Dive into Systems: A Free, Online Textbook for Introducing Computer Systems

Suzanne J. Matthews

U.S. Military Academy West Point, NY USA West Point, NY USA

Tia Newhall

Swarthmore College Swarthmore, PA USA

Kevin C. Webb

diveintosystems.org

The opinions expressed in this presentation are solely of the authors and do not necessarily reflect those of the U.S. Military Academy, the DoD or the U.S. Army.

Why a free online textbook introducing Systems?

Selfish: We couldn't find "right fit" textbook for our courses

Systems Topics (& parallel) at the intro sequence level

Altruistic: Create Useful Resource to Share Widely

Growing Importance of Systems, P&D into Curriculum

ACM/IEEE 2013, NSF/IEEE-TCPP

Free textbook: available to all

Online: easy to access and update

diveintosystems.org

Primary Goals

Introduce Systems Topics assuming only a CS1 background

Introductory level presentation w/some "looking ahead" to more advanced topics

Broad Topic Coverage: "mix and match" for lots of different uses

Primary textbook: Intro to Computer Systems, Computer Org., C programming, ...

Supplemental/Background text: OS, NW, Compilers, Arch, P&D, DB, ...

Use Feedback from Experts in our Community

External Reviewers of Chapters, Early Adopters Program

Main Themes

1. How a Computer Runs a program

HLL to binary encoding

Arch design, OS abstractions & mgmt for running programs

1. How System Costs affect program performance

Focus on Memory Hierarchy & program efficiency

1. How to leverage power of Parallel Computers

Focus on Shared Memory

Content Overview

• C programming

- from CS1 background (in python?)
- Most of C, gdb, valgrind, optimization

15 Chapters

• Binary Representation of C types & Operations on Binary data

- Focus: representation & operations on signed and unsigned
- Briefly: real number representation

• Architecture with focus on CPU design for running Programs

- Focus: Build CPU from logic gates, instruction execution stages, clock
- Von Neumann Arch & history of modern computers
- Looking ahead: today's CPUs (pipelining, multicore, multithreading, ILP)

Content Overview (cont.)

- Memory Hierarchy & its effects on performance
 - Storage media/devices, CPU caching

• Assembly Programming, focus on mapping C to assembly

- Arithmetic, conditional, functions, stack, memory mvmt
- in IA32, x86_64, 64 bit ARM

• Operating Systems, focus on its role in running programs

- Main abstractions: Processes and VM
- Briefly: IPC & looking ahead to other OS functionality

Introduction to Parallelism and Parallel computing

- Focus: Shared Memory (multicore, threads, pthread programming, OpenMP)
- Looking ahead: cloud & MapReduce, clusters & MPI, accelerators & CUDA

diveintosystems.org

3. C Debugging 12. Code Optimization 1 6. - 10. Assembly 1A32, x86 64, ARM 64

C Intro
C Depth

4. Binary Representation

- 11. Memory Hierarchy
- 5. Architecture
- 13. Operating Systems
- 14. Shared Memory Parallel 15. Other Parallel

Early Adopter Program

AY 2020-2021 (1)

Student Survey Results

"How helpful did you find *Dive into Systems* compared to other textbooks?"

Student Survey Results

Student Survey Results

- What they liked:
 - Text is "clear and direct", organized in "concise and digestible sections"
 - Use of "engaging examples" that are "very helpful in terms of understanding conceptual materials"
 - Free nature of textbook "took some financial burden off of college"
- Areas of Improvement:
 - Students would like to see "extra problems", especially those that allow students to "somehow check [their] answers" or "practice what [they were] reading immediately".
 - A vocal minority of self-described *"old fashioned"* students stated a preference for *"a physical book"* that would allow them to avoid looking at a screen.

"How well do Dive into Systems topics fit your course?"

"How does Dive into Systems compare to other textbooks use for your course?"

95.6% of faculty believed equally good or better; 78.3% believed better or much better

- What they liked:
 - Book "explains content well" and seemed like it was "almost designed for [their] course"
 - Free nature of textbook allowed cost-conscious faculty to assign other hardware in the course (e.g. Raspberry Pis)
 - COVID-19 pandemic: online nature of textbook helped ease transition to a virtual environment
- Areas of Improvement:
 - Greater number of example problems/exercises
 - Improved instructor portal

Ongoing Work

 Working with No Starch Press to produce a print version (expected late spring). The book will remain free online!

9

A Gentle Introduction to Computer Systems

SUZANNE J. MATTHEWS, TIA NEWHALL, and KEVIN C. WEBB

Ongoing Work

2. Currently organizing NSF grant to develop free, interactive exercises. We'll need community help!

Conclusions

Dive into Systems is extensively peer-reviewed and already used by about twodozen institutions.

Early adopters have provided overwhelmingly positive feedback about the text's clarity and helpful figures.

It covers a broad range of systems topics for use by many courses.

Acknowledgements - Chapter Reviewers

- Jeannie Albrecht (Williams College)
- John Barr (Ithaca College)
- Jon Bentley
- Anu G. Bourgeois (Georgia State University)
- Martina Barnas (Indiana University Bloomington)
- David Bunde (Knox College)
- Stephen Carl (Sewanee)
- Bryan Chin (U.C. San Diego)
- Amy Csizmar Dalal (Carleton College)
- Debzani Deb (Winston-Salem State University)
- Saturnino Garcia (University of San Diego)
- Tim Haines (University of Wisconsin)

- Bill Jannen (Williams College)
- Alexander Mentis (West Point)
- Rick Ord (U.C. San Diego)
- Joe Politz (U.C. San Diego)
- Brad Richards (University of Puget Sound)
- Kelly Shaw (Williams College)
- Simon Sultana (Fresno Pacific University)
- Cynthia Taylor (Oberlin College)
- David Toth (Centre College)
- Bryce Wiedenbeck (Davidson College)
- Daniel Zingaro (University of Toronto Mississauga)

Acknowledgements - Early Adopters

- John Barr (Ithaca College)
- Chris Branton (Drury University)
- Dick Brown (St. Olaf College)
- David Bunde (Knox College)
- Bruce Char (Drexel University)
- Vasanta Chaganti (Swarthmore College)
- Bryan Chin (U.C. San Diego)
- Stephen Carl (Sewanee)
- John Dougherty (Haverford College)
- John Foley (Smith College)
- Elizabeth Johnson (Xavier University)
- Alexander Kendrowitch (West Point)
- Bill Kerney (Clovis Community College)
- Deborah Knox (The College of New Jersey)

- Doug MacGregor (Western Colorado University)
- Jeff Matocha (Ouachita Baptist University)
- Keith Muller (U.C. San Diego)
- Crystal Peng (Park University)
- Leo Porter (U.C. San Diego)
- Lauren Provost (Simmons University)
- Kathleen Riley (Bryn Mawr College)
- Roger Shore (High Point University)
- Tony Tong (Wheaton College, Norton MA)
- Brian Toone (Samford University)
- David Toth (Centre College)
- Bryce Wiedenbeck (Davidson College)
- Richard Weiss (The Evergreen State College)
- diveintosystems.org

Acknowledgements - Other Feedback

- Daniel Canas (Wake Forest University)
- Chien-Chung Shen (University of Delaware)
- Vasanta Chaganti (Swarthmore College)
- Sat Garcia (University of San Diego)
- Aaron Gember-Jacobson (Colgate University)

- Deborah Knox (The College of New Jersey)
- Ben Marks (Swarthmore College)
- Sivan Nachaum (Smith College)
- Roy Ragsdale (West Point)
- Richard Weiss (Evergreen State College)

Thanks!

Suzanne J. Matthews Tia Newhall Kevin C. Webb

Swarthmore College Swarthmore, PA USA

diveintosystems.org

The opinions expressed in this presentation are solely of the authors and do not necessarily reflect those of the U.S. Military Academy, the DoD or the U.S. Army.