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Abstract—We present Nswap2L-FS, a fast, adaptable, and
heterogeneous storage system for backing file data in clusters.
Nswap2L-FS particularly targets backing temporary files, such
as those created by data-intensive applications for storing
intermediate results. Our work addresses the problem of how
to efficiently and effectively make use of heterogeneous storage
devices that are increasingly common in clusters. Nswap2L-FS
implements a two-layer device design. The top layer transpar-
ently manages a set of bottom layer physical storage devices,
which may include SSD, HDD, and its own implementation of
network RAM. Nswap2L-FS appears to node operating systems
as a single, fast backing storage device for file systems, hiding
the complexity of heterogeneous storage management from OS
subsystems. Internally, it implements adaptable and tunable
policies that specify where data should be placed and whether
data should be migrated from one underlying physical device
to another based on resource usage and the characteristics
of different devices. We present solutions to challenges that
are specific to supporting backing filesystems, including how
to efficiently support a wide range of I/O request sizes and
balancing fast storage goals with expectations of persistence
of stored file data. Nswap2L-FS defines relaxed persistence
guarantees on individual file writes to achieve faster I/O
accesses; less stringent persistence semantics allow it to make
use of network RAM to store file data, resulting in faster file I/O
to applications. Relaxed persistence guarantees are acceptable
in many situations, particularly those involving short-lived data
such as temporary files. Nswap2L-FS provides a persistence
snapshot mechanism that can be used by applications or
checkpointing systems to ensure that file data are persistent at
certain points in their execution. Nswap2L-FS is implemented
as a Linux block device driver that can be added as a file
partition on individual cluster nodes. Experimental results
show that file-intensive applications run faster when using
Nswap2L-FS as backing store. Additionally, its adaptive data
placement and migration policies, which make effective use
of different underlying physical storage devices, result in
performance exceeding that of any single device.

I. INTRODUCTION

It is common for both sequential and parallel applica-
tions to generate temporary intermediate result files. For
instance, optimizing compilers typically create temporary
files containing the output of intermediate steps. Out-of-
core algorithms for large data sets, such as external merge
sort, use temporary files to store partial output. Similarly,
MapReduce [1] computations generate temporary files of
intermediate (key, value) pairs. Often, these temporary files

are stored on a local file partition backed by hard disk drives
(HDD).

Given the potential size of data stored in these interme-
diate files and the slow speeds of HDDs, the overhead of
writing and reading intermediate files can be substantial,
delaying the completion of an application. Nswap2L-FS is
our solution for providing fast backing storage for file data in
clusters and networked systems. It combines a heterogeneous
set of storage options available in the cluster, including local
and remote devices such as flash or disk and remote network
RAM in order to provide superior performance to any single
device. To the node operating system (OS), Nswap2L-FS
appears as a single, fast, random access backing store device.

As node RAM capacities continue to grow, significant
amounts of RAM remain idle in clusters, even during times
of heavy utilization [2], [3]. Network RAM is the concept of
allowing nodes in a cluster to use the idle memory of other
cluster nodes as fast backing store. Because network speeds
plus RAM access speeds are typically faster than flash SSD,
and orders of magnitude faster than HDD devices, network
RAM is increasingly attractive as an option for fast storage.

The main drawback of using this network RAM as sec-
ondary storage is that its volatility does not satisfy traditional
persistence guarantees of file system data. However, we note
that for some types of files, strict persistence constraints on
individual file writes may not be necessary, and for many,
the trade-off in weaker persistence constraints for faster file
I/O is desired.

Temporary files are one example where faster file I/O
may be favored over strict file persistence guarantees. Often
data intensive applications create temporary files containing
partial results that are processed by later phases of the
computation. In many cases, generated temporary files are
short lived and do not need persistence [4]. Additionally,
many large parallel and data intensive applications incor-
porate fault tolerance to be robust to node failure and data
loss. For instance, MapReduce uses backup tasks to allow
computation to continue even in the presence of degraded
performance and often starts multiple copies of the same
task, allowing some of them to fail. Checkpointing is also
commonly used by long-running applications to create a
persistent snapshot. In such an environment, enforcing per-
sistence on every file block write adds unnecessary overhead



to file I/O. Instead, Nswap2L-FS can write file blocks
to fast volatile network RAM, speeding up file I/O and
subsequently reducing application runtime.

While network RAM can provide higher performance than
many other cluster storage devices, HDD and SSD drives
are still useful. In particular, given that network RAM is
not always available and that it has varying capacity based
on nodes’ workloads, a storage system solely using network
RAM many not always be possible. Further, because RAM is
volatile, file storage on network RAM alone is not sufficient
if the file system it backs desires persistent storage.

In clusters there is increasingly a wide range of storage
devices available, including flash SSD, magnetic HDD, and
networked storage devices. A system that can incorporate
network RAM alongside other cluster storage can more
easily adapt to changing cluster conditions, using network
RAM when available and falling back on local devices as
needed. Additionally, a system incorporating many devices
has the ability to move data between devices to redistribute
with a goal of increasing I/O parallelism and performance.

Nswap2L-FS is our adaptable, scalable, and efficient
backing storage system for providing fast access to tem-
porary files. It builds off our earlier work exploring backing
store for swap data in clusters [5]. While both transparently
manage multiple heterogeneous storage technologies with
the goal of providing superior performance, Nswap2L-FS
extends our previous work in significant ways. In particular,
the underlying architecture differs substantially in order to
support high performance I/O for requests of any size,
which is necessary for backing file systems. Additionally,
Nswap2L-FS adds a persistent storage mechanism and op-
tional encryption of remotely stored data.

The main goals of our system are: to provide fast backing
storage for file system data by combining heterogeneous
storage devices that are increasingly common in clusters;
to hide the complexity of managing heterogeneous storage
from node OSs, allowing this storage to be used in a wide
range of contexts without modifying OS subsystems or
applications; and to provide an adaptable system that easily
incorporates new storage devices and provides tunable and
adaptable policies to dynamically take advantage of available
cluster resources.

Nswap2L-FS hides the complexity of managing the set of
heterogeneous storage devices from cluster node operating
systems. To node OSs, Nswap2L-FS appears as a single,
fast random access device that can be formatted as a
local file partition, freeing OS file system implementations
from having to be optimized for different sets of backing
storage media available in a cluster. When the OS issues
file read, write, or discard requests to the Nswap2L-FS
device, Nswap2L-FS implements data placement policies for
choosing underlying devices based on dynamic performance
information, cluster load, or user input. Additionally, it
incorporates mechanisms for moving data from one device

to another, allowing for policies that exploit the heteroge-
neous set of available storage resources. For instance, when
network RAM is scarce, moving data away from network
RAM to a slower local device can increase performance by
keeping network RAM free for future write operations. This
data movement is transparent to node OSs.

Nswap2L-FS is optimized for fast file I/O specifically tar-
geting temporary file storage. Its normal operation does not
guarantee persistence of individual file writes—all internal
metadata are stored in memory, and written data may be
stored in the memory of remote nodes. For applications that
desire stricter persistence guarantees, Nswap2L-FS provides
a persistence interface via /sys. Applications can use it to
create a snapshot of the file partition backed by Nswap2L-
FS, or to restore Nswap2L-FS to an existing snapshot of
earlier state.

Nswap2L-FS’s persistence interface represents a trade-off
in strict persistence of individual file block writes for faster
file I/O access speed. For temporary file systems in particu-
lar, this trade-off is desirable since long term storage is not
required. Nswap2L-FS’s persistent snapshot mechanism can
be used by a checkpointing system as needed.

Nswap2L-FS is designed to be an adaptable and dynamic
backing store device. To that end, we have built it with many
extensible components that can support a rich set of flexible
policies to achieve high performance. For instance, under-
lying devices can be added on the fly, profiling information
of each storage device can be collected, as well as access
frequency and recency of each block. These features are
enabled and accessed through an extensive /sys interface.

The building blocks of our system enable a wide range
of potential policies to most effectively use heterogeneous
storage. For instance, device performance data could be
integrated into placement policies to dynamically prioritize
page placement and prefetching data between underlying
physical devices. Its access pattern data could be used to
identify hot pages to preferentially place on faster devices.

This paper focuses on our first implementation of
Nswap2L-FS, describing initial experiments validating the
benefits of its design and main goals. Our initial work opens
up a rich design space of potential policies within Nswap2L-
FS. We believe we have only scratched the surface and are
excited to continue exploring these directions in our future
work.

II. RELATED WORK

Since the 1990s, researchers have noted the uneven distri-
bution of workloads in computing clusters [6], [7], resulting
in a substantial fraction of the computing power and memory
usually being idle [2]. More recent studies [3] note that even
though data-intensive computing has lead to higher RAM
utilization (with a mean reported near 80% in some large
data centers), there is a high degree of variability in RAM
utilization and server load in these systems. Even in the era



of Big Data, there is still a large amount of idle RAM, and
investigating how this can be used to improve performance
is an area of ongoing research [8]–[11].

Much research has investigated the potential utility of this
idle memory, resulting in systems that use remote idle RAM
as backing store for swapping [12]–[14], for cooperative
caching [15], [16], or as an extension of local memory [17],
[18]. At the same time, researchers have investigated how
to effectively incorporate RAM into systems in order to
balance cost and performance. Graefe [19] concludes that
with larger RAM sizes and lower costs, data accessed every
5 hours should be placed in RAM, suggesting that many
intermediate, temporary files could be stored in RAM for
their entire lifetime.

As parallel workloads have become more common, and
the amount of data stored and processed has grown, some
have examined how network RAM could be used to speed up
file accesses, effectively incorporating remote RAM into the
memory hierarchy as a cache for file system data between
local memory and disk access [15], [20]. Some systems
are more specialized: optimizing distributed caching for
Hadoop [21], [22] or for commercial query accesses [16].

While caching greatly improves performance, the large
disparity between memory and disk access times means that
cache hit rates must be exceptionally high in order to provide
performance comparable to using the cache alone [23].
In this vein, recent work has expanded the role of RAM
from caches to primary store for file systems. The goal of
these file systems is to provide performance as if the entire
file system were in volatile memory, while still providing
the reliability and persistence guarantees of traditional file
systems backed by SSDs or HDDs. NOVA [24] uses non-
volatile memory (NVM) for persistent storage of data while
constructing non-persistent indices in DRAM in order to
increase performance. Tachyon [4] proposes a checkpoint
and re-execution model, where all data are stored in DRAM,
with periodic flushing to persistent storage. If temporary
files are created, used, and deleted before the flush to
persistent storage, there is no I/O overhead associated with
these files. Triple-H [25] outlines a heterogeneous storage
system incorporating RAM (for fast I/O) alongside SSDs
(for caching / staging) and HDDs (for long term persistence).
The motivation is similar to Nswap2L [5] and Nswap2L-FS,
although Triple-H provides persistence and focuses solely on
speeding up Hadoop jobs, while Nswap2L-FS targets any
application that generates temporary files.

The increasing size and decreasing cost of memory has
led some to claim that “RAM is the new disk,” with disk
replacing tape storage [26]. This has motivated file systems
based entirely in memory. RAMCloud [23] is a DRAM
based storage system for key-value pairs in cloud systems.
Primary storage for all file data is in the aggregate RAM of
thousands of servers. Data durability is provided by storing
copies of file data on slower persistent storage such as disk.

MemEFS [27] implements a similar distributed memory
file system with dynamic data redistribution based on the
cluster size and load, but does not describe strategies for
durability. Nswap2L-FS is similar to this work in that it
implements network RAM as one of its underlying devices
storing file data. However, it differs in that Nswap2L-FS
is designed for smaller clusters and networked systems,
adapts to changes in nodes’ RAM usage, and manages a
heterogeneous set of underlying devices on which file data
are stored. Additionally, Nswap2L-FS implements a device
interface on which a file system can be mounted, rather than
a file system interface, making it a more versatile backing
storage system.

III. NSWAP2L-FS DESIGN & IMPLEMENTATION

Nswap2L-FS is backing store for file systems in clusters.
It is implemented as a substantial extension of Nswap2L [5],
which provides backing store for swap in clusters. Nswap2L-
FS makes significant changes to the underlying architecture
of Nswap2L to add support for backing file system data.
Specifically, it:

• Provides high performance I/O operations for data
spanning multiple pages and sub pages.

• Defines a persistence model for file data and imple-
ments an interface that can be used by applications to
trigger persistent snapshots of all live data and metadata
in the Nswap2L-FS partition.

• Adds an interface for encrypting data stored remotely.
• Provides a set of tunable policies for data placement

and movement between the underlying devices.
Making best used of heterogeneous storage devices is

more difficult in the context of backing files than backing
swap. For example, file I/O request sizes can vary from from
individual blocks of 512B to multiple contiguous blocks
totaling hundreds of KBs. These request size differences
lead to problems in mapping granularity of data stored to
underlying devices. Nswap2L-FS chooses a 4KB block size,
as compromise between the amount of metadata needed store
mappings, and the flexibility of placing large request over
multiple devices for performance reasons. A 4KB block
size is also selected because it is the default Linux page
size, allowing Nswap2L-FS to back swap or file systems.
Additionally, the expectation of non-volatility of file storage
is in conflict with our desire to use fast network RAM
storage to speed-up file I/O. This conflict resulted in our
persistent snapshot solution that provides a trade-off in
persistence of every file block write for faster I/O, which
we argue is desired for the target uses of our system.
Main Design Goals: The implementation of Nswap2L-
FS, like its predecessor Nswap2L, is driven by the goal
of efficiently and transparently combining heterogeneous
storage devices with a focus on extensibility and adaptability.

Pursuit of these goals leads to a primary design decision
that Nswap2L-FS be implemented at the device, rather
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Figure 1. The two level design architecture of Nswap2L-FS (and
Nswap2L). The top level device interfaces with the OS. Internally, it
contains policies for choosing an underlying device for data placement and
for internally prefetching data among the heterogeneous set of underlying
devices it manages.

than file system, layer. This choice increases Nswap2L-FS’s
applicability, allowing it to be used for any type of backing
store, not just for backing files.

Given that Nswap2L-FS incorporates multiple devices and
variable amounts of remote network RAM, adaptability to
changes in available devices or capacities is essential. Its
network RAM implementation is built to adapt to changes
in cluster resource availability. In addition, Nswap2L-FS
defines modular policies, which can be changed on the fly,
for dictating where data are placed and for prefetching data
from one underlying device to another, with the goal of
improving I/O performance.

We briefly present Nswap2L background as applicable to
Nswap2L-FS, before discussing Nswap2L-FS in detail. For
more information about Nswap2L, see [5].
Nswap2L Background: The main design goal of Nswap2L
is to make best use of a heterogeneous cluster-wide storage
to transparently provide fast swap space. Nswap2L frees the
OS virtual memory system from having to be optimized for
all possible combinations of different physical secondary
storage devices. Additionally, Nswap2L is designed to be
adaptable—the set of underlying storage devices can be
changed on-the-fly, and its policies are tunable and designed
to adjust to changes in cluster resource usage.

Nswap2L (and Nswap2L-FS) is conceptually designed as
a two-level block device driver as shown in Figure 1. The
top level Nswap2L driver implements the abstraction to the
OS of a single, large, fast, random access storage device that
can be added as a swap partition on individual cluster nodes.
It manages a set of heterogeneous bottom level storage
devices, including its implementation of network RAM, on
which data are stored. When the OS writes to the top-level
Nswap2L device, its placement policies select the bottom-
level physical device on which to store the data.

The main system architecture is shown in Figure 2. While
conceptually it is a two-level device driver, its implementa-

tion uses two levels of drivers for all underlying physical
devices except for network RAM, which is implemented
directly within the top-level Nswap2L driver.

The top-level Nswap2L driver is itself implemented in
two layers. The upper layer implements the interface to the
OS as a single, fast, random access storage device, and
the lower layer implements mechanisms for reading and
writing data to the underlying physical storage devices it
manages. In addition to data placement policies, the top-
level Nswap2L driver contains data prefetching policies that
may result in data moving from one underlying device to
another. Thus, a subsequent swap-in of a page from the
Nswap2L device may result in the page data being read in
from an underlying device different from the one to which
it was initially written. This data movement is completely
transparent to the OS.

The network RAM implementation is part of the top-level
driver, and it is designed to be scalable and adaptable. Each
cluster node acts as an equal peer, implementing both the
client and server parts of the network RAM system. The
client is active when the OS reads or writes to Nswap2L
pages that have been placed on underlying network RAM.
The server is active when it receives read or write requests
from network RAM clients running on remote nodes. The
server manages a portion of local RAM space that it makes
available for network RAM storage. It grows and shrinks
the amount of RAM it allocates based on the node’s current
workload. When the node has idle RAM, the server may
allocate some for use by remote nodes; when the local
workload needs more RAM, the server shrinks the amount
it has allocated, releasing it back to the OS. Network RAM
shrinking can result in page data being migrated to other
servers or underlying storage devices. Each node uses a
local estimate of available network RAM space in the cluster
to find servers with available RAM space. Currently, we
use LAN broadcast for servers to periodically share their
available network RAM capacity with other nodes. In scaling
to larger size systems, an overlay broadcast network could
be used. See [12] for more details about the network RAM
implementation.

As backing store for swap space, Nswap2L receives read
and write requests for individual 4KB pages, each the result
of a page swap-in or swap-out request by the OS. Nswap2L
adds I/O requests to an internal queue to be handled by a
worker pool thread. Worker threads invoke policy code and
handle a read, write, or discard request to any underlying
device. With multiple worker threads, multiple independent
I/O requests can be handled in parallel.

Nswap2L maintains a small amount of metadata with
each page of stored data, including which underlying device
stores the page, in a data structure called the Slotmap.
When a worker thread dequeues a read request, it looks up
the device id in the Slotmap entry to find the underlying
device storing the requested page. If the page is stored in
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Figure 2. Nswap2L-FS (and Nswap2L) Architecture and Data Structures, including the Slotmap and Worker Thread Pool. The upper layer implements
data placement and migration policies to underlying devices. The bottom layer implements mechanisms to pass I/O requests to underlying physical devices
and network RAM. Nswap2L-FS’s asynchronous multi-page I/O request queue for network RAM pages is also shown.

network RAM, the Slotmap entry encodes which network
RAM server (remote cluster node) stores the page data. The
worker thread directly runs the network RAM code in the
lower-layer of Nswap2L to synchronously retrieve the page
from the remote node. The worker then notifies the OS when
the data are received and the read request is complete. If the
page is stored on another underlying device, then the worker
thread uses the Linux dmio [28] interface to asynchronously
forward the read request to the bottom-level driver (e.g. flash
SSD driver). In the callback function to the asynchronous
dmio, the OS is notified that the read request is completed.

Writes are handled similarly to reads with two main
differences. First, the worker thread executes policy code
that chooses which bottom-level device will store the page
(data placement policies are tunable via an interface exported
in /sys). Second, when the write completes, the worker
thread (for network RAM) or callback function (for dmio
writes) encodes the underlying device in the Slotmap entry
for the page and notifies the OS of completion.

Discards are handled by either forwarding the discard
request to the underlying discardable devices (e.g. SSD), or
by notifying a remote server that it can free the page stored
in its network RAM. Discards update the Slotmap indicating
that the page slots are unused.

While most requests handled by worker threads are issued
by the OS, a portion are generated internally by Nswap2L
to move data from one device to another. This internal
data movement, called prefetching, is transparent to the OS
and is a unique feature of Nswap2L. Nswap2L’s ability to
dynamically modify where swap data are stored has the

promise of performance benefits beyond what the single
fastest device can support. For instance, if there is relatively
little network RAM available in the cluster, prefetching
pages away from network RAM and onto a local device
like flash can maintain some free network RAM space
available for fast writes, while still allowing for good read
performance from flash or network RAM.

Backing swap space is easier than backing file system
data. For backing swap, all I/O requests are in single page-
size units, thus no support for variable sized I/O requests
is required. Additionally, there is no expectation of fault
tolerance for swapped pages, so providing persistent backing
store is not necessary.

A. Solutions for Handling File I/O Requests

To support backing filesystem data, Nswap2L-FS needs
to handle requests in units of partial or multiple pages (any
number of contiguous 512 byte blocks). This adds a sub-
stantial amount of complexity, especially since Nswap2L-
FS, like Nswap2L, maintains mappings on page-size gran-
ularities. This decision allows us to split requests across
multiple underlying heterogeneous devices and keeps the
size of the Slotmap small. As a result, Nswap2L-FS must
handle requests that may span multiple underlying devices
and that may not be page aligned, complicating both the
mapping of file data to underlying devices and the efficient
implementation of handling single file I/O requests that are
satisfied by multiple underlying devices.
Handling Partial Page Sized Requests: Most file system
read requests to Nswap2L-FS are in units of its defined sec-



tor size (currently 4KB). However, file systems sometimes
issue read requests for partial page data. These requests are
generated by programs like mount that read portions of the
first few pages to validate metadata for the file system being
mounted. Because partial page size reads are unusual, our
solution for handling them favors not introducing additional
overheads for handing the much more common full and
multi-page I/O requests.

If the underlying device storing the page data is on
the dmio handling path, then the worker thread simply
forwards the read request to the underlying device to handle
it asynchronously—no special handling is needed in this
case for partial page reads. If the underlying device storing
the data is network RAM, then the worker thread handles the
partial page read by issuing a full page read to the remote
server storing the page, and extracts the portion requested.
This implementation retains flexibility for handling small
reads at a very low added cost of a full vs. a partial page
read, while having no impact on the performance of the
much more common case of larger I/O requests sizes.
Handling Multi-page Requests: To back a file system,
Nswap2L-FS must be able to handle I/O requests for
multiple contiguous pages of data, possibly spanning sev-
eral underlying devices. We assign the responsibility for
managing a multi-page request to the worker thread that
removes the request from the internal request queue (the
“shepherd thread”). This thread is responsible for handling
each page of the I/O request, tracking the completion of any
asynchronous page I/Os it issues, and notifying the OS of
request completion once all pages have been handled.

In order to handle a multi-page I/O request, a shepherd
worker thread must iterate through each page in the request
and process it. For the pages in the request that are backed
by network RAM, the shepherd thread directly executes the
network RAM code to send or receive each page to remote
server nodes, completing the necessary I/O before starting to
process the next page. For pages backed by dmio devices, the
shepherd thread issues asynchronous I/O calls via dmio, one
for each page, to access the underlying storage device. Note
that once the shepherd thread has finished iterating through
the pages in the request, it must wait until all of the issued
single page asynchronous dmio I/Os have completed before
it can notify the OS that the full multi-page request is done.
Keeping track of the status of each issued asynchronous
request is crucial to ensuring correctness.

When the asynchronous dmio I/O function is called,
its arguments include a callback function pointer and a
context pointer. Dmio invokes the callback function when
it completes the I/O operation, passing it the context pointer
as an argument. For single page I/O requests, execution of
the callback function indicates completion of the I/O request,
and the callback function notifies the OS that its request is
done. This notification requires that the callback function
pass the OS a pointer to the request structure associated

with its I/O request. We use the context pointer parameter
to dmio to pass the address of the request structure used in
the callback function (shown in the top of Figure 3).

For multi-page requests, however, execution of the call-
back function only indicates that a single page I/O of the
larger multi-page request has completed. If the callback
function were to notify the OS of completion of its request,
then the OS would incorrectly be notified multiple times of
its request completion, resulting in corruption of kernel-level
data structures. When the callback function is executed for
a page that is part of a larger request, it should only update
state to indicate that one page of the request has completed.

Our solution is to assign the shepherd thread the re-
sponsibility of notifying the OS when the full multi-page
request is complete. The shepherd thread communicates
with threads executing asynchronous callbacks through a
shared semaphore. It decrements the semaphore once for
each issued asynchronous I/O, and each callback increments
it. When it unblocks, the multi-page request is complete and
it is safe to notify the OS.

To support this solution, the dmio callback function needs
to identify if the I/O was for a single or a multi-page
request. We use the context pointer parameter to encode
this information. For a single page callback, the parameter’s
value is a pointer to the request structure from the OS. For a
multi-page callback, the parameter’s value is an encoding of
the ID of the shepherd thread associated with the request,
the ID of the underlying device storing the page (multi-
page I/O requests can span multiple underlying devices), and
the offset into the Nswap2L-FS device for this particular
page (its Slotmap index). The encoding is shown in the
bottom of Figure 3. Because the request structure is 4-byte
aligned, we can use the low order bit of the context pointer
to encode whether it contains information for a single page
(low order bit 0) or a multi-page (low order bit 1) request.
After testing this bit, the callback function extracts state
from the context pointer parameter, and either notifies the
OS of completion of the request (single page) or increments
the shepherd thread’s semaphore, signaling that one page
of the request has completed (multi-page). For writes, the
callback function needs to update the Slotmap entry with
the underlying device’s ID. For single page I/O, information
about the Slotmap entry index and the underlying device are
encoded in fields of the request structure; for multi-page I/O,
they are encoded in the context pointer argument.

Asynchronous Multi-page I/O to Network RAM: In our
initial implementation of multi-page I/O handling, individual
pages backed by network RAM were synchronously read or
written from remote server nodes by the shepherd thread,
one page I/O after the next. Our experimental analysis found
that this serial, synchronous I/O can significantly slow down
applications that issue a large number of multi-page reads
to Nswap2L-FS. As a result, we implemented asynchronous
multi-page I/O support for the network RAM device. Our
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Figure 3. Asynchronous I/O callback context pointers. For single page
requests, the context pointer encodes a pointer to its associated I/O request
structure. For multi-page requests, the context pointer encodes the I/O
offset, the device ID, and the handling shepherd thread’s ID. The least
significant bit differentiates the two context types.

solution uses an approach similar to the asynchronous inter-
face provided by dmio to access other bottom level-devices.

Because worker threads directly execute network RAM
code to read or write pages to remote server nodes, the
only way to achieve asynchronous handling of multiple
pages of network RAM is to have multiple worker threads
simultaneously perform I/O of separate pages of the multi-
page request. We add an additional internal request queue
that is only for handling individual pages of multi-page
I/O requests that are backed by network RAM (shown
in Figure 2). The shepherd thread adds a special request
structures to this second queue, one for each network RAM
backed page in the multi-page request. It then wakes up other
worker threads to handle the individual pages of the request
in parallel. Coordination between the worker threads and
the shepherd thread is handled in a similar manner as dmio
callbacks: a shared semaphore is used to signal completion
of each page of the multi-page request.

Experimental results comparing the synchronous and
asynchronous versions of multi-page network RAM I/O
show a significant improvement in performance (e.g. a
speed-up of 5.5 over synchronous network RAM handling
in our file I/O benchmark presented in Section IV).

B. File Data Persistence

Nswap2L was designed without support for persistent
storage. While persistent storage may not be needed for
backing swap data, file system data are generally assumed
to persist. By design, Nswap2L-FS has relaxed persistence
constraints on individual file writes, optimizing instead for
fast I/O accesses by storing some file system data in the
volatile RAM of remote cluster nodes, and file system
metadata in the Slotmap stored in local RAM. For temporary
file data that do not need to persist beyond the execution
of the application that creates them, this trade-off in strict
persistence of individual writes for faster file I/O is often
desirable and can lead to faster application completion times.
However, providing some support for file data persistence in
Nswap2L-FS is useful, and even necessary for long-running
applications, particularly those running on large systems
where individual cluster node failure is the norm.

Nswap2L-FS provides persistence of stored data at the
granularity of a persistent snapshot. The snapshot includes

all live file data and metadata in the file partition backed
by Nswap2L-FS. The added overhead of ensuring data
persistence is only incurred if, and when, a application
chooses to make a persistent snapshot. Nswap2L-FS imple-
ments an interface via /sys that applications can use to
request, query the status of, and restore a persistent snapshot.
Checkpointing systems, for example, can use this interface
to save a snapshot of the file data as part of a checkpoint. The
interface also can be used to save and restore Nswap2L-FS
state across node reboots.

When a snapshot dump is requested, a dedicated per-
sistence thread in Nswap2L-FS uses dmio to issue read
requests to Nswap2L-FS and write requests to the snapshot
destination device. An identical process, with data going
from the destination device to Nswap2L-FS, occurs when a
restore is requested. From the perspective of the Nswap2L-
FS driver, all I/O requests issued by the persistence thread
appear identical to any other read or write request from the
OS.

The saved snapshot includes both a copy of every page
of Nswap2L-FS storage that currently stores live filesystem
data and metadata that encodes the Slotmap entry for each
data page in the snapshot. Because Nswap2L-FS is loaded
as a discardable device, the OS sends it discard I/O requests
when it frees file blocks (pages of Nswap2L-FS backing
store). This allows Nswap2L-FS to limit the amount of data
included in a persistent snapshot to include only those pages
that are currently in use by the filesystem.

When a restore is issued, the persistence thread reads in
the metadata part of the saved snapshot and uses it to extract
the correct offsets into the Nswap2L-FS device for each data
page in the snapshot dump. As pages are read from the
snapshot dump, the offset values are used to write the page
data to its appropriate offset in the Nswap2L-FS device (the
page’s Slotmap index) to correctly restore the state of the
filesystem saved in the snapshot.

By design Nswap2L-FS provides a course grained per-
sistence mechanism that is optimized for fast file I/O over
strict persistence guarantees of every individual write. For
the types of systems and uses Nswap2L-FS targets, this is
the right trade-off. In these uses, snapshots are rare and
persistence may not even be desired by the application.
Nswap2L-FS’s snapshot feature only introduces persistence
overhead when explicitly invoked by a higher-level user.

Because Nswap2L-FS is implemented at the device layer
vs. at the file system layer, the granularity of its persistent
snapshot must be at a full file partition level, including
all live file data in the partition it backs; Nswap2L-FS
does not have a higher-level interpretation of the meaning
of the file blocks it stores, and thus has no way to pick
blocks corresponding to specific files to back. A possible
future direction is to support an persistent snapshot interface
that specifies sub-ranges in our device partition. However,
because our target use is for backing temporary file data, the



partition will tend to only contain live data from currently
running applications. Thus, we anticipate that persistent
snapshots will be taken only at checkpoint events where
the full partition of Nswap2L-FS live data is the desired
granularity of the persistent snapshot.

Using its snapshot and recovery interface is straightfor-
ward, and could be easily integrated into checkpointing and
MapReduce implementations. The performance of the per-
sistent snapshot and restore from snapshot depends heavily
on the amount of live data in the file system, the size of the
file partition, and the type of backing storage device storing
the snapshot.

C. Optional Encryption

Nswap2L-FS includes an optional encryption feature that
a user can enable to direct Nswap2L-FS to encrypt file
page data that it places in network RAM. Encryption adds
additional overhead to network RAM I/O, but is useful in
cases when Nswap2L-FS is used to store sensitive file data
on an insecure network. Encryption is implemented solely in
the network RAM client using the Linux kernel AES library;
network RAM servers and the Nswap2L-FS upper-layer are
unaware of page data encryption.

IV. NSWAP2L-FS PERFORMANCE RESULTS

The main goal of Nswap2L-FS is to effectively make
use of the heterogeneous collection of storage available in
clusters in order to provide fast backing store for filesystems,
particularly those storing temporary files. Our vision is that
applications that generate temporary files will run faster
when their file data are backed by Nswap2L-FS, relative
to being backed by any single physical storage device. We
present results of experiments that evaluate the performance
of Nswap2L-FS, comparing the performance benchmark
programs run with filesystems backed by Nswap2L-FS
to those backed by other secondary storage devices. The
purpose of these experiments is to evaluate the relative
performance of Nswap2L-FS compared to any single phys-
ical device. Additionally, we validate Nswap2L-FS’s two
level design by evaluating the performance benefits achieved
through its adaptable data placement and prefetching policies
to its heterogeneous set of underlying devices.

All experiments were run on a 16 node cluster running
unmodified Linux 4.0.4. Each node had 16GB of RAM, a
120GB Intel 320 Series SSD, and a 500GB Western Digital
HDD. Nodes were connected by 10Gb Ethernet, with a
latency of approximately 0.17 ms. The Nswap2L-FS device
driver was loaded on each node, formatted with the Linux
ext4 file system, and configured to manage three different
bottom-level storage devices: network RAM, flash SSD, and
HDD. Unless otherwise noted, the amount of network RAM
available exceeded the amount necessary to hold all data
stored on the filesystem.

A. Nswap2L-FS vs. Single Device

To evaluate Nswap2L-FS’s two-level design, we ran
several benchmark programs comparing their performance
when using a file system backed by different devices. The
purpose of our benchmarks is to evaluate the performance of
an Nswap2L-FS backed file system in envisioned use cases.
We present the results of three of these studies.

The first program simulates a common file access pattern
of applications that create and use temporary files as part of a
larger computational task: first a temporary file is created and
written to, and later it is read in for further processing. We
tested Nswap2L-FS’s performance on a file I/O benchmark
program that we wrote to generate this file creation, file
write, and file read access pattern. The benchmark program
consists of creating 200 files, each 20 megabytes in size,
flushing the system caches, and subsequently computing the
MD5 hash of written files, requiring a full read of each
one. Flushing the system caches between the write and read
phases eliminates confounding effects of OS caching across
runs of each experiment.

The second program is the STXXL [29] library’s imple-
mentation of external merge sort. External merge sort is
commonly used for sorting data that are too large to fit into
RAM, and thus involves a substantial amount of file I/O.

The third benchmark program is the varmail application
from the Filebench [30] benchmarking suite. Varmail simu-
lates another common temporary file creation and access pat-
tern: short-lived files on a mail server where email message
files are created, delivered, and then deleted. Unlike the other
programs tested, the metric reported by the benchmark is the
average number of I/O operations completed per second,
rather than task completion time.

Each benchmark was run with three different Nswap2L-
FS placement policy configurations: one placing file data
to underlying network RAM, one to flash, and one to disk.
We also ran the benchmark for configurations where the file
system is mounted directly on flash and hard drive partitions.
These runs provide measures to evaluate Nswap2L-FS two-
layer overheads when performing I/O on top of flash and
disk. We measure the total runtime of the file I/O and exter-
nal sorting benchmarks, and the number of I/O completions
per second over a three minute execution of the the varmail
benchmark.

Figure 4 shows the average runtime for our file I/O bench-
mark. The results show statistically significant performance
improvement when Nswap2L-FS places file data on its
underlying network RAM vs. when it places it on underlying
flash or disk partitions (343 seconds for network RAM vs.
389 for flash and 431 for disk). Also shown are measures
of the overhead added by the Nswap2L-FS top-level driver
on top of flash and disk. When the flash device is directly
used as a backing store, the additional processing added by
the Nswap2L-FS driver marginally increases the runtime by
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Figure 4. The runtime of our file I/O benchmark program for different
backing storage devices: Nswap2L-FS to Network RAM; Nswap2L-FS to
Flash; Nswap2L-FS to Disk; direct to flash; direct to disk. The times are
the average of 10 runs on each configuration. Standard deviations are also
shown.

approximately two percent. On top of disk, the Nswap2L-
FS overhead is higher, adding 8% to the total runtime of
the file system directly mounted on the disk partition. The
higher overhead on top of disk is partially due to Nswap2L-
FS using the Linux noop scheduler vs. the disk driver using
the default Linux scheduler that is optimized specifically for
disk I/O. Because Nswap2L-FS is unlikely to send file data
to underlying disk (doing so only when there is no network
RAM or flash space available), the higher overheads on top
of disk are unlikely to affect Nswap2L-FS’s file I/O speeds.

Figure 5 shows the average runtime for the STXXL ex-
ternal merge sort program for runs on different file backing
storage devices. The results show a 1.8 speed-up when using
Nswap2L-FS to network RAM vs. Nswap2L-FS to flash, and
speed-up of 2.8 over Nswap2L-FS to disk. Nswap2L-FS to
network RAM is 1.6 times faster than direct flash, and 2.2
times faster than direct disk. Also shown are measures of the
overhead added by the Nswap2L-FS top-level driver on top
of flash and disk. When flash and disk devices are directly
used as a backing store, the additional processing added by
the Nswap2L-FS driver marginally increases the runtime.
However, both direct storage devices are significantly slower
then Nwap2L-FS’s network RAM storage.

Figure 6 shows the average number of I/O operations
per second when running the varmail benchmark for each
configuration of backing device for the temporary file sys-
tem. The results show an increase by a factor of 10.5 in
the number of I/Os per second when using Nswap2L-FS to
network RAM versus direct to local disk, and an increase by
a factor of 1.7 when using Nswap2L-FS to network RAM
versus direct to local flash. There is no significant overhead
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the destination file system backed by Nswap2L-FS or local devices. Note
that since this is a measure of throughput, higher values are better. The
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in accessing flash through Nswap2L-FS versus accessing
it directly. However, accessing file data on disk through
Nswap2L-FS strangely results in better performance (more
I/Os per second) than when accessing file data directly on
disk. We suspect that this is due to the small size of the
files created and written and the different device scheduling
policies used when the disk is accessed directly versus when
it is accessed indirectly through Nswap2L-FS. It should be
noted that Nswap2L-FS does not cache any stored data



internally.
Overall, these results support Nswap2L-FS as a fast back-

ing storage device for filesystems. They show that Nswap2L-
FS’s network RAM can be used as a fast backing store
device that outperforms local flash or disk devices on a file
access pattern common to the applications that our work
specifically targets. While there is some variability in the
amount of overhead added by Nswap2L-FS depending on
the types and sizes of requests issued, these results broadly
show that its two-level device design often adds little extra
overhead to directly accessing underlying devices.

B. Evaluating Nswap2L-FS Policies

A main feature of Nswap2L-FS is that it can take advan-
tage of the strengths of different types of storage devices
typically found in clusters. Its data placement policies de-
termine which underlying devices store the file data written
to Nswap2L-FS. Its prefetching policies transparently move
file data from one underlying device to another in response
to changes in cluster-wide storage capacity (such as changes
in the amount of available idle RAM for network RAM
storage), or to increase read parallelism by distributing data
over a set of devices with fast read performance. Ideally,
its policies result in Nswap2L-FS providing file system I/O
performance that is better than that of any single backing
storage device available in the cluster.

We present results from two experiments to evaluate how
well the two layer architecture of Nswap2L-FS enables
higher performance by more effectively adapting to changes
in cluster workload and exploiting the benefits of a hetero-
geneous set of devices. Other adaptive policy results are
omitted due to space; their results are similar to studies
presented in our earlier work [5].

Our first experiment evaluating the benefits of Nswap2L-
FS’s adaptable policies examines its support for prefetching
(moving data stored on one underlying device to another
underlying device). Prefetching is transparent to the OS and
is one method that Nswap2L-FS uses take advantage of
the strengths of the different underlying storage devices it
manages. For instance, network RAM has fast writes, while
flash writes are typically slower than flash reads due to
block erasure overheads. Both flash and network RAM have
reasonably fast read speeds. An advantage of Nswap2L-FS’s
hierarchical design is its ability to transparently move, or
prefetch, pages from network RAM to a local flash device,
freeing up network RAM space to be available for future
writes. This example of prefetching allows an application
to gain the benefits of fast writes to network RAM even
when the total amount of data written exceeds network RAM
capacity.

We evaluated Nswap2L-FS’s prefetching using the var-
mail benchmark program. We ran experiments for different
amounts of available network RAM capacity. Nswap2L-
FS’s placement policy will choose to place data on network
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Figure 7. Nswap2L-FS with and without prefetching for different Network
RAM capacity. The number of completed I/O operations per second for the
varmail benchmark when run with differing amounts of network RAM space,
comparing runs without prefetching to runs with prefetching from network
RAM to flash. Also note that the y-axis starts at 5,000.

RAM first, picking flash placement only if no network
RAM is available at the time of the write. In one set
of experiments, Nswap2L-FS was configured to not use
prefetching. As a result, data written early to Nswap2L-FS
were directed to network RAM; once network RAM was
full, subsequent writes were directed to flash SSD. In another
set of experiments, Nswap2L-FS was configured to prefetch
pages from network RAM to flash, with the goal of keeping
some network RAM available for fast writes.

Figure 7 shows the average number of I/O operations per
second for the varmail benchmark for runs with and without
prefetching enabled for different network RAM capacity
sizes. For all runs where there is some network RAM avail-
able, but not enough to hold the entire filesystem, prefetching
from network RAM to flash results in significant improve-
ments over the I/O throughput of Nswap2L-FS without
prefetching. For example, when there is 164MB of network
RAM available, prefetching leads to 9,822 I/O operations
per second vs. 7,221 per second without prefetching. When
network RAM is plentiful or nonexistent, prefetching adds
unnecessary overheads. But outside of these two extremes,
prefetching data from network RAM to local flash storage
improves I/O throughput by freeing up network RAM space
for future fast writes.

This result suggests that even simple prefetching policies
can lead to significant performance improvements, especially
in cases where network RAM capacity is not sufficient
to store the entire file system backed by Nswap2L-FS.
They also motivate future investigation into developing more
complex policies that can enable prefetching when it is



Configuration Runtime (s) Std. Dev (s)
Adaptable: Flash & Net-
work RAM

331.1 0.5

Local Flash SSD 486.1 0.9
Network RAM 260.9 0.8

Table I
TOTAL COMPLETION TIMES OF EXTERNAL MERGE SORT WITH AN

ADAPTIVE DATA PLACEMENT POLICY VS. A STATIC PLACEMENT POLICY
THAT ALWAYS CHOOSES FLASH AS THE UNDERLYING DEVICE. RESULTS
ARE ALSO SHOWN FOR EXECUTION TIME USING ONLY NETWORK RAM

AS THE UNDERLYING DEVICE (THE FASTEST WHEN AVAILABLE).

likely to be advantageous and disable it when it is unlikely
to improve performance. Based on these results, a policy
that uses the amount of available network RAM capacity
to enable and disable prefetching would result in better
Nswap2L-FS file I/O throughput.

Our second experiment evaluates the benefits of
Nswap2L-FS’s adaptable data placement policies. Nswap2L-
FS data placement policies may choose different underlying
devices in response to changing cluster conditions. Given
the inherent variability in cluster workloads, the amount
of network RAM available varies over time; Nswap2L-FS
grows and shrinks the storage capacity of network RAM in
response to changes in the amount of available idle RAM
in the cluster.

We evaluated a dynamic placement policy that chooses
network RAM for file writes when network RAM is avail-
able. When no network RAM is available, the policy chooses
to send the page to the underlying flash device. As new net-
work RAM becomes available, the policy will switch from
sending writes to flash to sending them to network RAM.
To evaluate the potential benefits of this dynamic placement
policy, we ran the external merge sort benchmark with an
Nswap2L-FS backed temporary file system configured to use
this dynamic placement policy. In our experiments, initially
no network RAM is available and the policy chooses to
send pages to flash. After approximately 120 seconds of
execution, we make network RAM available and Nswap2L-
FS begins to place subsequent file writes on network RAM.
We compared runs using this adaptive policy to runs using
a static placement to underlying flash.

The results, in Table I, show that the run using the adaptive
policy that chooses flash placement until network RAM
becomes available performs better than the static placement
policy that continues to choose flash placement (331.1 vs.
486.1 seconds). As a performance comparison, the results of
a run placing only to network RAM (the fastest option) are
also shown. These results validate the heterogeneous storage
management design of Nswap2L-FS. They demonstrate one
way in which Nswap2L-FS can adapt on-the-fly to changes
in underlying device capacity to make better placement
policy decisions.

The experimental results support our design of Nswap2L-

FS. They show that its two-level design often adds little
overhead to directly mounting file systems on the underlying
devices and that these overheads are reclaimed by the
performance benefits resulting from effective use of hetero-
geneous storage options. Flexible placement and prefetching
policies that adapt to changes in cluster resource usage and
take advantage of different device strengths result in faster
I/O for the file system it backs and increased application
performance.

V. CONCLUSION

Nswap2L-FS is our solution for taking advantage of both
network RAM and storage devices in clusters to provide fast
backing storage for file systems. The Nswap2L-FS device
trades persistence guarantees on the granularity of individual
writes for provide faster I/O accesses to the file data it stores.
It is particularly useful for storing temporary file data that do
not normally persist beyond the execution of the application
that creates them. Its persistent snapshot mechanism can be
used by applications that desire some persistence for the
file system it backs. Nswap2L-FS presents itself to the OS
as a single storage device, which isolates the complexity
of effectively managing these storage options from the
OS. Internally, Nswap2L-FS manages these devices using
interchangeable policies which dictate where data should be
placed, and potentially relocated, in order to achieve optimal
performance. Its extensive /sys interface allows users to
change policies at run time, request checkpoints of stored
data, and monitor internal status metrics. Our experimental
results support its two-level device design and its adaptable
data placement and prefetching policies, which result in
increased file I/O performance, even when network RAM
is scarce. Future research directions include implementing
and evaluating more adaptive policies, testing Nswap2L-
FS with a wider range of underlying storage devices, and
testing Nswap2L-FS’s scalability to larger applications and
to bigger cluster systems.
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