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Abstract

Robocode, an open source tank combat game, has become immensely popular based on
both its educational as well as its “fun" value. Throughout the years, many interesting AIs
have been developed for Robocode, most of which were based on finite-state machines and
were generally “hard-coded". The effects of employing evolutionary algorithms and machine
learning on Robocode, however, have not been so thoroughly explored. In his paper, we
focus on two main methods and their effectiveness in evolving highly-intelligent robots which
can effectively defeat good, existing hard-coded robots. A traditional Genetic Programming
(GP) approach is first used as an intermediate goal due to its relative-ease as well as in
order to familiarize ourselves with using machine learning on Robocode. We then employ
Neuroevolution of Augmenting Topologies (NEAT), a method of evolving complex, unfixed
topologies in Neural Networks since it has historically achieved success in evolving highly
complex behavior. Although our results after experimentation were not we hoped, the trend in
data leads us to believe that further modification of our experimental method can possibly help
us attain the perfect battle bot.

I. Introduction

1. What is Robocode?

Robocode(short for “robot code" is an open-source game module which features
tank robot battles in an arena. The module was written by Matthew Nelson while
he was working as a technology evangelist for IBM Alphaworks. Conveniently, the

environment of Robocode as well as Robot contestants are coded entirely in java. This
means that Robocode can be run as an executable JAR file in practically any operating
system which possess a Java Virtual Machine(JVM).

In Robocode, "players" are the programmer of a particular robot, and will have no
direct influence on the game. Instead, the player must write the AI of the robot telling
it how to behave and react on events occurring in the battle arena. Robots in this
environment have two main goals:

• Intelligently and efficiently navigate the battlefield to avoid being shot by its oppo-
nent as well as running into walls(stalling).
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• The tank must locate its adversary on its radar and shoot bullets at it. On hit, bullets
deal damage to opponents. Upon taking sufficient damage, the opponent robot will
explode and the the robot remaining is declared the winner of that particular round.

2. The Robots

Robots in Robocode are comprised of three parts: the body, radar, and gun. The body of
a robot is its “actual mass", which also carries its radar and gun on top. Also, the body
is what enables the robot to turn left/right and move forward/backward. The gun is
mounted on the body and is used for firing energy bullets, and can rotate left or right.
Finally, the radar is the other component mounted on the body and is used to scan for
opponents. Like the robot’s gun, the radar is also allowed to turn left or right.

Figure 1: Anatomy of Robocode Robot agent

Robots are written as event-driven JAVA programs. That is, they contain usually
contain a main loop which can be interrupted by event handler functions. Events can
include: scanning an adversary on its radar, getting hit by an enemy’s bullet, and getting
rammed into by its opponent. At the beginning of every battle, robots start with a fixed
amount of energy. When a particular runs out of energy, it loses the battle. Several
possible situations result in a robot losing energy, including shooting at an opponent,
being hit by a bullet. However, there is only one possible way to gain energy, and that is
by successfully hitting an opponent with a bullet. An interesting quality of Robocodes’
bullet-shooting mechanism is that robots can choose how much energy to expend per
shot. Indeed, if a robot is confident that a bullet will score a hit on an enemy, it should
expend more energy. Oh the other hand, if a robot is not so confident on its accuracy, it
should expend less energy so that the risk of losing too much energy is minimized.

3. The Simulator

Robocode can be viewed as a simulator of real vehicular battles. Like most simulators,
Robocode contains a mix of both realism and fantasy. Some “realistic" characteristics of
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Figure 2: A Battle of 10 Robots Figure 3: Radar Range of Two Robots

Robocode include:

• Gun/radar rotation taking time: while they are rotating, there is a chance that you
get shot and take damage.

• Bullets take time to arrive at the target. So when shooting at a moving opponent,
the robot must consider not the movement of the bullet, but the anticipated location
of its enemy.

• The radar must actually pointed at enemies to see them. That is, the robots are not
operating in a fully-observable environment.

• Guns have a heating/cooling period, meaning that one cannot send a constant
barrage or "beam" of bullets.

• Ramming hurts: robots both deal and take damage while ramming into one another.

On the other hand, some “fantastical" elements of Robocode are the fact that:

• Sensors and radars are noiseless.

• Combat takes place in a two-dimensional, rectangular gridworld area.

• Radar information is too “informative." On scanned opponent, the radar detects the
opponent’s bearing, velocity, "health" level, and velocity.

Nevertheless, Robocode can be very useful for employing and testing machine learn-
ing/evolutionary algorithms. The tank fighting environment provides the need to evolve
complex and intelligent behavior in robots. More importantly, Robocode is such a popular
framework among programmers that it is extremely easy to find pre-baked robots to train
against in our experiments.
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4. Goal

Our goal in this paper is to explore and compare the capabilities of various evolutionary
machine learning algorithms when applied on Robocode. We focus on two main method-
ologies: Neuroevolution of Augmenting Topologies(NEAT), and Genetic Programming.
Our goal with these two evolutionary algorithms is to evolve robots capable of consistently
defeat other AIs as well as human players. In the next sections, we will describe relevant
previous works regarding employing machine learning on Robocode, give a overview of
our methods, display and discuss results, and finally discuss the future implications of
our research.

II. Relevant Work

Due to the realistic and interesting nature of Robocode, plenty of research has already been
completed in this field. Existing work on Robocode can be divided into two categories
based on their use of algorithms, e. Most researchers choose the hard-coded approach,
which uses static strategies which don’t change over time. Others adopt the evolutionary
approach, which starts off as a random controller with poor performance but gradually
picks up knowledge and improves over time. In this section, we will review examples of
robots implemented with both categories.

1. Hard-coded Approach

A popular and effective way to build a robot controller is to simply hard-code the behavior
of the robot. Examples of this category include “RamFire” and “Diamond”.

“RamFire” [1] is a simple robot that comes pre-baked into the Robocode package. At
the start of battle, RamFire constantly turns its radar to the right in order to find targets.
Once RamFire scans an enemy robot, it will lock the enemy down through appropriate
radar movements, and approach that enemy at full speed. Once the two robots hit each
other, both of them lose energy at the same rate due to the ramming effect. During this
process, RamFire also shoots bullets carrying maximum energy to the enemy, which are
guaranteed to hit because the two robots are right next to each other. This continues until
one of the robot dies.

The RamFire Strategy is effective against robots with low mobility, which are easily
“caught” by RamFire. Once the ramming starts, it all comes down to who deals damage
faster. RamFire has advantage in this scenario, because it’s programmed to shoot bullets
with maximum energy, while other robots rarely do so (out of the consideration of saving
energy). However, if the opponent has high mobility, then RamFire can be easily “kited”
and destroyed before it catches the opponent, due to its predictable movement controller.

“Diamond”[2] is another example of hard-coded robot in Robocode. Unlike RamFire’s
strategy, the algorithm used by Diamond is very sophisticated and effective against most
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types of opponents. The movement controller of Diamond calculates the risk of different
movements using Wave Surfing, and then applies Minimum Risk Movement to choose the
safest place to go. The gun uses Dynamic Clustering to find similar states of the opponent,
and refers to the kernel density among those states to settle on a firing angle. As a result,
Diamond emerges to be one of the top robots in both 1v1 and melee.

Clearly, hard-coded robots take advantage of the intuitive aspects of the game. For
example, the radar has a 45◦ scope and gives information about the position & speed
of the opponent on detection, it’s relatively easy to write a “perfect” radar controller
that locks down the scanned opponent. Other good strategies include firing many low
energy bullets (harder to dodge), and moving at full speed all the time for high mobility.
Currently, most of the top-ranked robots are hard-coded [3].

2. Evolutionary Approaches

Genetic Programming is the most popular algorithm for evolve robot tanks. The reason
is that Robocode is an independent module that only takes the source code of robots,
which means the Java source code of all robots needs to be generated and compiled before
running a battle. In this case, it’s hard to pass in complicated objects such as Neural
Networks. On the other hand, Genetic Programming makes it easy because it naturally
evolves the source code of robots.

In a paper [4] published in 2003, Jacob Eisenstein described his attempt to apply
Genetic Programming to Robocode. Eisenstein observed that Java is not suitable for
GP, because it’s strongly typed and doesn’t have a tree structure. As a solution, he
designed a new, lisp-like programming language called TableRex, and used this language
to evolve his robots. TableRex incorporates subsumption architecture, and can be easily
encoded into fixed length genomes. Eisenstein trained his robots against hand-coded
opponents, as well as other individuals in the population. The resulting robots can beat
most hand-coded opponents, but are not good enough to win top ranks in Robot Rumble.

Following Eisenstein’s work, Yehonatan Shichel and his co-workers published another
paper on GP-Robocode. Instead of evolving the entire source file of a robot, they only
focused on the actuators of a robot, such as setForward(), turnRight(), turnGunRight(),
and turnRadarRight(). These functions are self-explanatory and controls the essential
movements of a tank robot. In Shichel’s experiment, every actuator is associated with
a GP function that takes the robot’s stats and any radar-scanned information as inputs,
and gives the value to that actuator as output. The GP function includes common math
constants and functions such as π, e, sin and cos. This incredibly simple technique,
coupled with appropriate fitness functions and tournament matching, produced a GPBot
that ranked third out of twenty-seven players in the HaikuBots contest. Moreover, their
GPBot was the only entry not written by a human.

In the next section, we will introduce NEAT, the genetic algorithm that we used in
this project. We will also explain how we overcame the difficulties described above, i.e.
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combining Robocode with Neural Networks.

III. Methods

1. Genetic Programming (GP)

As an intermediate goal for our research, we wanted to reproduce Shichel’s results on
Robocode using GP. Unfortunately, we were unable to locate the exact source code of
Shichel’s experiment. As such, we were forced to implement our own version combining
the Robocode Java API with our prior knowledge of the evolutionary method. In our
algorithm, we trained a population evolving robot against 28 hard-coded robots, ranging
from simple ones (e.g. FireRobot, which doesn’t move and only fires) to highly competi-
tive ones (e.g. Diamond, described in section II.1). The fitness function that we employed
was quite simple: we simply divided our robot’s score with the total score accumulated.
A robot’s fitness is determined precisely by its percentage of the total score. Other fitness
functions we considered included total damage dealt to the opponent.

2. NeuroEvolution of Augmenting Topologies (NEAT)

In a paper [6] published in 2002, Kenneth O. Stanley proposed NeuroEvolution of Aug-
menting Topologies (NEAT), an evolving-topology Genetics Algorithm that outperforms
most fixed-topology networks in competitive learning tasks. NEAT gives good perfor-
mance because of the following features. First, it starts from simple topologies and
gradually complexify them so that no easy solutions are missed. Second, it employs
a principled method (innovation numbers) to keep track of evolution histories, which
enables efficient and meaningful crossover of different topologies. Finally, it uses specia-
tion to protect structural innovations, which means new structures have time to exploit
their full potentials before being forced to compete with existing population. NEAT is
particularly suitable for complicated learning tasks, in the sense that it evolves increasingly
complicated network topologies over time.

3. Our Configuration of NEAT

As we have seen in the previous section, NEAT is not naturally compatible with Robocode.
While NEAT evolves the network topology and weights between nodes, it’s hard to
serialize them into Java source code, which is what Robocode needs in order to run a
battle. As a solution, we had to convert the NEAT network to an XML file and write it to
disk. The source code of each robot will then read the corresponding file, parse the XML
in it, and reconstruct its NEAT network. This process is illustrated by a block diagram in
Figure 4.

NEAT has been implemented as Java Libraries by many researchers. The version we
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used is called Another NEAT Java Implementation (ANJI), created by Derek James [7].
ANJI is flexible and well commented, which makes it ideal for our project. The inputs
to ANJI network include bias the position, energy, speed, radar and gun positions of the
robot itself, as well as the position, energy, speed, heading, and bearing of the enemy
robot. If the opponent is not in radar range, all of its data will be 0. The output of ANJI
are 5 motor values that will be fed to different motor functions: setFire(), setForward(),
turnRight(), turnGunRight(), and turnRadarRight(). The meanings of these functions
are self-evident. After the battle is finished, we calculate the fitness of each participant
using the same method as described in GP (see section III.1).

Robocode 
Engine

Figure 4: Block Diagram of One Generation

We did three experiments in our project. In the first experiment, we trained our
population against the 28 hard-coded robots (see section III.1). In the second experiment,
we trained the population against themselves. We let each robot fight against every other
robot in the population, and averaged fitnesses over all battles to the get the final fitness
for one individual. In the third experiment, we tried a mixture of the previous two
methods. We ranked the robot by letting them fight against hard-coded robots first. Then
we divided them into groups of 10, and run a tournament inside each group (i.e. the
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best robot will fight against the 2nd, 3rd, · · · , 10th, and so on). Then we reorder the rank
based on the results of inner tournaments.

Notice the second experiment seems like a lot of work, because the number of battles
in each generation is O(n2), where n is the population size. However, Robocode runs
battles really fast. With animations hidden, the Robocode engine can run up to 15 battles
per second on our testing laptop. This allows us to run the second experiment with a
population size of 100 without worrying about waiting time.

IV. Results

As we stated in our goal, we want to compare the performance of different evolutionary
algorithms, including GP and the 3 NEAT experiments. It seems that we only need
to compare their fitness values achieved during evolution. However, this is not a very
good criterion, because the fitness during evolution are calculated differently for each
experiment. In GP and the first NEAT experiment, fitness was averaged over all battles
against hard-coded robots. In the second NEAT experiment, fitness was averaged over
all battles against other individuals in the population. The third NEAT experiment used
hard-coded robots as well as “inner tournaments” in each 10-size group. As a result, it
would be unfair to compare them directly using the fitness during evolution.

We need a new “evaluation” fitness function that’s fair to every experiment. Since we
care about how the evolved robots perform compared to the hard-coded ones, we decided
to use the average fitness against the 28 hard-coded robots as our evaluation function. We
ran all 4 experiments for 300 generations with a population size of 100, and we evaluated
every experiment on every 5th generation. The following figure shows the maximum
“evaluated” fitness for each experiment in each evaluation:

0

0.1

0.2

0.3

0.4

0.5

0.6

5 15 25 35 45 55 65 75 85 95 10
5

11
5

12
5

13
5

14
5

15
5

16
5

17
5

18
5

19
5

20
5

21
5

22
5

23
5

24
5

25
5

26
5

27
5

28
5

29
5

GP Evaluation

NEAT Exp1 Evaluation

NEAT  Exp2 Evaluation

NEAT Exp3 Evaluation

Generation  at Evaluation

Evaluated
Fitness

Figure 5: Evaluated Fitness for Each Experiment

8



The following table shows the maximum “evaluated” fitness for each experiment over
these generations:

Table 1: Best Evaluated Results for each Experiment

Experiment GP NEAT Exp 1 NEAT Exp 2 NEAT Exp 3

Best Evaluated Fitness 0.3304 0.4482 0.1823 0.5229

V. Discussion

Unfortunately, our results did not meet our expectations. The GP experiment rises very
fast but seems to run into a bottleneck very early, and ends up converging to a mediocre
state. NEAT Exp1 (“normal" NEAT) manages to overcome the cumbersome bottleneck
encountered by GP, but still falls short in terms of fitness. Sadly, NEAT Exp2 with the
strict inner tournament module produces the worst results by far. Using the most-complex
version of our evolution: version Exp3 combining training with hard-coded robots along
with "inner tournaments," we have achieved the best results out of all of our methods.
However, even our best evolved tank robot agent was unable to consistently defeat good
hard-coded robots. In fact, all of our robots lost against “diamond" every single time. We
believe that the main reason for this failure could be that the actions performed by robots
in Robocode are far too complex to learn with Neural Networks. This could explain why
all the best robot agents are essentially hard coded, finite-state machines. Another factor
for our experiments’ mediocre results could be that we did not fully stretch the bounds of
our experimentation. Future directions for our work could be incorporating more complex
fitness functions, further modification to the NEAT parameters and inner tournament
structure, and also incorporating Novelty Search to encourage diverse, unpredictable
behaviors.
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