Trying to do it all in a single course: a surprisingly good idea

Tia Newhall Swarthmore College

EduHPC-20: Workshop on Education for High Performance Computing

in conjunction with SC20

November 13, 2020

PDC at the undergraduate level

Important to expose students to breadth of PDC:

- 2 huge fields, lots of approaches/solutions/problems
- PDC increasingly touches all of CS
- Prepare students for graduate study and careers

There must be depth:

- Time and multiple opportunities to develop understanding
- problem solving/thinking/analysis/application

PDC all in one Course

Seems like a bad idea:

- Two huge fields!
- Lose developing deep/real understanding of PDC
- Lose developing PD thinking and problem solving

Actually: 1 course can provide large breadth of exposure to PDC while developing deep PDC thinking and problem solving

Why single course?

Constraints of a Small Institution

- Fewer faculty, Smaller number of courses
- Liberal Arts College: most courses outside of major fewer total courses in major: 8 course CS major

Constraints led to "Do it all in 1 Course" approach

Curricular Goals

Expose to Breadth of PDC

• broad range of PDC topics, concepts, thinking, in different contexts (systems, algorithms, language, tools, applications)

Develop Depth in PDC

• Understanding, thinking, analysis, problem solving

Additional department/institution goals:

- Writing-intensive, written & oral presentations
- Research paper reading & discussion
- Independent research project

Student's Background

Only assume students have had our intro sequence

- CS1, CS2, Intro. to Computer Systems
- Recommend students take 1 UL before this course

Aided by Intro. to Computer Systems pre-req:

- First introduces parallelism, multicore, pthreads
- All enter with some parallel thinking/analysis
- Frees up time to add more advanced PDC topics

Course Structure

Two Parts:

- ¹/₂ Lecture based: lecture and in-class problems
- ¹/₂ Seminar-style: research paper discussion

Also Lab Component:

First half: programming assn. diff lang, tools

- Pthreads, TCP client/server, Cuda, MPI, OpenMP
- designing experiments & analysis

Second Half: focus on course project

Lecture

- Broad range of PDC topics:
 - architecture, algorithms, analysis, systems, languages
- Overarching unifying theme of Scalability
 - Ties disparate topics together
 - Depth: apply in different contexts
- In-lecture group problem solving activities (Systems Eval, Parallel Soln, Alg. Analysis, Consensus, ...)
 - Students more engaged with problem and solutions
 - Students more comfortable participating in general

Paper Reading & Discussion

- Weekly in-class discussion of papers
 - Papers need to be accessible to undergrads
 - Earlier papers in a field, survey papers
- Assigned Paper Reading Groups
 - Discussion & Writing to prepare for in-class
- Professor leads in-class discussion
 - Goal: understanding of paper details, comparisons

Course Project

- Assigned part way through course
- Topic is Very Open
 - Must have main focus on PDC
 - Structured around research question
- Large written and oral presentation parts
- With more work beyond semester, many have led to publications for students

Student Assessment of Learning Goals

How has the Course affected your ability to:

- 1. Analyze and critically read CS papers?
- 2. Formulate research question, design experiments to answer?
- 3. Write clear & complete research paper?

Universally: students noted large improvements in their abilities of all of these:

"tremendously"

"dramatically"

"significantly" ...

What We See

- Huge improvements in student's discussion & analyses of papers, in-class problem solving
- Impressive projects, written reports, oral presentations
 - Getting to pick the topic keeps them engaged, excited, invested in their project
- Sparks interest (and confidence) in PDC
 - Graduate school in PDC areas, seek jobs in field
 - Hear from alumni using what learn in this class
- Extremely satisfying & rewarding to teach!

Lessons Learned

- Can do lot of breadth and keep in depth, and both are important!
 But can't do it all: have to cut important & loved
- 2. Designing around an overarching theme helps tie topics together & provides common depth
- 3. Need multiple opportunities for depth Develop PDC thinking, analysis, problem solving
- 4. Give Practice in broad range of PDC lang/tools

Conclusions

Our course that covers huge breadth of PDC was born out of constraints of our institution

We think this is the right design for a PDC course at the undergraduate level regardless of institution type/constraints:

- Exposure to breadth of fields & depth
- Sparks interest in PDC
- Prepares students for graduate work & work in the field, regardless of it directly PDC-based or not...ubiquity of PDC!

Thank you

course webpage(s):

www.cs.swarthmore.edu/~newhall/cs87