Abstract

The problem of determining the senti-
ment of documents has often been ap-
proached via highly human-structured or
highly complex methods. These ap-
proaches have generally been constrained
to dividing an input corpus into two cat-
egories, positive and negative. I present
a simple and straightforward probabilis-
tic algorithm that attempts to rank an en-
tire corpus in increasingly-positive order
of sentiment, which is a more useful out-
put. The output can be easily reinterpreted
to solve a two-category sentiment classi-
fication task, in which case the proposed
algorithm performs nearly as well as ex-
isting approaches to that problem.

1 Introduction

Humans generally have little difficulty in determin-
ing the sentiment – that is, overall “positiveness” or
“negativeness” – of documents. However, this has
proved to be a rather difficult task for machines. Fur-
thermore, much of the research in this direction has
involved classifying the documents in a corpus into
two categories, as if the task were essentially the
same as topic classification, which it is not. In the
case of topic classification, a document is generally,
for example, about baseball or not about baseball.
The output of a program ranking documents in or-
der of the extent to which they are about baseball
would probably seem strange to a human reader – a

document that uses the term “home run” to describe
the sales of the Chrysler 300, which might rank near
the middle of such a scale, is really not about base-
ball at all. But this is not the case with sentiment
analysis. Sentiment of documents is essentially a
continuous spectrum. One imagines that the concept
of “half stars” in movie reviews was introduced be-
cause human reviewers found the choice between a
mere five ratings to be constraining. Thus, it makes
sense to approach the sentiment analysis task in a
way that naturally lends itself to ranking an entire
corpus in order of sentiment, rather than simply (or,
in fact, not so simply at all) making a decision be-
tween two categories, for documents that are clearly
in one of those categories. The algorithm presented
here takes such an approach, and is also easily mod-
ified to provide output that can be compared to that
of two-category sentiment classifiers.

2 Background and Explanation

The problem of determining sentiment of documents
really consists of two subproblems. The first is gen-
erating a list or dictionary of some kind containing
some sort of sentiment-term data. This could take
the form of a list of sentiment terms, a list of sen-
timent phrases, and/or a list of grammatical struc-
tures that assign the sentiment of a term in one posi-
tion to a noun in another, to name a few approaches.
The second subproblem is that of actually using this
sentiment-term data to assign sentiment to docu-
ments in a test set.

It is possible to essentially skip the first subprob-
lem, as far as machine NLP is concerned. That is,
one can manually generate a list of sentiment data by

1

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

referring to a dictionary, a thesaurus, and common
grammatical knowledge. This might be an accept-
able approach if it could be done definitively once.
However, sentiment data for varying domains can be
quite different. In automotive reviews, a reference
to “spongy” brake pedal feel seems to be a case of
negative sentiment. But the term “spongy” is prob-
ably irrelevant to sentiment in the context of movie
reviews. There are many similar examples. Thus,
a human would be required to manually develop a
list of sentiment data for each new domain of docu-
ments. This is a significant drawback.

It is also possible to design an algorithm – often,
in existing research, a rather complex one – to de-
velop a body of sentiment data from a training set of
documents. The drawback of such methods is that
they can be relatively complicated, difficult to im-
plement, and may suffer from long running times.
If they work well, that is a price worth paying. But
they do not work exceedingly well, as explained in
the following section. I show that similar results can
be achieved using a more straightforward approach
than those attempted in previous research.

3 Previous Work

A key piece of research on sentiment classification
involves several methods of classifying movie re-
views into positive and negative categories (Pang et
al., 2002). This paper limits the domain to docu-
ments that humans have classified as clearly positive
or negative. It does not attempt to rank documents
on a spectrum. The methods include two probabilis-
tic approaches, both more involved than that pre-
sented here, and a support vector approach that cre-
ates vectors describing training documents and finds
a hyperplane that best separates them. The best ac-
curacy reported by these authors is 82.9% correctly
classified.

(Turney, 2002), working on a similar task, tries
an interesting method: using a Web search engine
to find associations between various words and the
words “poor” and “excellent,” classifying words that
co-occur frequently with “poor” and infrequently
with “excellent” to be negative sentiment terms, and
vice versa. Although he achieves impressive 84.0%
accuracy on automotive reviews, his attempt at clas-
sifying movie reviews logged a lackluster 65.8% ac-

curacy. Turney mentions that “descriptions of un-
pleasant scenes” could be hampering the movie-
review results. This is not surprising, because his
sentiment data is gleaned from a Web search of gen-
eral documents, where words might be used very
differently than in movie reviews – not to mention
the dubious choice of the word “poor” as the flag
for negative sentiment, when the word is frequently
used in the economic sense.

(Yi et al., 2003) reports an interesting variation
on sentiment analysis. They developed a method for
mining the sentiment about particular attributes of
an item from a document, rather than classifying the
sentiment of the entire document. While this is not
directly related to the work presented here, it is in-
teresting because it goes beyond the common task of
binary document-level classification. This work is
an example of a highly structured approach to senti-
ment analysis – the researchers used predefined dic-
tionaries of terms and sentiment-phrase structures.
They found that accuracy was quite good – 85.6 %
– on product reviews, but deteriorated rapidly when
the corpus contained general Web documents where
sentiment phrases were sparse.

4 Algorithm

The proposed approach to the first subproblem – ex-
tracting a list of sentiment terms from a training set
– functions entirely on a unigram level, with one ex-
ception, to be discussed later. A training set of doc-
uments, each of which is associated with a numer-
ical score (the range of possible scores is specified
as a parameter), is used to construct a list of words.
Each word is associated with two numerical values:
the number of documents in which it was seen, and
the sum of the scores of all documents in which it
was seen. A given word is counted only once per
document. When all the documents have been pro-
cessed and the table has been filled, the table data
is used to compute an average score for each word.
This word-scoring formula appears in equation (1),
whered represents a document,w represents a word,
D represents a set of documents, andS(x) represents
the score of item x. The words are then ranked in
order of their final scores, and the list of words and
scores constitutes the output.

2

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

S(w) =

∑
[S(d) | w ∈ d]

| (D : d | w ∈ d) |
(1)

I added one heuristic that uses a bigram model.
The program contains a predefined list of negation
words, such as “no” and “didn’t”. These words are
never inserted into the word table. Instead, they indi-
cate that the next word should be flagged as negated.
This is done by prepending a ‘!’ to the lexeme. For
example, the phrase “didn’t satisfy” would result in
the word token !SATISFY being inserted in the word
table (or its count being incremented, if it were al-
ready there).

It is worth noting that this approach produces a list
containing a large number of terms that are not sen-
timent terms by any reasonable standard. One could
argue that using such a list would be a case of over-
fitting the data. However, in a certain sense, all in-
telligent approaches to sentiment-data gathering in-
volve overfitting the data. As alluded to previously, a
good set of sentiment data for movie reviews would
probably perform poorly when used to classify au-
tomotive reviews. A generic set of sentiment data
would probably perform poorly on most domains,
as (Turney, 2002) discovered. Either it would be
so small as to miss most of the sentiment terms in
each document, or it would be so large that it would
assign sentiment to terms that were not sentiment-
oriented within the domain. Thus, a good set of sen-
timent data for a given domain is defined function-
ally – as a set of data that performs well at judging
sentiment for that domain. Whether the words in the
list “look like” sentiment words is not particularly
relevant. Incidentally, this implementation does ig-
nore words containing capital letters, on the grounds
that assigning sentiment to proper names might in-
deed be a case of excessive overfitting. Reviews of
1990 Hyundais are much more negative than reviews
of 2004 Hyundais, so a corpus with a large num-
ber of early Hyundai reviews might result in nega-
tive sentiment being assigned to the word “hyundai”,
which is clearly undesirable even within the domain.
But, in general, I do not view the inclusion of non-
sentiment terms in the word table as a serious prob-
lem.

There are two key parameters that can be ad-
justed to change the results of the sentiment-term-
discovery process. The parameterf is the number

Word Score
!FUNNY 0.415323
SLOG 0.426471
DISMAL 0.431818
REDEEMING 0.4375
UNFUNNY 0.446429
... ...
ENCHANTING 0.897727
TRANSCENDS 0.902778
RESIGNED 0.902778
BLESSED 0.908333
HEARTBREAKING 0.910256

Table 1: Sample output of sentiment-term extraction

of times that a word must be seen in order to be in-
cluded in the final word list. For example, a word
that was only seen in one review might be rare, spu-
rious or irrelevant. The parametern is the number
of words on each end of the sentiment spectrum that
will be included in the final word list. One approach
would be to essentially set this parameter to infin-
ity, leaving the entire word list intact. Since words
near the center of the spectrum are probably not sen-
timent words and may be irrelevant, I hypothesized
that removing a portion from the middle of the word
list might give better results when scoring test re-
views. A sample of resulting words and scores from
running this algorithm on a training set of movie re-
views appears in Table 1. Note that scores are auto-
matically normalized to a zero-to-one scale for con-
sistency across corpora.

Once the list of scored words has been generated,
the second subproblem – ranking a test set of doc-
uments – can be attacked, essentially in the inverse
way. Each test document receives the score equal to
the average of the scores of the words appearing in
the document. Words in the document that are not in
the list of sentiment words are ignored. The output is
a list of pairs of numbers – the score assigned to the
document by the program, and the document’s ac-
tual score. The document-scoring formula appears
in equation (2), whereL is the list of words resulting
from the term-extraction process andW is a set of
words.

3

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

S(d) =

∑
[S(w) | (w ∈ d) ∧ (w ∈ L)]

| [W : (w ∈ d) ∧ (w ∈ L)] |
(2)

It should be noted that the assigned scores output
by this algorithm tend to be packed very close to the
middle of the score range, and thus are not directly
usable as meaningful scores. They could obviously
be normalized to the scale if meaningful scores for
individual reviews were desired. The goal of this
work was to output a ranking of documents, which
could be compared to the true human-determined
ranking for a clear picture of the overall performance
of the algorithm. For a large body of documents,
this seems to be closest to the sort of task we would
want to perform in a real-world situation. It also al-
lows for some telling visual representations of the
results. Much previous work on sentiment classi-
fication has involved classifying documents merely
as positive or negative. Aside from the fact that this
seems not terribly useful in practical applications, a
few statistics showing the percent of documents cor-
rectly classified in a two-bucket model does not ex-
actly provide a nuanced look at the performance of
the algorithm.

5 Results

I ran trials on two corpora: a very large set of Roger
Ebert’s movie reviews (approximately 4,000,000
words) and a smaller set of Consumer Reports Mag-
azine’s automotive reviews (approximately 86,000
words). I divided each corpus into a training set and
a test set of approximately equal size. For each cor-
pus, I tried several settings of the two parameters de-
scribed previously. Results are presented in graphi-
cal form. The horizontal axis represents the ranking
this algorithm assigned to a document. The vertical
axis represents the human-assigned score of a doc-
ument. Thus, completely correct output would be a
nondecreasing y-value as x increases. In the case of
the movie reviews, where the number of documents
is large and the number of possible scores is small,
this would look like a step function. Lines connect-
ing the points have been omitted from these graphs
for clarity.

While the graphs clearly deviate significantly
from an ideal result, they do provide some promis-
ing evidence. The Ebert graphs in Figures 1 and 2

show an obvious trend of increasing y-values as the
x-values increase, which is a desired result. The al-
gorithm works rather well with reviews that received
scores at an extreme, particularly those that received
very low scores (0 and 0.5). The middle of the spec-
trum is somewhat muddled, though an upward trend
is still visible. It should be noted that the graph of an
ideal result would not show steps of an equal width,
because there are fewer 0-score reviews than 2.5-
score reviews, for example. Thus, the fact that the
2.5-score reviews form a wide cluster is not entirely
unexpected. The higher setting of both parameters
seems to give better performance at the lower and
upper ends of the scale, as is evident in the graphs.
I tried a number of different parameter settings not
shown here. There was not a great deal of variation
in the results from different parameter settings.

In addition to generating the graphs showing the
ranking of all reviews, I also tried ignoring all docu-
ments with human-assigned scores other than 0, 0.5,
3.5 and 4, supposing that the goal was to correctly
classify strongly negative and positive documents as
such. I counted a document that appeared in the
lower half of the overall ranking as being ranked
negative, and a document appearing in the upper
half as being ranked positive. On this scale, 81%
of strongly negative and strongly positive documents
were correctly classified in the best trial. The best
accuracy achieved by (Pang et al., 2002) on a simi-
lar task using much more complex approaches was
82.9%, which was achieved through the use of sup-
port vector machines. Thus, this algorithm appears
to be within striking distance of a known benchmark
on the binary classification task.

The results from the Consumer Reports corpus,
in Figures 3 and 4, were similar in character to the
Ebert results, though appear less informative due to
the small size of the corpus. While there is a cor-
rect upward trend in the graphs of results, there is
quite a bit of fluctuation. However, it is notable
that, if the task is recast as a binary decision task,
where reviews with a human-assigned score of 80
points or higher are considered positive, those with
a human-assigned score of 40 points or lower are
considered negative (a larger section of low scores
was used because almost no reviews in the corpus
have human-assigned scores below 20 points), and
all other reviews are ignored, the classification ac-

4

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

curacy is 87%, which is quite good. In fact, this is
better than the accuracy numbers reported by any of
the similar binary classification experiments noted
in Section 3. This is, no doubt, at least partially
due to the nature of the Consumer Reports docu-
ments, which are written in a very straightforward
and unembellished style that does not wander off
on tangents not directly related to the product being
reviewed, as movie reviews sometimes tend to do.
None of the other sentiment-classification research I
have examined used Consumer Reports documents,
so the accuracy number presented here is not di-
rectly comparable. If a larger Consumer Reports
corpus were compiled, and some additional heuris-
tics possibly added to the algorithm, I would not be
surprised to see accuracy approaching 90%. Further
experimentation in this direction is warranted.

6 Future Work

Assembling a larger corpus of Consumer Reports
documents for further experimentation is an obvious
next step. I would expect better results for a larger
training set. Some further heuristics, perhaps in-
cluding additional bigram analysis or part-of-speech
sensitivity, may be worth trying. However, I would
be careful to add such features gradually and con-
servatively. The results presented here show that
other researchers who began with fairly complex ap-
proaches may be over-thinking the problem.

7 Conclusions

Automatic sentiment classification is a relatively dif-
ficult problem. However, when a large corpus is
available, a simple probabilistic approach yields re-
sults that are nearly comparable to those derived
from substantially more complicated algorithms.
Furthermore, this simple approach lends itself natu-
rally to creating an ordered ranking of documents by
sentiment, rather than merely classifying documents
into two buckets. This may be a much more useful
approach in real-world applications. A human who
is trying to read reviews of products will likely want
to read the best few reviews, not the best half, partic-
ularly when thousands of reviews are available. The
approach presented here is inherently suited for gen-
erating such results.

References

Bo Pang, Lillian Lee and Shivakumar Vaithyanathan.
2002. Thumbs up? Sentiment classification using ma-
chine learning techniques. InProc. of the Conference
on Empirical Methods in NLP, July 2002, pp. 79-86.

Peter D. Turney. 2002. Thumbs up or thumbs down?
Semantic orientation applied to unsupervised classifi-
cation of reviews. InProc. of the ACL

Jeonghee Yi, Tetsuya Nasukawa, Razvan Bunescu,
Wayne Niblack. 2003. Sentiment analyzer: extracting
sentiment about a given topic using natural language
processing techniques. InThird IEEE International
Conference on Data Mining, Nov 2003.

5

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500 3000

"ebert-5-1000.sco"

Figure 1: Results for Ebert corpus withf=5 andn=1000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500 3000

"ebert-10-3000.sco"

Figure 2: Results for Ebert corpus withf=10 andn=3000

6

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

"score_out.txt"

Figure 3: Results for Consumer Reports corpus withf=2 andn=500

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

"score_out.txt"

Figure 4: Results for Consumer Reports corpus withf=2 andn=∞

7

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 8–13
Computer Science Department, Swarthmore College

Table Recognition and Evaluation

Jiwon Shin
Department of Computer Science

Swarthmore College
Swarthmore, PA 19081

jiwon@cs.swarthmore.edu

Nick Guerette
Department of Computer Science

Swarthmore College
Swarthmore, PA 19081

ngueret1@cs.swarthmore.edu

Abstract

We present an algorithm that recognizes
tables in document images and extracts
their structural information. We use re-
gion growing to locate bounding boxes
around text, and cluster them into columns
by examining spatial relationships be-
tween bounding boxes and their vertical
neighbors. Once initial clustering is com-
plete, a series of post-processing steps are
applied to the clusters to find columns that
line up horizontally and may form tables.

1 Introduction

In performing optical character recognition on doc-
ument images containing tabulated text, it is neces-
sary to extract the text of each table cell, and desir-
able to obtain information about the relationships of
table cells to each other.

Our goal is to create a system that recognizes ta-
bles in document images and extracts the portions of
the image that correspond to each of the table cells,
keeping track of the spatial relationships between ta-
ble cells.

2 Previous Work

A number of researchers have suggested algorithms
for table extraction and table structure recogni-
tion. A survey of the field is provided by (Zanibbi,
Blostein, and Cordy , 2003).

(Watanabe et al., 1991) created a hierarchical ta-
ble recognition and analysis system that first locates

line segments separating table cells, uses the spatial
relationships among table cells to deduce the logical
relationships among them, and passes the extracted
cells to higher-level processing functions. They pro-
pose allowing higher-level data processing functions
to return information about contradictions encoun-
tered to lower-level functions, so that the lower-level
functions can attempt a different analysis.

(Chandran and Kasturi, 1993) modified that
method to require only a line at the top and bottom
of a table to allow it to be recognized, but not lines
separating all cells of the table. They instead use ver-
tical and horizontal projections of binary images of
extracted tables to identify boundaries between rows
and between columns.

Our table recognition algorithm is based on
(Kieninger, 1998). The author proposed a method
that identifies tabular structures in a document by
grouping word bounding boxes together and search-
ing for vertically-aligned groups of words that could
potentially be columns.

3 Algorithm

3.1 Overview

Our program takes a document image as input, and
places bounding boxes around blocks of text by
region growing. It then executes a set of post-
processing steps to determine if any of the bounding
boxes should be merged. Finally, spatial relation-
ships between bounding boxes are examined in or-
der to locate possible tables and identify their struc-
ture.

8

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 8–13
Computer Science Department, Swarthmore College

(a)

(b)

(c)

Figure 1: Segmenting by divider line identification
(a) locating the divider rows (b) locating the divider
columns between two divider rows (the result of
the first iteration) (c) after multiple iterations; the
gray regions represent areas that do not belong to a
bounding box

3.2 Finding Bounding Boxes

3.2.1 “Divider” Line Method

We initially attempted to find bounding boxes by
downsampling the input image and recursively lo-
cating “divider” lines. The program takes a docu-
ment as input, and downsamples it to have a width
in the range[256, 512). It then scans across each row
of the downsampled image, counting the number of
times that the intensity of a pixel differs from the in-
tensity of a neighboring pixel in that row. If the num-
ber of changes of intensity in a row is below a thresh-
old, which is proportional to the length of the row,
that row is marked as a “divider” row. A “divider”
row is assumed to not go through any text (Figure
1(a)). Once all the divider rows are identified, the
system executes the same procedure to scan down
columns within clusters of non-dividing rows (Fig-
ure 1(b)). This procedure produces a list of bound-
ing boxes, where each bounding box contains the
minimum and the maximum row and column values.

The list is added to the global bounding box queue,
which is initialized to be empty. For each bonding
box in the queue, we repeat the “divider” line pro-
cedure described above on the portion of image de-
fined by the bounding box, unless the box is smaller
than a threshold, and add the list of bounding boxes
this procedure outputs to the queue. If the procedure
returns an empty list, the bounding box is removed
from the queue and is stored in a separate list of final
bounding boxes. If, on the other hand, the procedure
returns a list of one or more smaller bounding boxes
within the original bounding box, then the original
one is discarded. Bounding boxes that are smaller
than a threshold are removed from the queue and
added to the list of final bounding boxes. This it-
erative process continues until the queue is emptied.

This method of finding bounding boxes did not
work well (Figure 1(c)). While the results were
acceptable when there were no lines separating ta-
ble cells, the algorithm’s performance on tables
with lines was poor. There were several problems
with the algorithm. First, the downsampling pro-
cess sometimes causes lines to have inconsistent in-
tensity, resulting a failure in recognition. Second,
when a table does not have many columns, the op-
posite can occur. Some of the rows in the table
may be marked as “divider” rows because the in-
tensity changes only few times, even though these
rows are not “divider” rows. Third, when the down-
sampling step was skipped to attempt to correct the
above problems, the algorithm generated an exces-
sive number of bounding boxes, most of which were
a character wide. This can be minimized by adding a
dilation step, but because pixels that are turned “on”
tend to be the same intensity, dilated columns often
passed the “divider” test, failing to fundamentally fix
the problem.

3.2.2 Region Growing Method

After noticing the weaknesses of the “divider”
line method, we decided to implement a region
growing algorithm to search for bounding boxes
around words. After reading the greyscale input im-
age, the system determines an intensity threshold
using an adaptation of the ISODATA clustering al-
gorithm (see Appendix A), and uses the threshold
to binarize the image (one intensity for background,
another for text). Based on the assumption that even

9

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 8–13
Computer Science Department, Swarthmore College

Figure 2: A set of bounding boxes that are inside a
big bounding box

a light tone of grey belongs to a letter and not the
white background, we modified the ISODATA algo-
rithm to be biased toward identifying pixels as be-
longing to text. Letters in the binary image are then
dilated horizontally so that all characters in most
words are connected. The amount by which to di-
late is determined as follows. First, a histogram of
lengths of horizontal runs of background pixels be-
tween text pixels is created, and the most common
length is found. Then, the histogram counts of in-
creasingly longer lengths beyond that most common
length are examined, and the first whitespace length
to have a count less than half that of the most com-
mon whitespace length is chosen as the amount by
which to dilate. The dilation is executed by marking
that many pixels to the right of each text pixel in the
original image also as a text pixel.

Once the preprocessing is complete, we apply a
region growing algorithm to place bounding boxes
around each region of connected text pixels (with the
rightmost edge of the bounding box being adjusted
leftward by the amount by which text pixels were di-
lated earlier, so that the bounding boxes are around
the original text and not the dilated text). When the
image contains a table with an outline, this results in
a bounding box that surrounds the table in addition
to a bounding box for each word in the table. To de-
tect this outer box, we mark all the bounding boxes
whose height is greater than the average height of
all the bounding boxes, and test them to determine
whether or not they contain any smaller bounding
boxes. We keep track of all of these “big” bounding
boxes and the smaller bounding boxes they contain,
as they are likely to form a table (Figure 2). This in-
formation ended up not being used in the final algo-
rithm, however, except to ignore the “big” bounding
boxes.

This method located bounding boxes more suc-

(a) (b)

Figure 3: Two different cluster types (a) type 1 (b)
type 2

cessfully and reliably, and hence, we used this
method to find bounding boxes.

3.3 Table Identification

Our table identification algorithm, described below,
is a modified version of the algorithm presented in
(Kieninger, 1998). We had initially implemented
the algorithm as it is described in the paper, which
produced a set of incorrectly-grouped clusters, as
expected. The problem we faced was that some
of the incorrectly-grouped clusters required post-
processing procedures that were too complicated,
detracting from the benefits that the clustering step
offered. We hence decided to modify the algorithm
to do more sophisticated clustering, which simpli-
fied the post-processing step.

The table identification algorithm takes as input
a list of bounding boxes that are not big bounding
boxes. The first box in the list is picked as a “seed”
and moved up and down by its height to test if any
box in the list overlaps the region defined by the
the seed box (If the height of the seed box is less
than the average height of bounding boxes, we in-
crease its height to the average height of bounding
boxes for the purposes of this step). If we locate
such a box, we perform theone-to-one relation test,
which tests if the seed box has at maximum one
overlapping bounding box above and one below it,
and that the boxes above and below are not horizon-
tally offset. If the found box preserves the seed box’s
one-to-one relation, we put it into a cluster with the
seed box and grow it vertically to find other boxes
that need to be linked. This process continues until
theone-to-one relation is no longer preserved or the
program finds no more bounding boxes to add to the
cluster. This process is then repeated on bounding
boxes as yet unexamined until all bounding boxes
have been clustered or found not to belong to a clus-

10

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 8–13
Computer Science Department, Swarthmore College

Figure 4: A false identification of a table column.
The bounding boxes in gray are clustered together
and are marked astype 1 because they happen to line
up vertically.

ter. The clusters generated in this process are called
type 1 clusters (Figure 3(a)), and are candidates for
being columns of a table. All the bounding boxes
that did not have anyone-to-one relations with the
vertical neighbors were put into a separate cluster
namedtype 2 (Figure 3(b)).

After we obtain clusters, we apply a series of post-
processing steps to avoid errors that are created by
the initial clustering process.

For each bounding box in thetype 2 cluster, we
calculate the distance between it and its horizontal
neighbors. A threshold for horizontal distance be-
tween neighboring bounding boxes is calculated us-
ing the same algorithm used earlier to calculate the
amount by which to dilate text pixels, except exam-
ining the distance between bounding boxes rather
than horizontal runs of background pixels. If the dis-
tance is less than the threshold, the seed box and the
relevant neighboring box are joined into one box,
and the distance between the new, larger box and
its horizontal neighbors is calculated to determine
whether or not more boxes should be joined to it, and
this is repeated until all bounding boxes have been
examined and joined if necessary. Although boxes
in type 1 clusters are not used as seed boxes in this
step, to allow for large tables with closely-spaced
columns, boxes intype 1 clusters that are neighbors
to a box in thetype 2 cluster being used as a seed
may be joined with that seed.

After horizontal joining is completed, the same
algorithm used to findtype 1 clusters is applied again
on the new set of bounding boxes. The number of
false identifications in blocks of text is now reduced
(Figure 4). With these finaltype 1 clusters, they are

Figure 5: An incorrect table identification

Figure 6: An incorrect structural analysis of a table

now all compared to each other, and any clusters that
contain any bounding boxes that vertically align are
marked as belonging to a table.

4 Results

We tested our algorithm on twenty different docu-
ment images ranging from images that only con-
tain texts to those with pictures, figures, tables, as
well as text. Our algorithm had 28.2% precision
and 90.0% recall counting tables (even if rows and
columns weren’t correctly identified or extra rows
and columns were identified outside the real table)
and 40.8% precision/87.2% recall counting individ-
ual table cells identified. The most common error
was an incorrect identification of a text block as a
table (Figure 5). This false identification occurred
especially frequently among documents that had two
columns. Another error that frequently occurred was
an incorrect analysis of the structure of a table. As
shown in figure 6, some of the table cells are subdi-
vided into smaller cells, causing an overproduction
of table columns. The problem that occurred in fig-
ure 6 cannot be fixed easily because all the cells are
in a type 1 cluster. None of the cells will ever be
tested for horizontal grouping, and the cells stay in
separate columns.

Our program was able to locate tables with and
without borders, tables with cells that span multi-
ple columns (Figure 7), as well as tables of pic-
tures (Figure 8). We had the most trouble extracting

11

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 8–13
Computer Science Department, Swarthmore College

(a)

(b)

Figure 7: An identification of a table with cells
that span multiple columns (a) cells that span multi-
ple columns are ignored (b) cells that span multiple
columns are divided into smaller cells

Figure 8: A correct identification of a table of pic-
tures

the structural information of tables with cells that
span multiple columns. In some cases, the cells that
span multiple columns were ignored (if there were
no cells in that row not spanning multiple columns)
while in other cases, those cells were divided into
smaller cells (if there were some cells in the same
row not spanning multiple columns, so they would
have been part of one of the clusters making up the
table). If the latter happened, the list of table cells
returned the correct information, i.e. the cell spans
three columns, even though the corresponding out-
put image did not reflect it.

5 Conclusions

We presented an algorithm that identifies tables in a
document and extracts their structural information.
Our algorithm finds bounding box for each unit (a
word, a picture, etc.) in the document image, and
clusters the bounding boxes together. The clusters
go through a post-processing step, after which ta-
ble cells are grouped together and tables are identi-
fied. We have shown that this algorithm works rea-
sonably well regardless of the content of the table
cells. It was capable of identifying about 90.0% of
all the tables in scientific documents, whether the
document was a simple document with a table on
top and text in the bottom or a complex one with
pictures, graphs, source codes, tables, and texts in
two columns.

6 Future Work

There are several ways this algorithm can be im-
proved. As mentioned earlier, the algorithm often
returns a block of text as a table when the input doc-
ument has two columns. This can be minimized by
locating the column divider that divides the docu-
ment into two columns, and disallowing a bounding
box from one side of the divider to be tested against
one from the other side.

Throughout the project, we assumed that the input
image is correctly aligned. However, for documents
where this algorithm is useful, such is not necessar-
ily the case. Many documents are hand-scanned,
and thus do not line up perfectly. To handle such
documents, we need to add a preprocessing step to
the algorithm, aligning the document before bound-
ing boxes are located. The preprocessing step would

12

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 8–13
Computer Science Department, Swarthmore College

constitute determining the major and minor axes for
the document and rotating the image by the discrep-
ancy.

After the horizontal joining step, table cells span-
ning multiple columns are often contained in a sin-
gle bounding box, and this is information that could
be used, once a table is identified, to correctly assess
the structure of the table by examining alignment be-
tween these bounding boxes and cells known to be
in the table.

Once the algorithm extracts tables with high pre-
cision and recall, it can be integrated into an OCR
software to correctly extract information in a table.

References

S. Chandran and R. Kasturi 1993. Structural Recogni-
tion of Tabulated DataProceedings of the Second IC-
DAR, 516-519. Tsukuba Science City, Japan.

T. V. Kieninger. 1998. Table Structure Recognition
Based on Robust Block SegmentationProceedings of
Document Recognition, volume V. 22-32. San Jose,
CA.

N. B. Venkateswarlu and P. S. V. S. K. Raju 1992. Fast
ISODATA Clustering Algorithms Pattern Recogni-
tion, volume 25(3). 335-342.

T. Watanabe, H. Naruse, Q. Luo, and N. Sugie 1991.
Structure Analysis of Table-Form Documents on the
Basis of the Recognition of Vertical and Horizontal
Line SegmentsProceedings of the First ICDAR, 638-
646. Saint-Malo, France.

R. Zanibbi, D. Blostein, and J.R. Cordy 2003.
A Survey of Table Recognition: Models, Ob-
servations, Transformations, and Inferences
http://citeseer.ist.psu.edu/zanibbi03survey.html .

Appendix A

The following is the pseudo-code for our adaptation
of the ISODATA algorithm used by the system. This
version is designed to allow biasing toward either
extreme. In our implementation, we used a white
bias of 1 (the default value), and a black bias of
3. More information on ISODATA can be found in
(Venkateswarlu and Raju, 1992).
thresh = range/2;

while(1) {

black_mean = white_mean = 0;
black_count = white_count = 0;

for all buckets i
in the histogram below thresh

black_mean += i * bucket_count[i];
black_count += bucket_count[i];

for all buckets i
in the histogram not below thresh

white_mean += i * bucket_count[i];
white_count += bucket_count[i];

black_mean = black_mean / black_count;
white_mean = white_mean / white_count;
weighted_mean = ((blackmean * whitebias +

whitemean * blackbias)/
(whitebias + blackbias));

if weighted_mean == thresh then
break;

else
thresh = weighted_mean;

}

return thresh;

13

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 14–19
Computer Science Department, Swarthmore College

Grammar Checking using POS Tagging and Rules Matching

Zac Rider
Computer Science Department

Swarthmore College
Swarthmore, PA 19081

rider@cs.swarthmore.edu

Abstract

This paper is an examination of various
techniques that could be used for grammar
checking and the description of the results
that were generated using a simple rules
matching system. To generate the rules
for this system, two techniques were con-
sidered: hand construction and an algo-
rithm that randomly generates large num-
bers of rules and uses comparison against
large corpora to find valid rules. While in-
dividual construction of rules proved to be
effective for addressing specific errors, the
random algorithm proved to be effective
for a larger number of grammatical errors.

1 Introduction

There’s something wrong with the sentence:Mi-
crosoft company should big improve Word grammar
check, but Word 2004 thinks that the only prob-
lem is thatcompanyshould be capitalized. Gram-
mar checking is one of the more complicated tasks
for word processing, and the more irregular and
exception-filled the language, the more difficult the
problem becomes. Problems such as a noun-verb
mismatch:one of the mistakes are bad, or adjectives
incorrectly used as adverbs:I can’t read so good,
are much easier to find than a somewhat ambiguous
mistake such as:The badger was acted upon(pas-
sive voice).

The simplest method of fixing grammatical er-
rors, which was used for the experiments for this

project, is the process of rules matching, that is,
constructing a rule that applies to a given gram-
mar and then checking that the given input follows,
or does not follow, that rule. Using lexigraphi-
cally aided finite state machines is another, more
complicated method, that combines a bootstrapped
learning algorithm with parsing and POS tagging
(Sofkova Hashemi et al., 2003). Other methods
include syntactic analysis and parse tree analysis
(Bender et al., 2004).

One thing that differs in the methods of gram-
mar checking systems is whether or not the system
is checking for negative or positive grammar. Intu-
itively, it seems like it might be easier to define the
properties that are correct in a grammar, as there are
a set number of grammatical configurations that are
correct and an infinite number of configurations that
are incorrect. The problem is that describing all of
the correct configurations for a grammar checker re-
quires that for every check, it must look at every sin-
gle rule to see if a given example is in the grammar.
This process is necessarily slower than a system that
uses a relatively few rules per check to see if some-
thing is not in the grammar. Since speed is not of
great concern for the system in this paper, the rules
checking could have been implemented either way,
but for simplicity, we chose to implement rules that
check for specific errors in grammar instead of using
a model of correct grammar to find incorrect exam-
ples. For a small system, it is easier to describe a
few things in English that are grammatically incor-
rect than every rule that is correct.

14

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 14–19
Computer Science Department, Swarthmore College

2 Related Work

One approach to checking grammar relies on a
technique calledaligned generation(Bender et al.,
2004). However, this process is not used in the ev-
eryday sort of grammar checking that might be used
in a word processor, rather it is a complicated pro-
cess that takes a fair amount of time and is used for
generating language learning systems. The system
takesmal-rules and mal-lexical types and entries
given by the user and usesfeature structure gram-
mar analysis, which is an extensive search of mul-
tiple parse trees for errors based on the given rules.
The majority of the work in the system is the pars-
ing itself, in which the input sentence is put into ev-
ery possible configuration, and then those configu-
rations are rated, and an acceptable configuration is
chosen. One concern with this method is that the
process of creating the parse trees for analysis is po-
tentially time consuming.

Finite state machine analysis has the interest-
ing property of not being a rules based system,
rather it is a bootstrapped learning system that
uses regular expressions along with FSMs to at-
tempt to judge the correctness of lexically deter-
mined phrases (Sofkova Hashemi et al., 2003). The
phrases generated by the system’s lexicon are strings
mapped to a tag containing part-of-speech and other
feature information. While this method has 92% re-
call, it only has approximately 45% precision. This
could prove cumbersome for a word processor sys-
tem, as the user could be presented with many cases
that the checker flags as errors that are, in fact, cor-
rect. However, for the task described in this pa-
per, the recall percentage is acceptable. The random
rules generator described in this paper is an approx-
imation of this type of analysis, but the system de-
tailed in this paper has no lexigraphical aids.

The system that this paper attempts to emulate is
the Granska rules matching system (Domeij et al.,
1999), which makes a point of not using Hidden
Markov models and simply using what the author
callserror rulesto locate errors andhelping rulesto
attempt to determine the best correction, and thus the
best fitting rule for a given error. The Granska sys-
tem has precision and recall of approximately 80%
for the problems that it was designed for, namely
noun-phrase disagreement and incorrectly split com-

pounds in Swedish. The issue with the Granska sys-
tem, however, is that while it has good results for
these two problems, it turns out that the methods
used in Granska do not translate well to all problems
in grammar.

3 Parts of a Grammar Checker

A typical grammar checker that might be found
in a word processor consists of three different
pieces. First, a processor has to be able to sepa-
rate the input into individual sentences. Then, it
needs a part-of-speech (POS) tagger that can ac-
curately label the data that it has. Charniak has
an excellent analysis of POS tagging (Charniak
et al., 1993) that is used by the makers of the
Granska system. The particular POS tagger that
is used for this system was taken from the Stan-
ford website http://www-nlp.stanford.
edu/links/statnlp.html (Toutanova and
Manning, 2000; Toutanova et al., 2003) and works
in log linear time. The speed of this system sub-
stantially speeds up training and test, as tagging is a
necessary preprocessing step.

One issue that is of some concern for this system
is that of POS tagger granularity. Some of the gram-
matical errors in English are fairly fine grained (ie.
wasvs. were), and because a POS tagger may not
differentiate between the two, it makes it very dif-
ficult to attempt to detect problems associated with
them. From a tagging perspective, the sentenceI
wish I was deadis the same asI wish I were dead,
while from the perspective of a grammar checker,
the second is correct and the first is not. While this
particular example is not difficult to correct, it is a
recurring problem that highlights the fact that when
hand-constructing error rules it is easy to for them
to become over-trained. When the granularity of the
POS tagger isn’t fine enough, a grammar checker
which relies solely on POS tags will not be able to
distinguish between many pairs of grammatical and
ungrammatical sentences such as the ones illustrated
above.

Finally, the system needs a method of identifying
grammatical errors. In the case of Granska (Domeij
et al., 1999), they exclusively use error rules match-
ing. Rules matching has the convenient properties
of being fast, easy to implement, and accurate for

15

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 14–19
Computer Science Department, Swarthmore College

the set of problems that the rules are constructed for.
The regular expression analyzer and aligned gener-
ation systems are more suitable for larger scale sys-
tems that attempt to evaluate grammars as a whole.

4 Procedure

4.1 Rule Construction by Hand

Taking heavily from the ideas of the Granska sys-
tem, the grammar checker created for this project
essentially searches for a set of grammatical condi-
tions and then flags something as an error if those
conditions are found. For example, for a noun-verb
mismatch the checker searches for a noun and then
a verb. If the noun is singular and the verb is plural
or vice versa, the phrase is noted as incorrect and the
rules that are violated are recorded. What makes the
process of rule constructing difficult, is that no rule
is ever without exception. In addition to looking for
a noun and a verb, the checker must also be able to
ignore any possible prepositional phrase in between.

The rules system takes a given sentence and then
runs every single rule in sequence. Rules can be
added or subtracted depending on which grammat-
ical error the user is looking for. Essentially, every
rule is a small finite state machine. Rather than us-
ing actual words, the rules only check the POS tags
of words. The size of a given rule is the number of
POS tags that the rule contains. For each sentence,
the grammar checker invokes each rule, which then
checks itself against the sentence. This method has
been implemented as a depth-first search of the sen-
tence. First, the rule checks to see whether the tag
of the current word in the sentence matches the first
tag in the rule. If it does, the checker cycles to the
next word to see if its tag matches the next tag of the
rule, and so on for the whole sentence. In the case
of a wild card tag, the checker simply cycles until it
detects that the tag it is considering is the next tag
in the sequence of the rule. If the next tag is never
found, then the machine simply returns false.

For example, one of the specific rules for noun-
verb mismatch contains the POS tags:{NNS, PP, *,
NN, VBZ}. This rule, containing 5 POS tags, is size
5, and the ’*’ symbol stands for a wild card. For the
sentenceThe dogs of war is released, the rule iden-
tifies dogsas the noun, then the preposition, which
is of. The next noun is the object of the preposition,

war, but there may be any number of POS tags in
betweenof andwar, because of the wild card tag.
After war, the verb,is, is associated with the noun
dogs, which is grammatically incorrect. Since the
POS tags in the sentence follow the sequence in the
rule, the sentence is flagged.

In the case of the sentence,The dogs is eating
the food, a different rule is needed to catch the mis-
take. A rule containing the sequence:{NNS, VBZ}
would work in theory, but then the sentenceThe
problem with the dogs is that they are bad.would
also be flagged as incorrect even though it is not. Ex-
amples such as these necessitate different levels of
rules. This system has three different classifications
of rules: specific, general, and improbable. Specific
rules, such as:{NNS, PP, *, NN, VBZ} have the
longest definitions. Specific rules have the highest
probability of finding actual errors and not mistak-
ing good sentences for bad sentences. General rules
typically are just a little simpler than specific rules.
If a specific rule would examine five tags, a general
rule would examine two tags with a wildcard like:
{NNS, *, VBZ}. Improbable rules are rules that
more often than not are actually grammatically cor-
rect, but could be incorrect, like the example:{NNS,
VBZ}.

For some problems such as noun-verb disagree-
ment, it’s a simple matter to figure out that the sys-
tem should be looking for a singular noun followed
by a plural verb, or vice versa, but for something like
the they’re, there, theirproblem, it’s more compli-
cated. Some rules used for this system can be found
at EduFind Online: http://www.edufind.
com/english/grammar/, but require a sub-
scription to use. While the definitions on EduFind
Online are more like a grammar primer than a pro-
grammer’s guide to grammar checking, the rules that
it has are fairly comprehensive and can easily be
converted to POS tag following rules. For exam-
ple, the description given for nouns, in which the
site lists rules for each different form of noun. The
rules include which forms of verbs are correct which
forms of nouns, as well as exceptions to each rule
and example sentences for each rule.

This kind of rules matching for the English lan-
guage can become very complicated, and for trickier
grammatical errors, the process of defining specific
rules can be very difficult. Trying to process higher

16

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 14–19
Computer Science Department, Swarthmore College

level/difficulty errors requires the test cases to be so
specific that the entire point of having generalized
rules is lost.

4.2 Random Rule Construction

To try to extend the kind of rules matching in
Granska to a larger scale, the other method at-
tempted for determining rules was random rules
generation. Writing upwards of 100,000 rules by
hand is a daunting process, so the system randomly
assigns POS tags to rules of a user defined size. One
issue with the generation process is that it could cre-
ate a rule of size 5 such as{VB, VBG, VBP, VB,
VBG}. While this rule is trivially incorrect, the fact
remains that it is incorrect. Therefore, while this
generation system does create rules that don’t exist,
it is always possible that a person will write a pattern
that should not exist that must be marked as incor-
rect. However, the generator might make a rule such
as: {NN, PP, *, NN, VB}, which is grammatically
correct.

In order to remove all of the rules that reflect cor-
rect grammar, the system tests the randomly gener-
ated rules against a corpus of correct English and
then eliminates all of the rules that generate flags in
the corpus, thus leaving a set of tags that hopefully
do not reflect proper grammar. Using sheer num-
bers, this method attempts to keep all of the rules
that reflect whatever English isn’t. This method
takes away the issue of having to write out rules
by hand at the expense of rule precision and trans-
parency. For this method, each rule is weighted
equally, and there are no specific, general, or im-
probable rule designations. This particular method
also has a fairly long training process.

5 Results

One of the difficulties of the hand-constructed rules
was actually measuring the effectiveness of the re-
sult. For a rule like noun-verb mismatch, it is very
difficult to actually be able to tell how well the sys-
tem can find errors, because it is easier to find cor-
pora that are correct than corpora that intentionally
make mistakes and then make note of those mis-
takes. The system was tested on 50 manually gener-
ated sentences that contained noun-verb mismatches
followed by 50 sentences that were grammatically

correct.
The specific rules for noun-verb mismatches

flagged 22/50 of the incorrect sentences and 1/50
of the correct sentences as incorrect. General rules
flagged 37/50 the incorrect sentences and 26/50 of
the correct sentences. The improbable rules flagged
48/50 of the incorrect sentences and 39/50 of the
correct sentences as incorrect. The precision and re-
call of the different rule types are shown in Figure
1.

The system was also tested on the
their/there/they’re and the then/than problem.
Although these problems are actually contextual
spelling errors, they can still be found with this
system. The tests using these problems generated
results similar to the noun-verb mismatch problem.
The major issue with dealing with results for these
specific rules, is that if a specific or general case
doesn’t trigger for a given data set, it is easy to
simply write the rule that covers that particular
problem, thus boosting the percentages. Having
the system flag above 90% of the incorrect sen-
tences with improbable rules is not an especially
noteworthy or difficult task.

The random comparison algorithm was trained on
approximately half of the translated Proust corpus
from the Gutenberg Project, which totals approxi-
mately 100,000 words. For comparison, the system
was trained for grammar rules containing two,
three, four, five, and six POS tags (rules of size 2-6).
Then the system was run on two grammatically
correct paragraphs and a short message obtained
from http://faculty.washington.edu/
sandeep/check/demofile.doc that goes
through Microsoft Word 2002 without causing any
error messages. While the random system does
trigger on both documents, it triggers at a signifi-
cantly higher rate for the grammatically incorrect
document, although it still misses a lot of rules.

Figure 2 shows a comparison of the number of
rules triggered for a grammatically correct docu-
ment versus a grammatically incorrect document.
The results for Figure 2 are encouraging, as they
suggest that the algorithm, despite not being per-
fect, has actually done something. For this graph,
all of the duplicate rule triggers have been removed.
At all levels, except for six where both are zero,
the grammatically poor document has more triggers

17

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 14–19
Computer Science Department, Swarthmore College

 40

 50

 60

 70

 80

 90

 100

 1 2 3

P
er

ce
nt

Rule Generalization

Percent of Precision, Recall, and Accuracy for Noun-Verb Mismatch

Recall
Precision
Accuracy

Figure 1: This graph shows precision and recall that
each generalization of rule produced. On the x-axis,
specific rules are 1, general rules are 2, and improb-
able rules are 3.

than the grammatically sound document. So, while
this method of random generation may not isolate
rules, it may be a fairly decent measurement of the
overall correctness of the grammar in a given docu-
ment.

6 Conclusions

Grammar checking is not a simple problem. The
Granska system works for two specific grammatical
errors in Swedish, detecting them rapidly and ac-
curately, and the two systems that were referenced
earlier each had various problems that made them
somewhat suboptimal. By writing out rules by hand,
this system achieves results that are directly propor-
tional to the number and accuracy of the rules that
are written for a given problem. Some problems re-
quire more rules than others, but in order to hit every
possible grammatical error this way, it is necessary
to construct an unrealistic number of rules. A sim-
ple problem like noun-verb disagreement took this
system 35 rules: 20 specific, 10 general, and 5 im-
probable. Describing something more complicated
such as passive voice, or something more nebulous
such as run-on sentences would require many more
rules. On top of that, it is nearly impossible to tell
if all of the rules of a given problem have been de-
fined. On the other hand, the second random com-
parison method is dependent on many factors, such
as the quality and size of the corpus that it’s training
on.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 3 4 5 6

N
um

be
r

of
 fl

ag
s

pe
r

do
cu

m
en

t

Rule size (POS tags per rule)

Random Rules Generation Performance on Two Documents

"test.dat" using 1:2
"test.dat" using 1:3

Figure 2: Random rules performance on two docu-
ments of 291 words. The upper line is the number of
rule triggers for an intentionally incorrect message.
The lower line is the number of rule triggers for two
normal paragraphs of correct text.

In conclusion, while it is possible to use a straight
rules based system to create a grammar checker, it
requires a large number of resources to create all
of the rules necessary to properly define grammar
problems. Using a random method obscures the rule
creation process, but hopefully generates a rules set
that has some bearing on what is grammatically in-
correct. This system’s random algorithm has a ten-
dency to generate terminal cases that don’t help de-
fine a grammar. By modifying the algorithm to in-
clude some stochastic processes, it may be possible
to make the algorithm substantially better.

7 Future Work

The random comparison algorithm in this paper is
fairly simple and could definitely use some adjust-
ment. Currently, all rules that do not trigger on the
training corpus are used while the rest are culled.
This is a completely arbitrary decision, and it may be
more effective to use a threshold greater than zero.
Also, training from the Proust corpus was perhaps
not the most efficient way to check for grammat-
ically correct English. Generating rules from the
Brown corpus and then testing them could generate
very different results.

Finally, the main issue with a rules-based system
is a lack of good ways to test it, short of having peo-
ple purposefully write grammatically incorrect sen-

18

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 14–19
Computer Science Department, Swarthmore College

tences and manually test them. This is both tedious
and of limited use. There are a relatively few cor-
pora that are intentionally incorrect and although the
knowledge that the grammar checker won’t misfire
is useful, manual construction of rules can only be
viable if there is a good body of data to test them on.
Therefore, a good extension to this project would be
to attempt to generate corpora that include grammat-
ically incorrect sentences along with correct ones for
the system to train on.

References

E. Bender, D. Flickinger, S. Oepen, A. Walsh, and
T. Baldwin. 2004. Arboretum: Using a precision
grammar for grammar checking in CALL. InProceed-
ings of the InSTIL/ICAL Symposium: NLP and Speech
Technologies in Advance Language Learning Systems.

E. Charniak, C. Hendrickson, N. Jacobson, and
M. Perkowitz. 1993. Equations for part-of-speech tag-
ging. InProceedings of the Eleventh National Confer-
ence on Artificial Intelligence, pages 784–789.

R. Domeij, O. Knutsson, J. Carlberger, and V. Kann.
1999. Granska – an efficient hybrid system for
Swedish grammar checking. InNordic Conference of
Computational Linguistics, pages 49–56.

S. Sofkova Hashemi, R. Cooper, and R. Andersson.
2003. Positive grammar checking: A finite state ap-
proach. InCICLing-2003: Conference on Intelligent
Text Processing and Computational Linguistics.

K. Toutanova and C. Manning. 2000. Enriching
the knowledge sources used in a maximum entropy
part-of-speech tagger. InProceedings of the Joint
SIGDAT Conference on Empirical Methods in Nat-
ural Language Processing and Very Large Corpora
(EMNLP/VLC-2000).

K. Toutanova, D. Klein, C. Manning, and Y. Singer.
2003. Feature-rich part-of-speech tagging with a
cyclic dependency network. InProceedings of HLT-
NAACL 2003, pages 252–259.

19

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 20–27
Computer Science Department, Swarthmore College

Political Blog Analysis Using Bootstrapping Techniques

Fritz Heckel, Nick Ward
Department of Computer Science

Swarthmore College
Swarthmore, Pennsylvania, USA

{fwph,nward}@sccs.swarthmore.edu

Abstract

In the past few years, the form of Internet
media known as “blogging” or weblog-
ging has exploded, especially in the realm
of politics. We propose and implement
a system for performing qualitative text
analysis of political blogs, with the ulti-
mate goal of placing them on a map to cat-
egorize them according to political bias.
Our system performed surprisingly well
on the task of categorizing entire blogs,
though the success is not entirely unquali-
fied, and the system is not suitable for cat-
egorizing individual articles.

1 Introduction

Political bloggers are some of the most prolific writ-
ers of today’s new media, generating thousands, if
not millions, of articles a day. We can harness the
sheer mass of blog articles to create a large and very
dense corpus for use with machine learning tech-
niques. Furthermore, as blogs are generally quite
easy for a human to classify by political bent, it is
effectively a self-labeled corpus.

Because of the sheer size of “the Blogosphere”,
it can be extremely difficult to navigate; informa-
tion overload takes on a new meaning after spend-
ing several hours traversing the blog nets. We pro-
pose a system to help ease this task, by performing
qualitative text analysis on blog articles. We hope to
develop a system that not only categorizes blogs dis-
cretely, but also places them along a spectrum so that
it is easy to compare different blogs with a glance.

We do not make any hypotheses as to the nature
of the final blog classification results. We seek only
some sort of document classification that reveals
some interesting patterns in blogs. Whether those
patterns manifest themselves as political affiliation,
authorship, or some more subtle content-based qual-
ifier, they will give some meta-information about a
given blog.

2 Related Work

There has been effectively no work in the area of
automatically classifying blogs based on their con-
tent. Most proposals focus on creating a pre-defined
taxonomy of blog subject matter that would be in-
tegrated directly into RSS stream files as metadata;
the current incarnation of such a system is a<taxo>
XML tag that can be included in a blog’s RSS feed
(Beged-Dov et al., 2000). Note that this system re-
quires manual entry of blog metadata by each blog
author for every document that they create.

One example of a set of classifications that could
be used with a taxonomy-based system has been
proposed for blogs produced not by individuals but
by corporations, businesses, or other organizations
(Wack̊a, 2004). The author suggests that the pri-
mary division in this blog subdomain is between
“External Blogs”, which are used by the company
or organization to promote their image, and “Inter-
nal Blogs”, which are used by employees to col-
laborate and disseminate knowledge and company
culture. The author mentions that any sort of top-
down classification proposed for blogs, even within
a constrained subdomain of “the Blogosphere”, is
doomed to failure simply because no one will agree

20

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 20–27
Computer Science Department, Swarthmore College

on what the fixed taxonomical classification stan-
dard will be. This is why automated classification
systems are necessary.

Other extensions to existing blog metadata have
been proposed, such as one to add Semantic Web-
compatible content classifiers to existing RSS feeds
(Karger and Quan, 2004). None of these methods
appear to address the fact that every blogger would
be required to conform to some sort of metadata
standard in order to make their entries classifiable,
nor that some bloggers might choose to intentionally
mislabel their entries for some reason.

3 System Architecture

Our system is composed of three major parts: a
data harvester, a training system for discovering
domain-specific lexicons, and a categorization com-
ponent. The first component uses Perl’s XML::RSS
and LWP::RobotUA modules to create a simple
RSS aggregator which feeds entries into a MySQL
database. The use of MySQL lets us continuously
harvest blog articles from RSS feeds while simul-
taneously training our system, avoiding problems of
file-locking and other race conditions, while the Perl
modules give us pre-existing code to help us avoid
reinventing the wheel.

The second component is based on the BASILISK
system (Riloff and Thelen, 2002) created by Ellen
Riloff. BASILISK first utilizes the AutoSlog (Riloff,
1996) system to generate extraction patterns from
the training data, then takes a seed lexicon to dis-
cover a larger dictionary of words relating to a num-
ber of categories in the political domain. We re-used
the top extraction patterns as templates to match
in new documents; these combined with the words
matching in the pattern will be used to create feature
vectors for the categorization step.

The third component is based on a part of the
SOMLib Digital Library system (Merkl and Rauber,
2000) created by the Department of Software Tech-
nology team at the Vienna University of Technol-
ogy. Their unsupervised document classifier con-
sists of a hierarchical feature map (HFM), a tree-like
arrangement of several independent self-organizing
maps (SOMs). The feature vectors derived from the
second component will be used as input to these
HFMs, which will be implemented using an exist-

ing SOM software module in the Python Robotics
Project (Blank et al., 2002) (Blank et al., 2005).
Developing in this pre-defined Python environment,
with which both of us are experienced, sped the de-
velopment of this component.

4 RSS Aggregation

We chose as sources for training data a number of
high profile, high volume blogs for which we knew
the political slant. The full list is shown in Table 1.

Table 1: Political Weblogs
Political Weblogs

Category Blog

Conservative GOP Bloggers

The Museum of Left Wing Lu-
nacy

Secure Liberty

The Blue State

Liberal Blog vs. Blog

Pandagon

Eschaton

TalkLeft

Kicking Ass

Most of these blogs are fairly high volume, and
each one is clearly partisan. Over the course of 2
1/2 weeks, 962 blog articles were aggregated, total-
ing around 25,000 words. This is not a very large
training corpus, but the unique nature of blogs would
likely cause a larger corpus aggregated over a much
longer time period to be far less useful: issues in
blog-space may change rapidly, requiring retraining
of the feature map on a regular basis.

5 Feature Training

We tried two different approaches to building fea-
tures:

• Caseframe features (Sec. 5.1)

• Lexical features (Sec. 5.2)

We expected lexical features to be far more success-
ful, as caseframes would tend to be more general,

21

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 20–27
Computer Science Department, Swarthmore College

and not necessarily even strongly related to the do-
main (ie, he said). Lexical features, on the other
hand, would be words which tended to show up fre-
quently throughout the corpus.

AutoSlog builds caseframes based on a num-
ber of simple heuristic patterns such as<subj>
passive-verb, which will generate caseframes like
<person> gave. When using AutoSlog-TS, these
extraction patterns are generated for each noun
phrase in each set of texts. Based on the number
of times a pattern is found in the relevant texts and
not in the irrelevant texts, each pattern is assigned
frequency values. These can then be used to provide
a probability that a caseframe is found in the text of
an interesting domain. This serves as a score, and a
number of patterns can be chosen based on their high
scores. AutoSlog extracts patterns for each word
specified in a target dictionary, rather than for every
word in the corpus as AutoSlog-TS does. Frequen-
cies are not calculated for these caseframes; instead
they are used for extracting additional words, and
the words are scored based on frequency.

5.1 Caseframe Features

To build caseframe features, orextraction patterns,
we used AutoSlog-TS. AutoSlog-TS is capable of
generating extraction patterns from text with no su-
pervision. Our text corpora were composed of about
900 entries from the blogs mentioned above, totaling
about 25,000 words, and an unrelated text composed
of samples from the Corpus of Professional Spoken
American English1. The samples from CPSA to-
taled about 75,000 words; ideally, we would have
used a more balanced corpus.

Caseframes are extraction patterns: generally,
they are composed of a verb phrase (or partial verb
phrase) with one or more slots for an associated
noun phrase. From these corpora, AutoSlog gen-
erated 855 caseframes which we used as individual
buckets in a feature vector. By calling Sundance on
each blog entry, we were able to find the number of
times each extraction pattern occurred in the text;
these values were used to build the actual feature
vector which could then be fed into the SOM for
training.

1http://www.athel.com/cpsa.html

5.2 Lexical Features

To build a lexicon for the domain, we started with
a number of seed noun phrases in several categories
relating to politics. Table 2 shows examples of cat-
egories and seed noun phrases for each. Ultimately,
we found just seven seed noun phrases to be suf-
ficient: Bush, President, security, terrorism, terror,
Congress, andSenate.

Building the full lexicon then followed a simpli-
fied variant on the BASILISK method(Riloff and
Thelen, 2002).

• Run the training corpus through AutoSlog, us-
ing the seed lexicon to generate extraction pat-
terns

• Use Sundance with the new extraction patterns
to discover additional lexicon candidates

• Choose some number of candidate noun
phrases to add to the lexicon

• Remove common noun phrases from the list
(such as he, she, this, etc.)

• Repeat until the lexicon size stabilizes.

We simplified the method by placing a threshold
on the number of occurrences necessary for noun
phrases to be added to the lexicon, rather than us-
ing a full probabilistic method. Using a threshold of
five occurrences, we found that after six iterations of
the algorithm, the lexicon had stabilized at 254 noun
phrases for our training set. Some of the top noun
phrases were, unsurprisingly,Congress, Senate, and
George Bush. Other, more loaded in context, were
Pro-Choice President or Pro-Life President.

Once again, the feature vector was created by
counting the number of times the features– this time,
the members of the lexicon– occurred in each blog
entry. This vector’s buckets represented number of
occurrences of words instead of extraction patterns,
and the feature vectors were fed into the map as with
the extraction pattern features.

6 Categorization

6.1 Self-Organizing Maps

A self-organizing map (SOM) consists of a two-
dimensional grid of nodes, each of which is ini-
tialized with a random vector in the feature space.

22

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 20–27
Computer Science Department, Swarthmore College

Table 2: Categories and Seed Words
Categories and Seed words

Category Seeds

Issues Social Security

Iraq War

Election Reform

Gay Rights

Parties Democrats

Republicans

GOP

Figures George W. Bush

John Kerry

Paul Wolfowitz

The training set for a single SOM consists of a large
number of vectors distributed throughout the feature
space; therefore the SOM will effectively ”learn” a
simple clustering of that space. A conceptual depic-
tion of a newly initialized 4x4 SOM can be seen in
Figure 1. Note how the mapping of each SOM unit
into the feature space is arbitrary.

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

Figure 1: The units of a self-organizing map (SOM)
in the standard two-dimensional grid configuration
and their initial mapping into a feature space.

As each vector from the training set is input into
the SOM, the unit whose state is closest to the input

in the feature space by Euclidean distance ”wins”.
The unit, and with some fall-off its neighbors, has
its state adjusted to be closer to the input vector. Af-
ter training, the nodes or units in the SOM will have
clustered the feature space. The neighborhood func-
tion hci is given in Equation 1, where‖rc − ri‖ is
the distance in feature space between two units’ vec-
tors, andσ(t) is the width of the Gaussian.‖rc − ri‖
is merely a representation of whatever arbitrary dis-
tance metric is selected for a particular SOM im-
plementation; no vector subtraction necessarily oc-
curs. In our system, we chose to use standard Eu-
clidean distance in the feature space, since we could
guarantee that all of our input vectors would be the
same length.σ(t) decreases with time, so after many
training iterations only the winning unit’s position in
feature space is updated (Merkl and Rauber, 2000).

hci(t) = e
−
‖rc−ri‖

2

2σ2(t) (1)

By adjusting not just the best-match unit but also
its neighbors, and by decreasing the influence on
neighbors over time, the SOM units tend to detect
clusters in the feature space. Hopefully, the end po-
sitions of the unit vectors subdivide that space in an
interesting way.

The output of each unit in an SOM is associated
with at most one cluster, although multiple units
may represent a single informative cluster. The in-
terpretation of the result of the training is entirely
up to the user; the SOM can only give a clustering
in terms of the feature space, as it does not “know”
anything about the problem domain. In our case,
feature vectors represent individual blog entries, so
the clusters are interpreted as representing some ab-
stract grouping of entries.

6.2 Hierarchical Feature Maps

The number of clusters is highly dependent on the
architecture of an individual SOM. It can only clus-
ter the feature space into at most as many clusters
as it has units. This is where a hierarchical feature
map (HFM) becomes useful: by using one SOM to
divide the feature space into smaller sub-problems,
each of those sub-problems can in turn be clustered
by an SOM. The result is a highly specific clustering
of the feature space.

23

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 20–27
Computer Science Department, Swarthmore College

A typical HFM consists of a tree structure in sev-
eral layers, as shown in Figure 2. The topmost layer
of the HFM, and the root of the tree, consists of a
single SOM. The individual units of an SOM at each
layer pass feature vectors onto an entire SOM in the
next layer down, all the way down to the base of the
HFM.

� � 	
 � �
 � �

 � �
 � �

 � �
 � �

Figure 2: A hierarchical feature map (HFM) consists
of multiple SOMs in a tree-like structure

To speed training and improve the accuracy of the
results, the dimensionality of the feature space can
be reduced between each layer on a unit-by-unit ba-
sis. If all of the input vectors that match have similar
values along one feature space dimension, that di-
mension can be eliminated before passing the train-
ing subset onto the next SOM layer.

Note that it is possible for the dimensionality
of the feature subspace being handled by different
SOMs on the same HFM layer to vary. Some SOM
units higher up in the HFM tree may be trained to
make big clustering decisions that significantly re-
duce the dimensionality, while others may make no
change to the dimensionality and pass vectors di-
rectly to their child SOMs.

Once the HFM has been trained, using it is simply
a matter of inputting a feature vector. At each layer,
the “winning” unit of the SOM will pass the vector
down to its child SOM, until the bottom of the HFM
tree is reached. The bottom-most units of an HFM
are each interpreted as having some cluster-related

meaning, based on the feature vectors.

� � � � �

� � � � � � � �
� � � � � � � �

! � � � " � � � � � � � �
� � � � � # $ %

& '

() *

+ � � ! � � , � � � � -
. � � � / - � �

� � 0 �
� � � � � � � �

1 � � � � -

� � - � � � �
� � � � � � � �

& '

! � � � " � � - � � � �
2 � � � � � � � � # $ %

() *
� � � �

� � 0 �
� � - � � � �

1 � � � � -

Figure 3: The training and testing process for an
HFM

The complete process for training and testing a
single HFM can take many iterations, depending on
the size of the training and testing feature vector sets.
The flowchart in Figure 3 demonstrates this proce-
durally.

6.3 Implementation

The blog aggregating software was written in Perl,
using a MySQL database for storing information.
Our spider used the XML::RSS and LWP::RobotUA
Perl modules to fetch and parse blog RSS feeds.
Some slight modifications to portions of the Sun-
dance package were necessary to fix out of date
code, and the process of running the two feature
training algorithms was automated with a number of

24

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 20–27
Computer Science Department, Swarthmore College

Bash and Perl scripts, while feature vector informa-
tion was generated using Perl.

Our implementation of HFMs was written en-
tirely in the Python programming language. We
chose to use Python so that we could use the existing
SOM implementation written by Daniel Sproul ’03
that is included as part of PyRo, the Python Robotics
package (Blank et al., 2002).

The main functional unit of the system is the
HFMNode class, which simply contains an SOM in-
stance and a 2-D list of child HFMNodes. Because
of the way in which the outputs of the SOM units at
each HFM layer are passed on to the next layer, as
described above in Section 6.2, the SOM and the list
of child nodes must be the same size.

The HFMNodes are contained with the HFM
class, which is merely a convenience class that holds
a single HFMNode as the root of the HFM’s tree.
The HFM class also contains file I/O functionality,
for reading input feature vectors generated during
the lexical training steps described in Section 5.2.

6.4 Visualization

In order to examine the training and testing pro-
cess, we needed some intuitive way of displaying
the output of an HFM. Pyro’s SOM implementa-
tion did have some visualization capability, but it
was for live observation only, and suffered from data
overload. In addition, our HFM implementation ab-
stracted away from the SOM class to a large extent,
so it was necessary to develop our own visualizer.

Each layer of a given HFM training or testing run
can be output as a grid. This allows us to observe
both the final categorization and the initial clustering
decisions made by the SOMs in the lower-resolution
layers of the HFM. Each grid cell in the output im-
age represents one of the SOMs in that layer. The
points drawn within cells are color-coded by blog,
allowing us to distinguish the output. Each point
represents a single tested or trained feature vector.

7 Results

To obtain our final results, we trained a 3-layer HFM
consisting of 2x2 SOMs. The HFM was trained for
150 iterations using the entire corpus of blog entries
from the nine blogs listed in Table 1. We then exam-
ined the testing results for each of the blogs individ-

ually.
The results from the caseframe features were un-

remarkable at best– the caseframe features did not
extract a sufficient amount of information to cluster
the blog entries in any manner. It is not necessary
to cover that method any further, so the remainder
of this section refers to our results using lexical fea-
tures.

7.1 Training

Figures 4 and 5 contain examples of the output from
the deepest layer of the HFM after training on the en-
tire blog entry corpus. The primary feature of note is
that the vast majority of the entries clustered along
one of the diagonal axes of the HFM. The diagonal
axis is inconsistent between training runs because
the SOMs in the HFM have their initial positions in
the feature space set randomly at runtime.

Figure 4: HFM training output for Run 1

The distributions of the training set are very sim-
ilar between the two separate training runs, which
implies that our HFM is probably learning the same
distinguishing features. Note for example the strong
cluster from a single blog that appears in cell (0, 2)
of Figure 4 and in cell (7, 3) of Figure 5 as a denser
stripe of points. This cluster from a single blog was
assigned its own bucket between runs. The fact that
we have consistent training of a randomly-initialized
neural network structure is a very good sign that our
testing results have some non-trivial meaning.

We wish to reiterate the somewhat black-box na-

25

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 20–27
Computer Science Department, Swarthmore College

ture of network-based learning methods. These re-
sults are very much open to interpretation, although
we believe that the patterns that can be seen in our
results are not just mere chance.

7.2 Testing

The distribution of blogs shown in Table 3 is associ-
ated with the second training run shown in Figure 4.
With the exception of Pandagon and The Museum
of Left Wing Lunacy, the lower-left contains con-
servative blogs and the upper-right contains liberal
blogs. It should be noted that this table reflects the
primary concentration of each blog’s testing output.
Instapundit and Talking Points Memo are two blogs
that were exclusively in our testing data set.

If we examine the results more closely, it be-
comes clear that our HFM did succeed in perform-
ing the basic liberal/conservative classification task.
Pandagon is a particularly unique blog, and had
the most diffuse results from the HFM. It is only
barely concentrated with the conservative blogs,
even though it is a liberal blog. There is not a strong
explanation for why Pandagon emerged differently,
though it is worth noting that the tone and nature of
the articles on Pandagon are rather unique.

The Museum of Left Wing Lunacy, as an
unashamedly conservative blog, was classified with
the liberal blogs. However, a quick examination of
their entries shows that they primarily quote other
blogs, and mostly liberal blogs at that. This means

Figure 5: HFM training output for Run 2

Table 3: HFM output
HFM Output

Left Wing Lunacy (C)

Blog vs. Blog (L)

Eschaton (L)

TalkLeft (L)

Kicking Ass (L)

Talking Points Memo

GOP Bloggers (C)

Secure Liberty (C)

Blue State Conserva-
tives (C)

Pandagon (L)

Instapundit

that the plain text version which we analyzed con-
tained mostly liberal-leaning text. This result might
be avoided if we removed all quotations from the in-
put entries.

8 Future Work

Our implementation of BASILISK was somewhat
less sophisticated than the original method, as we
took a simpler approach to choosing words to be
placed in the lexicon. Because many blog articles
are very short– though may still contain a great deal
of information– it seemed more important to avoid
creating an overly small lexicon than one that was
too large.

The original design of this project would have
used both lexicon and extraction pattern data to gen-
erate the features, but we had difficulty in finding a
feature representation which could concisely repre-
sent all of this data in a form which could provide
useful results from the SOM. Feature maps seem to
have served well in this task, though we do believe
that our method could be refined significantly. We
are not entirely satisfied with the feature vectors as
they stand.

In addition, before calling this an unqualified suc-
cess, further testing with a larger corpus must be per-
formed.

26

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 20–27
Computer Science Department, Swarthmore College

9 Conclusion

The combination of BASILISK and Self-Organizing
Maps worked surprisingly well for this project.
Given the ultimate sparsity of our feature vectors, we
did not expect to achieve the level of performance
that we did. Further exploration of this combination
would certainly be worthwhile in the future.

References

Beged-Dov, G., Brickley, D., Dornfest, R., Davis,
I., Dodds, L., Eisenzopf, J., Galbraith, D., Guha,
R.V., MacLeod, K., Miller, E., Swartz, A., and
van der Vlist, E. (2000) ”RSS 1.0 Modules: Tax-
onomy”, RDF Site Summary 1.0 Modules, 20
Mar 2001, RSS-DEV Working Group, 01 Apr 2005,
<http://web.resource.org/rss/1.0/modules/taxonomy/>.

Blank, D.S., Kumar, D., and Meeden, L. (2002) ”Python
robotics: An Environment for Exploring Robotics Be-
yond LEGOs”, ACM Special Interest Group: Com-
puter Science Education Conference, Reno, NV
(SIGCSE 2003).

Blank, D.S., Kumar, D., Meeden, L. and Yanco, H.
(2005) ”Pyro: A Python-based Versatile Programming
Environment for Teaching Robotics”. To appear in the
ACM Journal on Educational Resources in Computing
(JERIC).

Karger, D. and Quan, D. (2004) ”What Would It Mean to
Blog on the Semantic Web?”, International Semantic
Web Conference 2004.

Merkl, D. and Rauber, A. (2000) ”Document Classifica-
tion with Unsupervised Neural Networks”, Soft Com-
puting in Information Retrieval, 2000, pp. 102-121.

Thelen, M. and Riloff, E. (2002) ”A Bootstrapping
Method for Learning Semantic Lexicons using Extrac-
tion Pattern Contexts”, Proceedings of the 2002 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP 2002).

Riloff, E. (1996) ”Automatically Generating Extraction
Patterns from Untagged Text”, Proceedings of the
Thirteenth National Conference on Artificial Intelli-
gence (AAAI-96) , 1996, pp. 1044-1049.

Wack̊a, Fredrik, ”Six Types Of Business
Blogs - A Classification” [Weblog en-
try], CorporateBloggingBlog, 10 Aug 2004,
<http://www.corporateblogging.info/2004/08/six-
types-of-business-blogs.asp>, 01 Apr 2005.

Kicking Ass, http://www.democrats.org/blog/

TalkLeft, http://www.talkleft.com

Eschaton, http://atrios.blogspot.com/

Pandagon, http://www.pandagon.net/

Blog vs. Blog, http://blog.battletothedeath.net

The Blue State Conservatives, http://www.radiobs.net/
thebluestateconservatives/

Secure Liberty, http://secureliberty.org/

The Museum of Left Wing Lunacy, http://www.museum
ofleftwinglunacy.com

GOP Bloggers, http://www.gopbloggers.org/

27

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 28–33
Computer Science Department, Swarthmore College

Developing a Morphological Segmenter for Russian

America L. Holloway
Swarthmore College

Swarthmore, PA 19081
ahollow1@swarthmore.edu

Abstract

This paper presents an algorithm for de-
veloping a morphological segmenter for
Russian. The segmenter can find multiple
prefixes and suffixes for any given word.
Therefore it is more suitable for a highly
inflected language than a segmenter that
is limited to at most one prefix or suffix.
The segmenter requires a small hand seg-
mented corpus to bootstrap from, and a
larger unsegmented corpus from which to
learn. The algorithm uses trigram proba-
bilities, and Witten-Bell smoothing to pre-
dict the correct segmentation of a word. A
filtering step is also used to weed out bad
segmentations.

1 Introduction

Many languages, including Russian and Arabic,
have a richer morphology than is found in English.
In Russian, not only do verb endings change to re-
flect person, gender and number, noun endings also
change (or in some cases are truncated) to reflect
case. For example, the endinga is appended to a
masculine noun to form the genitive singular. Fur-
thermore, a word in Russian can often times be de-
composed into smaller units, or morphemes, each of
which carries its own meaning. These morphemes
contribute to, and refine, the meaning of the en-
tire word. For example, the nounpredsedatel~

(predsedatil) means ’representative’. Literally, it can
be translated as ’the one’ (el~) ’who sits’ (sidet~)

’before’ (pred), or more figuratively, ’the one who
represents’ us. In general, it is not rare for a word
to have multiple prefixes and suffixes. Multiple suf-
fixes, in particular, are common. As an example,
reflexive verbs will always have two suffixes. The
first suffix -sÂ (-cya) indicates it is a reflexive verb,
and the second suffix indicates what type of verb it
is. These suffixes include-ova~ (-ova), -at~(-at)
and-it~ (-ut). Thus, to capture the morphology of
such a language, it is important that any morpholog-
ical analyzer be able to recognize multiple prefixes
and suffixes.

The algorithm presented in this paper is adapted
from the morphological segmenter for Arabic cre-
ated by (Lee et al., 2003). Many existing morpho-
logical analyzers, for example (Goldsmith, 2000),
identify only single suffixes. This type of system
fails to capture the entire morphology of Russian.
Recognizing multiple prefixes and suffixes is espe-
cially important for tasks such as aligning corpora,
information retrieval and machine translation. This
is because one Russian word may correspond to
multiple words in a different language. Thus, our
goal was to implement a segmenter that (1) could
identify multiple affixes and (2) required few re-
sources, in order to create a superior morphological
analyzer specifically for Russian.

Our system requires only a small hand-segmented
corpus to bootstrap the segmenter, and a larger, un-
segmented corpus from which to gain new stems.
For any Russian word, all possible segmentations
are enumerated and the trigram probability of each is
computed. The highest scoring segmentation is cho-
sen as the correct one. The system performance is

28

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 28–33
Computer Science Department, Swarthmore College

surprisingly good given the small corpus and simple
algorithm.

2 Related Work

As stated, this algorithm draws heavily from (Lee et
al., 2003). They present a morphological segmenter
for Arabic which identifies multiple prefixes and
suffixes and requires only a small hand segmented
corpus (110,000 words) and a large unsegmented
corpus (155 million words). They also supplement
their segmenter with an additional prefix/suffix list.
The large unsegmented corpus is used to acquire
new stems. They first divide the corpus into parti-
tions. For each word, all possible segmentations are
enumerated and the segmentations with the highest
probabilities are kept. After each partition, the tri-
gram probabilities are recomputed to take into ac-
count the new stems found. Each stem is also sub-
jected to further testing to ensure that it does not
contain a prefix or suffix. Stems are added to the list
based upon the stem frequency (i.e. the number of
times they are seen), the probability that a substring
of the stem is a prefix or suffix, and contextual infor-
mation. With just trigram probabilities alone, (Lee
et al., 2003) are able to reduce the error from the
baseline performance by half.

(Goldsmith, 2000) uses the notion of minimum
description length (MDL) to implement a morpho-
logical segmenter,Linguistica, that is quite success-
ful. Linguisticatakes only a corpus and returns a list
of stems, a list of suffixes and a list of signatures.
A signature is a set of suffixes which can appear on
the end of a stem. An example signature is the set
(-NULL, -s). There are many stems, such asap-
pleor cow, that are associated with this signature. A
first analysis of the corpus can be as simple as split-
ting every word after each letter. Other heuristics are
then employed to shrink the list of signatures.

Minimum description length is based on the no-
tion that the number of letters in the morphological
analysis of a corpus (e.g. a list of stems, suffixes
and signatures) will be less than the number of let-
ters in the original corpus. Accordingly, Goldsmith
develops a description length to measure the size of
the morphological analysis of a corpus. That is, he
creates a description length to measure the size of
the stem list, suffix list and signature list. After

each heuristic is applied, the description length is
computed. If the description length has decreased,
the analysis is kept. Notably,Linguistica identi-
fies only one suffix per word. For example, if the
word breathingsoccurred in our corpus, the stem
would bebreathingand the suffix would be-s 1.
Thusbreathingswould be associated with the sig-
nature given above. Recall of85.9% and precision
of 90.4% is achieved for English.

Work using multilingual corpora to aid in
morphological analysis has also been performed.
(Yarowsky et al., 2001) use a lemmatizer and mul-
tilingual corpora to achieve a precision over98%
on a French corpus of1.2 million words. (Hana et
al., 2004) use a Czech-Russian aligned corpus. The
system combines information from their own mor-
phological segmenter, the Czech corpus and a part
of speech tagger. Instead of detecting multiple pre-
fixes or suffixes, they use the notion of paradigms.
A paradigm is a list of suffixes, along with the cor-
responding part of speech, that can be appended
to a certain class of stems. One interesting tech-
nique used to find the correct suffix of a word is the
longest-suffix approach. Simply put, the correct suf-
fix is usually the longest one. We have adopted this
heuristic to increase our system performance.

3 Morphological Segmenter

3.1 Parsing Words

Before discussing the algorithm used to build the
morphological segmenter, it is important to discuss
what constitutes a prefix or a suffix. Two categories
of suffixes are distinguished by the segmenter: suf-
fixes that change the part of speech, and suffixes that
preserve part of speech, but reflect a change in case,
or person.

As an example of the first type of suffix, con-
sider the suffix-enie (-enie). This is appended
onto the end of a verb to form the corresponding
noun. Hence, the nounobsu¼denie (meaning
’discussion’) is derived from the verbobsu¼dat~

(meaning ’to discuss’). To then form the genitive
or possessive form of the noun, the ending-ie (-
iye) changes to-iÂ (-iya). This is an example of
the second type of suffix which preserves the part of
speech.

1This example is taken from (Goldsmith, 2000)

29

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 28–33
Computer Science Department, Swarthmore College

count prefix stem suffix(es)
7 & & #N ugl +ov

16 & & #N kaz 2+an +ie

17 & & #N zavod +N
23 & & #raz del +it~

29 & & #bes platn +ye

35 & & #N sever +e

14 & & #N tysÂq +ami

Table 1: Morphologically Segmented List of Rus-
sian Words

In general, noun or adjective prefixes are harder
to discern than verbal prefixes or suffixes. A ver-
bal prefix is often used to denote aspect. However
with nouns (and adjectives) a prefix neither changes
the part of speech, nor the case, person or number.
Instead we chose to define a prefix as a morpheme
that refines or adds to the meaning of the word.
For example, appending the prepositionbez (mean-
ing ’without’ or ’short of’) to the adjectiveumny½

(meaning ’of the mind’) gives the adjectivebezum-

ny½ which means ’crazy’. In general however, the
presence of a preposition at the beginning of a word
does not necessarily mean it is acting as a prefix.
Thus our method of determining prefixes for nouns
and adjectives is inherently subjective. To account
for this, when creating the small hand segmented
corpus, a verb was determined to have a prefix if it
was shown to have one in the Oxford Russian Dic-
tionary. Nouns were determined to have a prefix,
again, if a prefix was shown in the Oxford Russian
Dictionary, or if it was clear from the meaning. The
subjective nature of determining whether or not a
noun contains a prefix actually hurt the performance
of the segmenter and is discussed in the Results sec-
tion.

3.2 Bootstrapping

A small hand segmented corpus of 474 Russian
words was used to bootstrap the segmenter. Each
word was split into prefix(es), stem and suffix(es).
We adopt the convention that a pound sign (#) pre-
cedes every prefix, and a plus sign (+) precedes ev-
ery suffix. In order for every word to have at least
one prefix and suffix, the letter N is used for the null
prefix and suffix. Finally, for the purpose of cal-

prefix stem suffix
N zarabotk e

N zarabotke N
za rabotk e

za rabotke N

Table 2: All possible suffix-prefix segmentations

culating trigram probabilities, two symbols (& &)
were placed at the beginning of each word. Table 1
shows a sample of the corpus used to bootstrap the
segmenter. From the corpus we create a static list of
suffixes and prefixes, and a list of stems to which we
will be adding. The smaller corpus is also used for
initial trigram probabilities.

3.3 Building the Segmenter

The larger corpus consists of approximately 40,297
words and is split into 403 partitions of 100 words
each. The number of words in the partition was ar-
bitrarily chosen. We first read in an entire partition.
Then for each wordw, all possible segmentations
of w are enumerated, and the probability for each
segmentation is calculated. Only the segmentation
with the highest probability is kept. The stem is
then added to a list of possible stems. When the fre-
quency (i.e. the number of times the stem has been
seen) passes a given threshold, the stem is added to
the list of accepted stems. Since the larger corpus is
relatively small, the threshold value was set at 2.

3.3.1 Segmenting Words

Given any Russian wordw, we wish to find all
possible prefixes and suffixes ofw. To find all possi-
ble prefixes of a given Russian wordw, we compare
substrings ofw against the list of prefixes. The first
substring is simply the first letter ofw. The next
substring is the first two letters ofw, then the first
three, and so on, until we come to the end of the
word. We do the same for suffixes except we begin
at the last letter ofw. We then enumerate all possible
prefix-suffix combinations. The null prefix (suffix)
is always a possible prefix (suffix) for every word.
Table 2 shows all the prefix-suffix combinations for
the wordzarabotke (zarabotke), the prepositional
form of the wordzarabotok meaning ’earnings’.

30

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 28–33
Computer Science Department, Swarthmore College

3.3.2 Filtering

Often longer suffixes include within them shorter
suffixes. For example, the word¼ivomu (zhivomy)
has two possible suffixes:-omu or -u. In general
however, the longest suffix is usually the correct
one. A suffix on the end of a word of length 5 is
more likely to be the correct one, than a suffix that
is only of length 1. Thus, we give preference to
longer suffixes. If a word has one (or more) com-
pound suffixes, we consider only the compound suf-
fixes and disregard any other possible segmentation
of the word with only one suffix (including the null
suffix).

We also provide to the system a list of 8 default
suffixes. If a word contains one of these suffixes, all
other segmentations of the word are disregarded ex-
cept for this one. Hence there will be only one seg-
mentation for the word, the segmentation with the
default suffix.

In Russian, certain word endings will almost al-
ways indicate a suffix. For example, the genitive
ending for masculine adjectives isogo (-ovo). An
adjective will never have this ending unless it is in
genitive case, and very few nouns have this ending.
So few, that it is worth makingogo a default suffix.

3.4 Probabilities

Given any Russian wordw and any possible seg-
mentation ofw into morphemesm1m2m3...mk, the
probability of the segmentation is given as:

P (&) ∗ P (&|&) ∗ P (m1|&&) ∗ ... ∗ P (mk|&&m1...mk−1)
(1)

We can simplify this expression using a second-
order Markov assumption. This makes computing
the probability of morphememi easier, since the
probability of seeingmi can be estimated given the
previous two morphemes instead of all preceding
morphemes. Also, Since every word begins with
&&, we can considerP (&) andP (&|&) to be con-
stants and thus disregard them. This gives

P (m1|&&) ∗ P (m2|&m1) ∗ ... ∗ P (mk|mk−2mk−1) (2)

We use the maximum likelihood estimate (MLE)
shown below to calculateP (mi|mi−2mi−1).

P (mi|mi−2mi−1) =
C(mi−2mi−1mi)

C(mi−2mi−1)
(3)

Witten-Bell discounting (Witten and Bell, 1991)
is used for smoothing. The probability of seeing
mi−2mi−1mi for the first time can be approximated
by the number of times we saw previous trigrams for
the first time. Letmi−2mi−1mi be a trigram that has
never before been seen. ThenP (mi|mi−2mi−1) can
be expressed as:

P (mi|mi−2mi−1) =
T

Z(N + T)
(4)

whereT is the number of unique trigrams ob-
served before,N is the total number of trigrams seen
before, andZ is the number of zero trigrams. The
probability of seeingmi−2mi−1mi is given by the
number of previous times we saw a trigram for the
first time (T) divided by the number of times a new
trigram could have have been seen for the first time
(N+T). We then distribute this probability evenly to
all of the zero trigrams by dividing by Z. Since we
need to know the value of Z in advance, we must
read an entire partition first, segment all the words,
and keep track of how many segmentations result in
a stem that has never before been seen.

4 Results

To evaluate the segmenter, the hand tagged corpus
was split into 9 different sets. Each set contains a
different 50 lines from the corpus to test on, and the
remaining 428 lines from which to train. Thus, the
first set used the first 50 lines from which to test, the
second set used the second 50 lines from which to
test, and so on. The last set, set 9, was tested on the
last 77 lines.

The segmenter was trained on the hand tagged
corpus, and then asked to segment the appropriate
50 lines. The segmenter was evaluated according to
recall and precision. Table 3 shows the performance
of the segmenter on sets 1 through 9. The first col-
umn shows the recall of the segmenter (i.e. of the
correct prefixes and suffixes, how many did the seg-
menter find). The second column shows the preci-
sion (i.e. of the prefixes and suffixes postulated by
the segmenter, which were correct). The third and

31

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 28–33
Computer Science Department, Swarthmore College

including null excluding null
Test Set Recall Precision Recall Precision

1 77.6% 81.90 % 75.6% 76.92%
2 90.52% 92.85 % 81.25% 78.94%
3 78.26% 83.33 % 64.29% 78.95%
4 74.55% 75.93 % 62.69% 72.73%
5 81.65% 86.53 % 87.93% 79.17%
6 81.65% 86.53 % 87.93% 79.17%
7 82.20% 86.61 % 68.57% 81.67%
8 82.46% 84.55 % 78.13% 77.19%
9 85.45% 83.03 % 77.42% 81.18%

Average 88.74% 84.58 % 75.98 % 78.43 %

Table 3: The first two columns show recall and precision when the null prefix/suffix is included. The last
two columns show recall and precision disregarding the null prefix/suffix

fourth column show the recall and precision without
taking the null prefix and suffix into account.

4.1 Discussion of Errors

Given the small size of the training corpora, and
the simple nature of the algorithm, the results are
encouraging. A majority of the mis-segmentations
stem from a few key errors. One of the biggest prob-
lems was the small size of the hand tagged corpus.
A few stems were seen once or twice and hence the
corresponding suffix had an extremely high prob-
ability. For example the suffix-~ was seen only
once with the wordleq~. Since the probability of a
segmentation was determined using trigram counts
(Equation 3), the probability of the suffix-~ was 1.

One disheartening result is that the segmenter
failed to find any prefix save one. However, since
there were so few prefixes in the hand-tagged cor-
pus, performance was not hurt too drastically. The
poor prefix performance can be attributed to the sub-
jective nature of prefixes. A word was considered to
have a prefix if (1) it was shown with a prefix in the
dictionary, or (2) the prefix contributed to the mean-
ing of the word and taking away the prefix gave an-
other related word. Thus, two wordsw1 andw2 may
both have the same first two letters, yet onlyw1 has
a prefix. This, combined with the small corpus size
and overwhelming probability of the null prefix, ac-
counts for the system’s preference for the null prefix.

5 Conclusion and Future Work

The segmenter does surprisingly well taking into ac-
count the small corpora size and the rather simple
algorithm. In general, it is easy to detect a major-
ity of suffixes, either because they are very unique,
or because they are rather long. It is a small sub-
set of suffixes such as-o, -e and -a that are diffi-
cult to identify. Thus, focusing on identifying these
suffixes would result in major system gain. Another
area of interest is a more uniform way of segmenting
words into prefix(es), stem and suffix(es). In partic-
ular, changing the method of prefix identification so
that every word with a particular first few letters are
considered to have the same prefix, even if this pre-
fix does not contribute to the meaning of the word.

6 Acknowledgments

We would like to thank Nastassia Herasimovich for
helping segment Russian words and Professor Wi-
centowski for all of his (very much needed) help.

References

Goldsmith J. 2000.Unsupervised learning of the mor-
phology of a natural languageComputational Lin-
guistics, 27(1).

Hana J., Feldman A. and Brew C. 2004.A Resource-
light approach to Russian morphology: Tagging Rus-
sian using Czech resources.Proceedings of the 2004
Conference on Empirical Methods in Natural Lan-
guage Processing.

32

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 28–33
Computer Science Department, Swarthmore College

Witten I.H. and Bell T.C. 1991. “The Zero-Freqency
Problem: Estimating the probabilities of novel events
in adaptive text compression”IEEE Transactions on
Information Theory, 37(4), p. 1085-1094.

Yarowsky D., Ngai G. and Wicentowski R. 2001.Induc-
ing Multilingual Text Analysis Tools via Robust Pro-
jection across Aligned Corpora.Proceedings of the
HLT 2001, pages 161-168.

Lee Y., Papineni K. and Roukos S. 2003.Language
Model Based Arabic Word Segmentation.Proceedings
of the 41st Annual Meeting of the Association, pages
399-406.

33

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 34–41
Computer Science Department, Swarthmore College

Report on
Political Leaning Classification

Ben Mitchell & Zach Pezzementi
Computer Science Department

Swarthmore College
Swarthmore, PA 19081

{mitchell,zap}@cs.swarthmore.edu

Abstract

The tasks of document classification and
sentiment classification have been ex-
plored in the literature, but to our knowl-
edge the task of political classification has
not. We use a modified form of a docu-
ment classification algorithm (Hu and Liu,
2004) to classify newspapers as liberal,
conservative, or neutral based on their
text. By using a cosine similarity met-
ric in our feature space, we were able
to achieve distances that separated openly
liberal from openly conservative papers.
According to the same metric, we found
Time and Newsweek to be fairly centrist,
as their distances from liberal and conser-
vative papers were about the same, while
the Chicago Tribune displayed a distinct
liberal bias. This feature space shows
promise for further sentiment or document
classification work.

1 Introduction

Document classification is the task of grouping a set
of documents based on their content, usually into a
fixed number of predefined categories. Document
classification schemes have been developed for use
in specific domains, such as classifying news sto-
ries (Yang et al., 1999) or grouping web posted job
openings (Cohen and Hirsh, 1998), as well as more
generic algorithms designed to work across many
domains (Schohn and Cohn, 2000). The classes

are usually broad topics, picked in advance (for
example, classifying sports articles as being about
baseball, football, or basketball). A fairly simple
Bayesian bag-of-words model has been shown to be
successful in document classification tasks (Baker
and McCallum, 1998).

Sentiment classification attempts to group docu-
ments according to the sentiment of the author with
respect to the subject. Most previous studies have
defined the sentiment classification task as integrat-
ing aspects of document classification and text sum-
marization (Fei et al., 2004; Hu and Liu, 2004; Pang
et al., 2002). The goal is typically to classify each
document (often a product review) as being a mem-
ber of one of two classes, either positive or nega-
tive, though attempts at more complex classification
schemes have been made(Yi et al., 2003).

We expected the problem of political sentiment
classification to require somewhat different tech-
niques from those used in document classification or
standard sentiment classification. Firstly, in typical
sentiment classification tasks, the text used as input
is written specifically to communicate the informa-
tion the algorithm is trying to extract. A product re-
view, for example, is written with the intention of ex-
pressing the sentiment of the reviewer with respect
to the product being reviewed. The sentiment we are
trying to detect, on the other hand, is not necessarily
stated explicitly within the text. Similarly, most doc-
ument classifiers need only identify the main topic
of a passage in order to make their classification de-
cision, whereas we specifically want to avoid distin-
guishing between articles based primarily on their
main topic. To help avoid classifying based on con-

34

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 34–41
Computer Science Department, Swarthmore College

Nation Freq National Review Freq
dlc 61 guevara 33
un 60 u.n. 29

durbin 42 gannon 26
henry 40 official 26
trotsky 39 chavez 23
falluja 35 pollack 22

guernica 32 kim 20
deutscher 31 ortega 19
nevada 28 mithal 15

women’s 25 post-war 14

Table 1: Top Ten Most Frequent Words Which
Occur in Only One Corpus

tent, we limited our data to articles on a single topic;
we chose the United States’ war in Iraq as a topic
since it was frequently in the news and was also a
subject of political contention.

Preliminary tests suggested that unigram proba-
bilities are insufficient for our classification task (see
Table 1). The results in this table represent the top
ten words in each of two corpora, where words are
ranked by number of occurrences, and words that
appeared in both corpora were eliminated. To a hu-
man observer, there does not appear to be a strong
signal of political leaning in these data. For this rea-
son, we used a more complex feature space to do our
classification.

2 Procedure

The features we deal with for classifying documents
are distributions of association rule confidences as
described in (Hu and Liu, 2004). For a given doc-
ument consisting of a set of wordsW divided into
a set of sentencesS, an association rule expresses
the likelihood that two separate word phrasesX and
Y will occur in the same sentence, with an implica-
tion that the presence ofX causesY to appear. The
rule is definedX → Y whereX ⊂ W , Y ⊂ W

andX ∩ Y = ∅. That is, bothX andY are word
phrases that do not overlap. For our purposes,X and
Y are always single words. Two statistics, support
s and confidencec, are calculated for each possible
word association (every pair of words which occur
together in at least one sentence). Support is a mea-
surement of the number of times we see a place in

the text where the two words could be associated,
and it is defined as the percent of sentences in the
corpus that contain eitherX or Y , occ(X∪Y)

|S| where
occ(w) is the number of sentences containingw.
Confidence is then a measurement of how strongly
we believe the presence ofX causes the presence
of Y , and it is measured as the percent of sentences
containingX which also containY , occ(X∧Y)

occ(X) .

By imposing thresholds on bothc and s (c-
thresh and s-thresh), we select for a given docu-
ment a number of association rules which both occur
somewhat frequently (high support) and have fairly
strong causality (high confidence). We further fil-
ter these rules by requiring that the “term-sentence
frequency” of the second term in the rule,Y , be
smaller than a third threshold,t-thresh. The term-
sentence frequency of a word is defined as the num-
ber of sentences containing that word divided by the
total number of sentences in the document. This re-
striction eliminates unimportant rules on very com-
mon words like “the” and “of,” which would other-
wise have very high confidence. The particular val-
ues used for these thresholds weres-thresh=0.01,c-
thresh=0.1, andt-thresh=0.2. The number of associ-
ation rules which pass this final threshold define the
length of our feature vector for a given document.
Some sample rules are given in Table 3. To com-
pare two documents, we use one of several methods
to calculate the distance between the feature vectors
for the documents. Few rules in a given document’s
vector occur in other documents’ rule-sets as well,
so the vectors tend to be fairly distant in the feature
space. This means that actual similarity scores will
be low, but by comparing relative distances between
various publication pairs, we can establish which
other publications are more similar to a each other,
and which are less.

Our corpora are built from articles obtained via
Infotrac both from publications with open political
leanings and from those who claim to be balanced
or impartial, as shown in Table 2. We restrict our
search to articles covering the war in Iraq to mini-
mize variation in the data due solely to topic. This is
accomplished by searching the full text for articles
containing both “Iraq” and “war.”

We calculate distances between articles in the fea-
ture space to determine similarity. Distances within

35

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 34–41
Computer Science Department, Swarthmore College

Corpus Name Publication Size

Liberal
AProspect American Prospect 171
Nation The Nation 110
Nation2 The Nation 102
WashMonth Washington Monthly 215

Conservative
Review The National Review 67
Economist The Economist 91
Economist2 The Economist 80
WashTimes The Washington Times 61

“Impartial”
Time Time 117
Newsweek Newsweek 106
ChicTrib The Chicago Tribune 92
ChicTribBig The Chicago Tribune 288

Table 2:Corpus Naming Conventions with Sizes,
in thousands of sentences

the feature space are calculated by one of three dis-
tance metrics. Simple cosine similarity is the first.
SinceA ·B = |A||B| cos(θ), the cosine of the angle
between two feature vectors can be found by com-
puting the dot product of the vectors and dividing
by the sum of their lengths; this value can be used
as a measure of similarity. We also calculate binary
cosine similarity, which is found by converting each
non-zero value of the vectors to a 1 and then finding
cosine similarity. Our third metric is Euclidean dis-
tance in the feature space; we tried using both nor-
malized and un-normalized vectors. The results in
Table 9 were generated using the un-normalized vec-
tors, but there did not appear to be a noticeable dif-
ference in political-leaning correlation between the
two methods.

3 Results

We did several experiments, and the results for each
of them are presented here. The naming conventions
shown in Table 2 are used to represent our corpora
in further figures.

Tables 5, 6, 7 show the data from the cosine sim-
ilarity comparisons arranged for ease of readability,
along with some numerical analyses of those data.
For each corpus, the first column shows the publica-
tion to which it is being compared. The second col-

humble → bush
exhausted → has

humble → foreign
rare → or

multiply → but
avert → be

attached → be
136000 → by

hat → up
beacon → it

instruments → other
omar → an

resounding → not
fortune → his

fails → he

Table 3:Sample High Scoring Rules from the In-
tersection of Review and Economist

umn shows that publication’s political leaning. The
third shows the raw cosine similarity value calcu-
lated for those two corpora. The mean and standard
deviation over all pairings were calculated, and the
fourth column contains the number of standard devi-
ations between that mean and the number in the third
column. These tables are sorted according to raw
cosine similarity, such that publications more simi-
lar to a given corpus appear higher up. The raw data
from which these tables are derived is included in
Table 8. The raw data for Euclidean distance and bi-
nary cosine distance was included in Tables 9 and 10
respectively, but no further analysis was conducted
on them since there appeared to be no interesting
correlations.

Two corpora were constructed from Chicago Tri-
bune articles, ChicTrib and ChicTribBig. The big
corpus contains three times as many articles as the
other, and includesall of the articles that make up
the small one. Table 4 shows cosine similarities of
both the small and large corpora to all other cor-
pora. The table is sorted on the second column, and
the last column of that table shows the difference in
similarity between the second and third columns of
that row. This table demonstrates the effect of in-
creased corpus size on cosine similarity. The cor-
pora Nation2 and Economist2 were second corpora
taken from The Nation and The Economist respec-

36

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 34–41
Computer Science Department, Swarthmore College

ChicTrib ChicTribBig Difference

Time 0.0502 0.0508 +0.0006
WashMonth 0.0492 0.0546 +0.0054
Newsweek 0.0482 0.0508 +0.0026
AProspect 0.0481 0.0530 +0.0049
Nation2 0.0478 0.0502 +0.0024
Nation 0.0459 0.0475 +0.0016

Economist 0.0443 0.0440 -0.0003
Review 0.0442 0.0437 -0.0005

WashTimes 0.0428 0.0366 -0.0062
Economist2 0.0402 0.0395 -0.0007

Table 4: Cosine Similarities for the Small and
Large Chicago Tribune Corpora, sorted from top
to bottom by ChicTrib similarity score

tively so that we could test the similarity of different
articles from the same publication. As one might ex-
pect, these split corpora were more similar to each
other than they were to corpora of other publica-
tions. These two “second” corpora were composed
of the same number of articles as the “first” corpora,
and the first and second corpora did not contain any
of the same articles and contained the same num-
ber of articles. The second corpora were not in-
cluded in the larger tables, but the second corpora
have similarity scores to other publications compa-
rable to those of the equivalent first corpora.

4 Discussion

While the actual numbers returned by the cosine
similarity metric are very small, what we are inter-
ested in is the relationships between the numbers.
The reason that all the similarity scores are so low
is that our rules are generated on a per-document ba-
sis; this means that each document is likely to gener-
ate many rules which are not generated by any other
document in the corpus. Because of this, the docu-
ment vectors tend to have many “dimensions” (each
corresponding to a rule) in which there will never be
any overlap. It is this sparsity of rules that are com-
mon to multiple publications that causes the similar-
ity scores to be so low. We could determine which
rules were generated by only a single corpus and
thrown them away, but this process would require
our method to deal with all our corpora at once, and
for this experiment we wanted to use a method that

worked explicitly with only two corpora at a time.
Using only two corpora means that a new corpus can
be analyzed and compared to any number of existing
corpora with relatively little work; working with all
the corpora at once would force us to re-analyze ev-
ery corpus each time we wanted add a new one.

It is therefore not a problem that all our similar-
ity scores seem very small. What is important is the
differences between those scores, and how those dif-
ferences correspond to the differences between the
publications perceived by humans. As shown in Ta-
bles 5, 6, and 7, the cosine similarity metric gives
results that roughly correspond to the “desired” val-
ues. Binary cosine similarity and Euclidean distance
do not appear to give as meaningful results; there
is simply no correlation between political leaning
and similarity score (see Tables 8, 9, and 10 for
the raw data). The cosine similarity metric gives
exclusively higher similarities between publications
which are openly liberal than it does between openly
liberal and openly conservative publications. The
same is not true for the openly conservative publica-
tions; similarity between conservative publications
is not significantly higher than similarity between
conservative and liberal publications. The Washing-
ton Times in particular has low similarity to all other
publications. This dissimilarity may indicate that it
is written in a different style, or that it represents a
distinct political category, but it most likely indicates
a data scarcity problem, since this was our smallest
corpus. As shown in Table 2, the conservative cor-
pora for some reason were all smaller than the liberal
corpora, at least in terms of number of sentences,
despite the fact that all corpora except ChicTribBig
contained exactly 80 articles. This is probably at
least part of the reason that the conservative pub-
lications have lower similarity to each other; with
smaller corpora, there are likely to be fewer rules
that overlap.

It is also interesting that the Economist showed up
as being closer to the liberal publications than the
conservative ones; despite our original label of the
publication as “conservative,” further investigation
has revealed that parts of it are generally considered
to be liberal. Had our metric not indicated this to
begin with, we would not have known to re-examine
our label.

The purportedly impartial publications tested

37

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 34–41
Computer Science Department, Swarthmore College

were Time, Newsweek, and the Chicago Tribune.
The Chicago Tribune exhibits larger similarities to
liberal than to conservative publications. Time and
Newsweek, however, both appear fairly balanced in
their similarities. The apparently liberal slant of the
Chicago Tribune may be in part due to the fact that
the liberal corpora contained somewhat longer ar-
ticles on average. However, tripling the size of the
Chicago Tribune corpus makes it more similar to the
liberal publications and less similar to some conser-
vative publications, indicating that similarity is not
merely a function of corpus size (see Table 4). Ad-
ditionally, the original Chicago Tribune corpus was
the smallest of the three impartial corpora (see Ta-
ble 2), so the fact that it came out as more liberal
goes counter to the trend of bigger being equated
with more liberal.

5 Conclusions & Future Work

The method outlined in this paper seems to provide
at least some ability to rank the similarity of publica-
tions, and the similarities it reports correspond with
the political agendas that human readers ascribe to
those publications. While these results are encour-
aging, there is still much work to be done in the area
of political sentiment classification.

In the future, we would like to analyze publica-
tions which claimed to be impartial but are widely
thought to have a political leaning, such as the New
York Times, the Wall Street Journal, and the Wash-
ington Post. Comparison between these publications
and publications with known leanings would be in-
teresting.

We would like to test more and larger corpora, and
try to find better values for our constants, possibly
by training them using machine learning techniques.
We would also like to do more statistical analysis on
the results of those tests. This analysis would help to
demonstrate more clearly the utility of our method.
We especially would like to get more data from the
Washington Times, since the WashTimes corpus had
very low similarity scores to all of the other publica-
tions in the corpus. More experimentation is needed
to determine why this is the case, but we did not have
a large enough corpus to split that corpus in half and
do a self-similarity test, which would be the first test
we would do.

It is important to note that our algorithm does
nothing to specifically isolate features relating to
politics. The fact that the resulting feature space
seems able to separate liberal publications from con-
servative ones may therefore come as some surprise.
This result is probably due primarily to the fact that
all of the articles dealt with the same general subject-
matter. If this had not been the case, it is doubtful
that similar results would be obtained, simply be-
cause the data would be to scarce for political lean-
ing to dominate article topic. Table 3 indicates that
the information captured by our features relates pri-
marily to topic and writing style. The rules gen-
erated surprisingly do not look much more mean-
ingful to a human than those in Table 1, but our
results show it to be nonetheless sufficient for the
task of political leaning classification. Adding fur-
ther processing that does specifically address pol-
itics could produce even better results. One such
modification could be to learn a set of words which
could be considered important to the domain, such
as “politically-charged words”. Rules containing
those words could be weighted more heavily for in-
tersection in order to focus classification to that do-
main. Similar modifications could be made to fo-
cus on domains other than politics instead, making
this technique one of general use in any classifica-
tion task.

References
L. Douglas Baker and Andrew Kachites McCallum.

1998. Distributional clustering of words for text clas-
sification. InProceedings of 21st ACM International
Conference on Research and Development in Informa-
tion Retrieval (SIGIR-98).

William W. Cohen and Haym Hirsh. 1998. Joins
that generalize: text classification using WHIRL.
In Rakesh Agrawal, Paul E. Stolorz, and Gregory
Piatetsky-Shapiro, editors,Proceedings of KDD-98,
4th International Conference on Knowledge Discov-
ery and Data Mining, pages 169–173, New York, US.
AAAI Press, Menlo Park, US.

Zhongchao Fei, Jian Liu, and Gengfeng Wu. 2004.
Sentiment classification using phrase patterns. In
The Fourth International Conference on Computer
and Information Technology (CIT’04), pages 79–86,
Wuhuan, China, Sept.

Minqing Hu and Bing Liu. 2004. Mining opinion fea-
tures in customer reviews. InProceedings of Nine-

38

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 34–41
Computer Science Department, Swarthmore College

AProspect (L) Nation (L) WashMonth (L)
Name P Raw Scaled Name P Raw Scaled Name P Raw Scaled
WashMonth L 0.0623 +2.460 AProspect L 0.0558 +1.390 AProspect L 0.0623 +2.460
Nation L 0.0558 +1.390 WashMonth L 0.0546 +1.190 Time I 0.0547 +1.210
Time I 0.0510 +1.210 Economist C 0.0497 +0.384 Nation L 0.0546 +1.190
Newsweek I 0.0502 +0.466 Review C 0.0494 +0.334 Newsweek I 0.0528 +0.894
Review C 0.0501 +0.450 Newsweek I 0.0479 +0.087 Review C 0.0503 +0.483
Economist C 0.0491 +0.285 ChicTrib I 0.0459 -0.242 Economist C 0.0496 +0.367
ChicTrib I 0.0482 +0.137 Time I 0.0455 -0.308 ChicTrib I 0.0493 +0.318
WashTimes C 0.0370 -1.708 WashTimes C 0.0342 -2.169 WashTimes C 0.0364 -1.807

Table 5:Similarity of Liberal Publications to All Publications, sorted by similarity
P is political leaning. Raw is cosine similarity. Scaled is number of standard deviations from the mean.

Review (C) WashTimes (C) Economist (C?)
Name P Raw Scaled Name P Raw Scaled Name P Raw Scaled
Time I 0.0518 +0.730 ChicTrib I 0.0429 -0.736 Nation L 0.0497 +0.384
Newsweek I 0.0507 +0.546 Newsweek I 0.0413 -1.000 WashMonth L 0.0496 +0.367
WashMonth L 0.0503 +0.483 Time I 0.0411 -1.032 AProspect L 0.0491 +0.285
AProspect L 0.0501 +0.450 Review C 0.0376 -1.609 Review C 0.0476 +0.038
Nation L 0.0494 +0.334 AProspect L 0.0370 -1.708 Time I 0.0454 -0.324
Economist C 0.0476 +0.038 Economist C 0.0368 -1.741 ChicTrib I 0.0443 -0.506
ChicTrib I 0.0443 -0.505 WashMonth L 0.0364 -1.807 Newsweek I 0.0442 -0.522
WashTimes C 0.0376 -1.609 Nation L 0.0342 -2.169 WashTimes C 0.0368 -1.741

Table 6:Similarity of Conservative Publications to All Publications, sorted bysimilarity
P is political leaning. Raw is cosine similarity. Scaled is number of standard deviations from the mean.

Time (I) Newsweek (I) ChicTrib (I)
Name P Raw Scaled Name P Raw Scaled Name P Raw Scaled
Newsweek I 0.0548 +1.223 Time I 0.0548 +1.224 Time I 0.0503 +0.483
WashMonth L 0.0547 +1.207 WashMonth L 0.0528 +0.894 WashMonth L 0.0492 +0.318
Review C 0.0518 +0.730 Review C 0.0507 +0.548 Newsweek I 0.0482 +0.137
AProspect L 0.0510 +0.598 AProspect L 0.0502 +0.466 AProspect L 0.0481 +0.137
ChicTrib I 0.0503 +0.482 ChicTrib I 0.0482 +0.137 Nation L 0.0459 -0.242
Nation L 0.0455 -0.308 Nation L 0.0479 +0.087 Economist C 0.0443 -0.506
Economist C 0.0454 -0.324 Economist C 0.0442 -0.522 Review C 0.0442 -0.506
WashTimes C 0.0411 -1.032 WashTimes C 0.0413 -1.000 WashTimes C 0.0402 -0.736

Table 7:Similarity of Impartial Publications to All Publications, sorted by similar ity
P is political leaning. Raw is cosine similarity. Scaled is number of standard deviations from the mean.

39

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 34–41
Computer Science Department, Swarthmore College

AProspect ChicTrib Economist Nation Newsweek Time WashMonth WashTimes Review

AProspect 1.0000 0.0482 0.0491 0.0558 0.0502 0.0510 0.0623 0.0370 0.0501

ChicTrib 0.0482 1.0000 0.0443 0.0459 0.0482 0.0503 0.0493 0.0429 0.0443

Economist 0.0491 0.0443 1.0000 0.0497 0.0442 0.0454 0.0496 0.0368 0.0476

Nation 0.0558 0.0459 0.0497 1.0000 0.0479 0.0455 0.0546 0.0342 0.0494

Newsweek 0.0502 0.0482 0.0442 0.0479 1.0000 0.0548 0.0528 0.0413 0.0507

Time 0.0510 0.0503 0.0454 0.0455 0.0548 1.0000 0.0547 0.0411 0.0518

WashMonth 0.0623 0.0493 0.0496 0.0546 0.0528 0.0547 1.0000 0.0364 0.0503

WashTimes 0.0370 0.0429 0.0368 0.0342 0.0413 0.0411 0.0364 1.0000 0.0376

Review 0.0501 0.0443 0.0476 0.0494 0.0507 0.0518 0.0503 0.0376 1.0000

Table 8:Simple Cosine Similarity

AProspect ChicTrib Economist Nation Newsweek Time WashMonth WashTimes Review

AProspect 0.0000 216.6922 212.5889 242.6386 234.4846 229.0122 286.4664 182.5949 211.1575

ChicTrib 273.4382 0.0000 216.0229 246.8631 237.6160 232.0051 290.7928 183.7058 214.8406

Economist 273.0869 219.9037 0.0000 246.6635 237.8007 232.3097 290.4779 184.5227 214.2705

Nation 271.4702 218.7671 214.2648 0.0000 236.5015 231.3484 289.3130 183.9661 212.8550

Newsweek 272.1748 218.4070 215.1057 245.6556 0.0000 230.4619 289.3109 183.1170 213.0973

Time 272.2653 218.5251 215.2385 246.1693 235.9112 0.0000 289.3462 183.4231 213.1218

WashMonth 267.2290 215.4656 211.6379 241.6557 233.1303 227.3656 0.0000 181.7377 210.0709

WashTimes 274.7550 221.4264 217.8855 248.9037 239.6326 234.0268 292.0342 0.0000 216.8134

Review 274.1146 220.5114 216.4998 247.5112 238.1333 232.5915 291.3607 184.8660 0.0000

Table 9:Euclidean Distance in Feature Space

AProspect ChicTrib Economist Nation Newsweek Time WashMonth WashTimes Review

AProspect 1.0000 0.1301 0.1321 0.1477 0.1372 0.1339 0.1651 0.0952 0.1328

ChicTrib 0.1301 1.0000 0.1195 0.1228 0.1325 0.1385 0.1330 0.1042 0.1205

Economist 0.1321 0.1195 1.0000 0.1343 0.1211 0.1205 0.1325 0.0943 0.1277

Nation 0.1477 0.1228 0.1343 1.0000 0.1297 0.1229 0.1452 0.0883 0.1333

Newsweek 0.1372 0.1325 0.1211 0.1297 1.0000 0.1467 0.1407 0.1041 0.1351

Time 0.1339 0.1385 0.1205 0.1229 0.1467 1.0000 0.1436 0.1045 0.1349

WashMonth 0.1651 0.1330 0.1325 0.1452 0.1407 0.1436 1.0000 0.0960 0.1304

WashTimes 0.0952 0.1042 0.0943 0.0883 0.1041 0.1045 0.0960 1.0000 0.0955

Review 0.1328 0.1205 0.1277 0.1333 0.1351 0.1349 0.1304 0.0955 1.0000

Table 10:Binary-valued Cosine Similarity

40

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 34–41
Computer Science Department, Swarthmore College

teenth National Conference on Artificial Intelligence
(AAAI-2004), San Jose, USA, July.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? sentiment classification using ma-
chine learning techniques. InProceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 79–86, July.

Greg Schohn and David Cohn. 2000. Less is more: Ac-
tive learning with support vector machines. InProc
17th International Conf. on Machine Learning, pages
839–846. Morgan Kaufmann, San Francisco, CA.

Yiming Yang, Jaime G. Carbonell, Ralf D. Brown,
Thomas Pierce, Brian T. Archibald, and Xin Liu.
1999. Learning approaches for detecting and tracking
news events.IEEE Intelligent Systems, 14(4):32–43,
July.

Jeonghee Yi, Tetsuya Nasukawa, Razvan Bunescu, and
Wayne Niblack. 2003. Sentiment analyzer: Extract-
ing sentiments about a given topic using natural lan-
guage processing techniques. InProceedings of the
3rd IEEE International Conference on Data Mining,
Melbourne, Florida.

41

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 42–47
Computer Science Department, Swarthmore College

Word Alignment of Parallel Texts

Joshua Berney
Department of Computer Science

Swarthmore College
berney@cs.swarthmore.edu

Jason Perini
Department of Computer Science

Swarthmore College
perini@cs.swarthmore.edu

Abstract

We induced a word-aligned dictionary of
English and French using parallel texts.
Our texts were the Hansards corpus and
a small literary text corpus. We performed
phrase alignment by the use of identical
words in both texts as anchor points and
improved the distribution of our anchor
points with lexically similar words. We
then performed statistical word-alignment
using φ statistical correlation to locate
translation word pairs in the parallel cor-
pora. Our results show thatφ correlation
works reasonably well when a large num-
ber of small parallel phrases are available.

1 Introduction

The goal of this project is to induce a translation dic-
tionary between two similar languages using parallel
corpora. The two languages we chose were English
and French, as they mostly share the same character
set and have significant linguistic similarities. One
ready source of large blocks of parallel texts in En-
glish and French are classic literary works that have
been translated. These have the advantages of being
in the public domain and are long documents with
consistent word usage and translation style through-
out. In addition, the translation of a literary text will
leave a large number of words untouched and un-
translated such as characters’ names, locations, etc.
We will need these and any French-English cognates
in our phrase alignment algorithm. The disadvan-
tages of using literary works is that the translators,

in an attempt to reproduce the style of the original
texts, are less likely to produce exact translations,
will use less common words, and will repeat words
less often.

The literary text we used was “Swann’s Way”,
the first volume of Marcel Proust’sRemembrance of
Things Past, which is approximately 200,000 words
in French and English. We took the text from the
Project Gutenberg website1. We also ran our sys-
tem against part of the Hansards corpus2, which is
the proceedings of the Canadian Parliament and is in
both English and French. This corpus was appealing
because it was already split into sentence alignments
and was very large (approximately 1 million words).

We started with phrase and sentence alignments
using anchor points, which were words that are iden-
tical in either text. We then increased the number of
anchor points we used by finding likely matches us-
ing lexical similarity. Armed with a large number of
aligned phrases, we then match likely pairs using the
φ statistic correlation method.

2 Previous Work

Dmitriy’s (2005) work has a number of similarities
to ours in his intentions, his system induces dictio-
naries for languages with few machine translation
resources from parallel texts in linguistically simi-
lar languages. He aligned his text on a character-to-
character basis, not word tokens, and he then per-

1Project Gutenberg main site: http://www.
gutenberg.org. The specific Proust text can be found
at: http://www.gutenberg.org/etext/2650 and
http://www.gutenberg.org/etext/7178

2http://www.isi.edu/natural-language/
download/hansard/1

42

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 42–47
Computer Science Department, Swarthmore College

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

F
re

nc
h

A
nc

ho
r

In
de

x

English Anchor Index

"old.out" using 2:3

Figure 1: Output from the original anchor alignment
procedure: English vs. French Anchor Position

forms a number of post-processing steps to improve
the matches he receives from the GIZA++ software,
which is a statistical alignment model updated by
Franz Joseph Och. One of these steps is the use of
lexically similar words, determined by edit distance,
as ‘seed’ words for the alignment models.

Melamed (1999) discusses a much more com-
plicated alignment process for bilingual parallel
corpora. He uses cognates and lexically similar
words with lexical similarity being determined by
the Longest Common Subsequence Ratio method.
The alignment is further refined using methods taken
from signal noise filtering, as well as several-pass
segment alignment and subsection deviations.

Gale and Church (1991) discuss using theφ statis-
tic for determining word correspondences. How-
ever, their paper is preliminary and provides only
vague numbers. There does not appear to be any
followup work.

3 Phrase Alignment

The first step in our system is finding equivalent
phrases in the source and target languages. This
is done to reduce the total number of comparisons
that must be made to find translations and to avoid
false matches of words that are very far apart from
each other in the text. Most post-segment-alignment
matching algorithms increase much faster than O(n),
where n is the number of words in a corpus, our
phrase-alignment method can significantly reduce
the time required later in the system.

Our algorithm relies on the fact that some words

are exactly lexically similar in the source and tar-
get languages, typically nouns. Common examples
of such words are places, names, and recently devel-
oped concepts. Using these words, we can divide the
source and target texts into equivalent phrases. Be-
fore beginning the main algorithm, we standardize
or eliminate most punctuation. Next, we locate the
indices of words that are exactly the same in the tar-
get and source language and record their indices. We
limit the minimum length of words to exclude which
are exactly lexically similar, but are actually differ-
ent words, such as the English ’a’ and French ’a’
(the English ’a’ is an indefinite article whereas ’a’
in French can mean the singular third-person conju-
gation of ’avoir’, ’to have’). We also limit the num-
ber of occurrences of words in hopes of limiting the
number of times one word appears very close to it-
self and hence creates possible confusion over the
actual anchor pair matching.

Examining a plot of English vs. French position
generated from the above algorithm (Figure 1), we
see a relatively clear line through the origin (num-
ber of English words, number of French words) and
many scattered points throughout the plot. Consid-
ering the solid line in the figure and the structure of
language, we make the assumption that a linear re-
lation exists between the location of a given English
word and the French equivalent. Similarly, the loca-
tion of an English word should be approximately lin-
early related to the location of the equivalent French
word. However, we must also consider there will be
places where more English words per French word
occur than normal or vice versa. We are also con-
cerned with some target language sentences being
out of order with respect to source sentences.

Combining these concepts, we say a given pair
anchor points determined from the above algorithm
must satisfy:

$source word index = c × $target word index

+γ + aβ (1)

wherec = $number source words
$number target words

, β is some constant,
a varies from -1 to 1,

γnew = α × c × $target word index

+(1 − α) × γold (2)

for each valid anchor pair examined in or-
der of occurrence andα is some constant.

43

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 42–47
Computer Science Department, Swarthmore College

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

F
re

nc
h

A
nc

ho
r

In
de

x

English Anchor Index

"make.output" using 2:3

Figure 2: Output from the refined anchor alignment
procedure: English vs. French Anchor Position

$sourceword index is our approximation of where
the source word should appear.γ represents the cur-
rent drift – that is the amount of deviation from a
linear translation.β is a small constant that allows
for some error in our approximation method. In
our implement a does not exist, we instead test that
$sourceword index without theβ term fits within
the interval ofβ. Equation 2 reflects thatγ must be
updated as anchor pairs as examined. We start with
an initial value ofγ at 0. Then we iterate through
potential anchor word pairs in order of their source
index. When a valid pair is found, the second equa-
tion is executed andγnew is used until it is updated
by finding a new valid pair. Empirically, we have
found α = 0.15 and β = 40 work well for the
Proust corpus. Due to the nature of the Hansards,
it has been difficult to determine optimal values.

Occasionally, a word that appears infrequently in
the text will occur very close to itself. Consider the
case of a character in a novel only encountered once.
This can lead to the algorithm picking up several
matches for the same word in a very small region
of the text. When this occurs, we take only the first
alignment for the word in the region. The output we
receive is shown in Figure 2. We use this output for
our later steps.

4 Lexical Word Alignment

For texts in similar languages, such as English and
French, using lexical similarities can improve the
alignment accuracy of other methods by finding
words that are likely to be matches. Very good

matches are added to the anchor point list along
with the lexically identical words and then the an-
chor point list is passed onto theφ statistic corre-
lation method. One simple method of finding lexi-
cally similar words is to measure their Levenshtein
distances.

The Levenshtein distance between two words is
the number of character alterations needed to change
one word into another. Each substitution, insertion,
or deletion of a character adds to the edit distance of
the words. The specific implementation of the Lev-
enshtein algorithm we used was written by Eli Ben-
dersky (2003). It employs a (M+1) x (N+1) matrix
where M and N are the lengths of the two strings.
The algorithm starts with the word in the source lan-
guage and calculates the cost for any move, follow-
ing the least costly path until the minimum transfor-
mation cost from one of the strings to the other is
found.

The way we used the Levenshtein distance mea-
sure to find potential matches followed a partial bag-
of-words approach. We looked at the two phrases
surrounding an anchor word as unordered list of
words, calculating the Levenshtein distance of each
word against every other word. We took several
steps to speed this process up and avoid calculating
distances uselessly. We decided that finding words
with a greater Levenshtein distance than 3 changes
would result in too many false matches, and so we
limited the length difference between two measured
words. Since our phrases could be fairly long, of-
tentimes over 200 words, we found that shortening
the window around the anchor word we looked at to
between 60 and 80 words in either direction reduced
the running time while keeping the algorithm from
possibly finding matches where they would be un-
likely to occur. We decided that translations would
rarely move a word over 120 words from the word
it was translated from. However, while most of the
words in most phrases will be analyzed by the al-
gorithm looking at the anchor points at the ends of
the phrase, this will result in the middle portions of
some large phrases being ignored. To capture these
‘lost’ words we ran the entire lexical matching sys-
tem through several iterations, using the words we
decided were very good matches as new anchors,
thus reducing the size of the phrases.

The way we decided whether a match was ‘very

44

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 42–47
Computer Science Department, Swarthmore College

good’ was if the words in the match met three re-
quirements:

1. They had a Levenshtein distance of three or
less.

2. The ratio between the frequency of the words
was not too large in the corpus. For example,
if one word appears only two times, the word
it is matched with should not appear a hundred
times. For words with lexical distance of 1, the
ratio is 2:5; for 2, 3:5; for 3, 4:5.

3. The words, if they have a close numerical ratio,
should usually be matched with each other. In
other words, the matched words should not ap-
pear apart from each other too frequently. For
words with Levenshtein distance of 1, neither
word in the match can appear more than 30
times the number of times the match appears;
for 2, 20; for 3, 10.

These requirements were applied with differing
strictness depending on their Levenshtein distance.
Words that were very similar to each other were al-
lowed to vary in their unmatched appearances and
numerical ratio more than words that were less lexi-
cally similar.

5 φ2 Word Alignment

The φ statistic is used to determine correlation be-
tween two binary variables. After separating the
corpus into phrases, it is a generally good approx-
imation that a given word will appear only once per
phrase. By relating the occurrence (one or zero) of a
word in a phrase we can hope to find the equivalent
translated word in the target language.

The general form of the phi statistic is

φ =
ad − bc
√

efgh
(3)

where

X− X+ Total

Y − a b e
Y + c d f
Total g h n

It can be seenφ is close to 1 if x and y frequently
do and do not occur in conjunction, near 0 if there
is no correlation, and if one rarely occurs when the
other occursφ is close to -1. In practice, however,
computing the square root is relatively computation-
ally intensive. Furthermore, we make the assump-
tion that words will not be negatively related, that is,
the existence of one word in a source phrase should
not imply that some other word does occur in the tar-
get phrase. Making these assumptions, computation
time can be decreased by computing

φ2 =
(ad − bc)2

efgh
(4)

.
An issue with using theφ statistic is computation

time. We must compute theφ value for every source,
target word pair. At initialization, we determine the
binary occurrence, either a word does or does not
exist per phrase, for each word in the source and tar-
get corpora. We iterate through each source phrase
for each source word counting the binary occurrence
of each target word in the equivalent target phrases.
From this, we learn d and using the pre-computed
binary occurrences for the entire corpus we can de-
termine the values of all variables. For each source
word and target word that occurs in some parallel
phrase to the source word, we compute a phi score.
We take the highest phi score and treat this as a
translation for the source word. A final refinement
is to only consider words source words which occur
greater than two times. If we consider source words
that only occur once, we will frequently receive a
large list of false good matches.

This algorithm works well for fairly limited size
corpus (<300,000 words), but as the size increases
the number of phrases a word occurs in increases
approximately linearly and thus the number of phi
ranks that must be computed increases very rapidly.
This has limited the size of corpus that may be used
for training. We believe in future work this problem
can be eliminated.

6 Data and Results

We primarily used two corpora for testing: sections
from the 2001 Hansards and Swann’s Way by Mar-
cel Proust. Each of these documents are available

45

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 42–47
Computer Science Department, Swarthmore College

online in French and English. We also used a sen-
tence by sentence alignment of the 2001 Hansards.

6.1 Phrase Alignment

Phrase alignment has been found to be reasonably
precise. Due to the nature of phrase alignment we
have no standard data to which we can compare our
performance, but examination of parallel phrases re-
flect that it is generally good at picking out appropri-
ate anchor points. One problem is that not enough
anchor points are selected. For the Proust corpus of
approximately 200k words, 1000 anchor points are
found which translates into phrases of around 200
words. Increasing the parameters to allow the algo-
rithm to locate more anchor points greatly decreases
the quality of phrases.

6.2 Lexical Word Alignment

The lexical word alignment was only somewhat suc-
cessful. It did not end up adding many new anchor
points to our phrase alignments, as we needed to
constrain the matches greatly in order to reach a high
accuracy rate (approximately 70-80% correct). We
only allowed matches of up to a Levenshtein dis-
tance of 3 and small variations in their occurrence
ratios. This generally resulted in the introduction
of 400-600 new anchor points to a system with an
average of 4000 anchor points produced from using
identical words and our anchor phrase alignment al-
gorithm. All these results are on the Proust corpus.

6.3 φ2 Word Alignment

φ2 word alignment was tested using our phrase
alignment system for the Proust and Hansards cor-
pora and using the sentence-aligned Hansards cor-
pus. Determining the total number of possible words
pairs would be by definition hence we do not include
recall numbers. Regardless of the phrase alignment
method, if we only considered alignment words with
aφ2 value greater than 0.5 almost 80% of the words
pairs were correct. However, using our anchor point
based alignment system, we will receive less than
100 of>4000 unique words which occur twice, re-
sulting in 90% precision, but a very low recall. Yet,
when using the sentence-alignment Hansards corpus
of 60,000 sentence pairs we find 4000 translation
pairs with a precision of 83% as found from a ran-
domly selected sample of 50 word pairs.

7 Conclusion

Two of the defining features of our dictionary induc-
tion system were the two texts we used and theφ

correlation. As discussed in the results section, we
have found thatφ correlation works well with a large
number of small parallel phrases. Our system would
work best on literary texts with many proper nouns,
which would give us better anchor point coverage.
Using the sentence-aligned Hansards text showed
us how critical having a well-aligned work is and
pointed towards one of the problems we had with
the non-sentence aligned literary work.

The results of our system are very promising.
While we found that lexical alignment did not im-
prove our results greatly, we found that a well
aligned corpora can be used to produce a very good
translational dictionary using a statistical method.
Future work usingφ word alignment for sentence
aligned parallel corpora could provide a highly ac-
curate translation dictionary using no knowledge of
the text other than they are linguistically related.

8 Future Work

8.1 Phrase Alignment

Phrase alignment based on sentence boundaries
should be examined in depth. While using lexically
identical words yields accurate parallel phrases, it
fails to yield enough of them. This is especially
crucial forφ2 word alignment where increasing the
number of phrases and decreasing their size im-
proves the accuracy and running time of the algo-
rithm. Cursory examination of the number of pe-
riods in the French vs. English version of Proust’s
corpus shows many more English than French sen-
tences. However, we can use the fact that on av-
erage a given number of English words occur per
French word and compare sentence lengths to deter-
mine sentence by sentence alignment. As is shown
in the results section forφ2 word alignment, if we
could improve parallel phrase alignment, we would
receive much better results.

8.2 Lexical Word Alignment

The lexical word alignment could undoubtedly be
improved in its accuracy and its production of ac-
curately matched words by more tweaking of the

46

Appeared in:Proceedings of the Class of 2005 Senior Conference, pages 42–47
Computer Science Department, Swarthmore College

various thresholds and restraints placed on the re-
sults. As for larger plans, using language-specific
rules and morphological knowledge would be good,
but would mean that we could not easily port the
system to other linguistically similar languages. A
more general approach that would greatly increase
the accuracy of our matches would be to use a cor-
pus with part-of-speech tagging, either pre-tagged
or done with a readily available part-of-speech tag-
ger. Lastly, testing the lexical word alignment al-
gorithm on other texts and more importantly, differ-
ent types of texts would reveal further improvements
that could be applied to our system.

8.3 φ2 Word Alignment

Several improvements can be made to theφ2 word
alignment algorithm. Clearly, this method will work
better with large amounts of data. However, we are
limited in the amount of data it can currently handle
due to the algorithm computingφ2 values for each
target word in a target phrase parallel to a source
phrase in which the source word exists. Examining
only the first approximately 10 phrases in which a
source word appears, we can determine the target
words that might be translations of the given source
word. From this, we can examine the rest of the
phrases for a source word and only computeφ2 val-
ues for the target words we have picked out. This
would significantly reduce time required to run this
algorithm and all us to examine very large corpora.

Theφ correlation statistic is intended for use with
binary variables. Many sentences will contain mul-
tiple occurrences of a given word. This additional
information should be taken into account either by
using a different correlation statistic or somehow in-
corporating this information to the existingφ rank
statistic.

References

Genzel, D. 2005. Inducing a bilingual dictionary from
a parallel corpus in related languages. Submitted to
ACL-05.

Melamed, D. 1999. Bitext maps and alignment via pat-
tern recognition.Computational Linguistics 25(1).

Gale, W. and Church, K. 1991. Identifying Word Cor-
respondences in Parallel TextsProceedings of the 4th
Speech and Natural Language Workshop.

Bendersky, E. Levenshtein Distance Algorithm: Perl
Implementation, http://www.merriampark.
com/ldperl.htm

47

	Introduction
	Program
	Table of Contents
	A Simple Probabilistic Approach to Ranking Documents by Sentiment
	Table Recognition and Evaluation
	Grammar Checking using POS Tagging and Rules Matching
	Political Blog Analysis Using Bootstrapping Techniques
	Developing a Morphological Segmenter for Russian
	Report on Political Leaning Classification
	Word Alignment of Parallel Texts

