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Abstract

Mirror neurons are motor cortical neurons found in primates and thought to be important
for imitative learning. Multiple attempts have been made to model mirror neurons in a devel-
opmental robotics context. In this paper, we implement a system based on the article Towards
a robotic model of the mirror neuron system by Rebrová, Pecháč and Farkaš [5]. Their system
emphasizes biological plausibility by using a bidirectional learning algorithm to connect motor
and visual modules in a manner inspired by primate brain architecture. In §1, we describe
mirror neurons and previous developmental robotics work inspired by them. In §2, we explain
the component parts to our system and how they work together. In §3 and §4, we perform
experiments to test its performance on a supervised learning task: associating visual and motor
data for three different hand grasp types. Finally, in §5, we suggest ways our implementation
could be improved or expanded upon.

1 Background and related work

1.1 Mirror neurons

The mirror neuron system may provide a neural substrate for action understanding (inferring
another’s intentions by observing their actions) and for imitative learning [6]. Because action
understanding and imitative learning are desirable skills for an adaptive agent to have, many
developmental robiticists have attempted to implement a robotic version of a mirror neuron system.

Mirror neurons were discovered in area F5 in the premotor cortex of macaque monkeys. The
distinguishing property of these neurons is that they respond to both visual and motor stimuli.
Moreover, the visual and motor stimuli that drive a mirror neuron are in some sense the same:
if a mirror neuron is active when the monkey performs a specific goal-directed action, such as a
precision grasp to pick up an object, that same neuron will be active when the monkey views a
human or another monkey performing the same action. The neuron will be active regardless of
the object picked up, but it will not be active when viewing a visually similar but non-goal related
arm movement. Note also that F5 mirror neuron activity is largely view-invariant, that is, neurons
are equally active regardless of the distance or angle from which the subject monkey views the
demonstrated action [6].

Another brain region important to the mirror neuron system is the superior temporal sulcus
(STS). This area contains neurons with visual properties similar to F5 motor neurons, but which
do not have motor responses. STS can be thought of as encoding both view-dependent and view-
invariant representations of observed goal-directed actions, and sends output to premotor areas
(including F5) via PF, a region of the rostral inferior parietal lobule that has both visual and
motor response properties [6].

Although the circuit described above is based on the monkey brain, there is also evidence for a
mirror neuron system in humans. Both fMRI experiements [6] and single neuron recordings from
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epilepsy patients [3] suggest that the human mirror neuron system exists and is architecturally
similar to the monkey mirror neuron system.

1.2 HAMMER

Although we have chosen to focus on the system designed by Rebrová, Pecháč, and Farkǎs [5], in
this section we will briefly describe the more widely known HAMMER system developed by Demiris
and colleagues [1].

HAMMER, which stands for Hierarchical Attentive Multiple Models for Execution and Recog-
nition, imitates the functionality of the mirror neuron system using a combination of inverse and
forward models. An inverse model maps points in the behavior space to motor plans in the motor
control space that would produce them, while a forward model maps points in the motor control
space to the behaviors they result in. The HAMMER system has multiple inverse model/forward
model pairs to represent different actions. During observation, each inverse model requests the in-
formation needed to predict what action the demonstrator is performing. Inverse models also pass
on their confidence values. An arbitration module decides which inverse model(s) to listen to and
uses the chosen requests to influence the saliency calculations of the bottom-up image processing
models. The most salient part of the image is returned to the inverse model requesting it, and the
inverse model generates a motor plan which its associated forward model turns into a prediction
of the next state. Finally, the prediction error is calculated and used to update the confidence
values. This loop allows the robot to learn from demonstration and develop an association between
observed actions and its internal motor representations [1].

The foremost advantage of HAMMER is that it enables a physical robot to recognize when a
human demonstrator is performing a known action. However, this learning is far from universal,
and many aspects of the system are hard-coded in, including all the forward models [1]. Addition-
ally, although the HAMMER system is inspired by the mirror neuron system, its structure and
implementation are far from biologically plausible.

1.3 Self-perception

Another robotic system inspired by the mirror neuron system is the self-perception system designed
by Saegusa and colleagues [7]. Like [5], this system uses the humanoid iCub robot. However, it is
much more involved in visual processing and the development of an internal visual representation.

In these experiments, an iCub robot follows a humanlike developmental trajectory to learn self-
perception, action perception, and action imitation. First, the robot learns to recognize its own
body parts. It does this by identifying areas of motion that are correlated with its proprioception, or
sense of its own movement. Then, through experimental but repetitive motions of each of its joints,
it learns to perform action primitives such as fixation and grasping. At this stage, the robot is able
to predict the outcomes of its own actions, and even to recognize the actions of a human. Finally,
the human experimenters combine the action primitives into a more complex motion, which the
robot observes and imitates. This series of stages is similar to the stages that infants are thought to
go through, and indeed the calculations and algorithms used can almost be thought of as a model
for perceptual development in humans.

The system in [7] is very focused on visual representations and does not utilize a complex
motor representation. Although this may be a functional and useful system in real robots, it is
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unsatisfactory as a simulation of the mirror neuron system, since the mirror neuron system is
inherently about the association between a motor representation and a vidual representation.

2 ARMS system

Our system, which we have called Adaptive Robotic Mirror System (ARMS), is essentially a Python
implementation of the simulated mirror neuron system designed by Rebrová, Pecháč, and Farkǎs
[5], with some modifications. In this section, we first overview of ARMS and [5], and then give a
more detailed description of merge self-organizing maps and bidirectional activation-based learning,
two important components of the system.

Figure 1: Schematic of the ARMS system.

ARMS and [5] share the same basic structure, which is illustrated in Figure 1. First, an iCub
robot performs three different grasp types and gathers motor and visual data. Both ARMS and [5]
use the standard iCub Simulator in place of an actual robot. The three grasp types are the power
grasp, the precision grasp, and the side grasp, which are shown in Figure 2.

The motor and visual data from the iCub are then used to build merge self-organizing maps
(MSOMs), a type of emergent representation for lowering the dimensionality of a data space. The
motor MSOM constitutes the robot’s internal representation of its movement, and can be thought
of as a model for motor or sensorimotor cortex. The visual MSOM constitutes the robot’s visual
perception of its movement, and can be thought of as a model for visual cortex.

The MSOM activity for an instance of a grasp type is flattened and binarized (this process is
described below), and used as input to a neural network that uses bidirectional activation-based
learning (BAL) instead of traditional backpropogation. The BAL neural net can be run in two
directions: motor to visual (forward), or visual to motor (backward). In the forward direction,
the network is given a motor representation of a grasp and predicts the visual representation.
In the backward direction, the network is given a visual representation and predicts the motor
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representation. Therefore, the BAL net is the part of the sysem that models the mirror neuron
system.

Figure 2: Simulated iCub performing a power grasp, a side grasp, and a precision grasp (L to R). Figure
from [5].

There are several key differences between ARMS as presented here and the system designed by
Rebrová, Pecháč, and Farkǎs [5]. First, [5] used a reinforcement learning algorithm to teach the
grasps to the simulated iCub. Due to time constraints, we were unable to implement this part of
the system, and so ARMS assumes that the three grasp types are hardcoded or previously learned.

Second, in [5], the training of MSOMs and the BAL neural net took place offline, using the data
from the simulated iCub but not interacting with the robot in any other way. We found this to be
unsatisfactory for two reasons. If a simulated mirror neuron system were to be implemented in an
autonomous robot, it would clearly need to be part of the robot’s control system. Also, it seems
likely that, in primates, motor learning and the development of motor-visual associations takes
place in conjunction. To this end, we had hoped to implement a system that alternated between
stages of grasp learning and association learning. Unfortunately, time again prevented us from
completely realizing this goal, so while ARMS has MSOM and BAL neural net training within the
iCub controller, the association learning is still not truly online.

2.1 Merge Self-Organizing Maps

Both our system and [5] use merge self-organizing maps (MSOMs), which are based on self-
organizing maps (SOMs). Like growing neural gas, SOMs learn a low-dimensional representation
of a high-dimensional input distribution. However, unlike GNG, SOMs learn a fixed topology;
typically a two or three-dimensional grid network. Each SOM neuron is associated with a weight
vector in the high-dimensional input space which are initialized to small random values.

In the training stage, the SOM takes an example vector and individually computes its Euclidean
distance from each of the neuron weight vectors. The most similar neuron vector and the weight
vectors of all adjacent neurons are adjusted towards this example vector. A neighborhood function
(typically Gaussian) weights the update to be inversely proportional to the distance from the best
match neuron. Thus, the neurons of the SOM learn to respond to certain input vectors. Thus
the neurons can potentially train a lower-dimensional representation of the input data, where each
input example is represented by the response of the SOM’s neurons to the example.

MSOMs (Merge Self-Organizing Maps) are a modification on SOMs that incorporate sequential
information to the update rule. Instead of training on a set of input vectors, an MSOM trains on a
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set of input vector trajectories. In addition to a weight vector, each neuron keeps a context vector
which is trained by combining the weight vector’s response with the weight vector of the neuron
that best matched the current input example in the previous timestep. Thus the response of each
neuron varies in time, and the neurons learn to respond highly to inputs that are associated in
time. [8]

Before MSOM training, each neuron is initialized to a small random value. In one iteration of
training, each neuron undergoes the following update rules. Let wi

v be the input weight vector for
neuron v, and wc

v be the context vector for neuron v. u(t − 1) denotes the best matching unit at
time t − 1. α and β are constant learning parameters, and Φ(u, v) is the neighborhood function
between neurons u and v. The context descriptor for time t, q(t), is

q(t) = (1− β)wi
u(t−1)(t) + βwc

u(t−1)(t)

Assume u is the best matching unit at time t, and γ is the learning rate. Then the update rules
for the input vector and context vector are:

wi
v(t) = wi

v(t) + γΦ(u, v, t)(s(r)− wi
v(t))

wc
v(t) = wc

v(t) + γΦ(u, v, t)(q(t)− wc
v(t))

After the training stage, the scalar output of a neuron is calculated by combining that neuron’s
input vector and context vector. The output itself yv(t) is simply yv(t) = e−dv(t) where

dv(t) = (1− α||s(r)− wi
v(t)||2 + α||q(t)− wc

v(t)||2.

To extract a useful representation of the input data from an MSOM after it has been trained,
each input example is presented to the MSOM, and the response of each neuron over time is
recorded. The responses can be flattened by adding up how many times each neuron responds
to a particular input trajectory and saving that output map as the MSOM representation of that
example. Since these outmaps will also be used as input to the BAL neural net, they must also be
binarized, as described in §3.

2.2 Bidirectional activation-based learning

In the ARMS system and in [5], the association between motor and visual representations of an
action is accomplished by a bidirectionally connected neural net, which learns using an algorithm
called Bidirectional Activation-based Learning (BAL) [5, 2]. This algorithm is based on O’Reilly’s
Generalized Recirculation algorithm [4], which was designed to be a biologically plausible alterna-
tive to traditional error backpropagation. Error backpropagation is biologically implausible because
it requires the computation of derivatives and uses global information not available at the synapse.
Like Generalized Recirculation, BAL uses bidirectional activations and a two-phase update pro-
cess to achieve error minimization while only using local variables and without computing error
derivatives [2].

BAL uses a three layer network, which is fully connected in both the forward and backward
directions. Instead of talking about input and output layers, we call the outer layers x and y, since
either can be used as the input. The hidden layer is called h. In the forward phase, the stimulus xF

is given, and activation flows from the x layer to the h layer to the y layer. In the backward phase,
the stimulus yB is given, and activation flows from the y layer to the h layer to the x layer. The
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Figure 3: A sample BAL network, with forward activations shown in red and backward activations shown
in orange. Each connection is labeled with the input the connection passes to the postsynaptic unit. In
addition, each unit has a bias, which is omitted for simplicity.

forward and backward phases each have a set of weights, and each unit’s activation is calculated by
applying the sigmoid activation function to the unit’s net input [2]. A sample network illustrating
activation flow in the network is shown in Figure 3, and the net inputs and activations of each unit
are summarized in Table 1.

Table 1: Net inputs and activations of units in each phase. Modified from [2].

Phase Layer Net Input Activation
F x - xFi = stimulus
F h ηFj =

∑
iw

F
ijx

F
i hFj = σ(ηFj )

F y ηFk =
∑

j w
F
jkh

F
j yFk = σ(ηFk )

B y - yBi = stimulus
B h ηFj =

∑
k w

B
kjy

B
k hBj = σ(ηBj )

B x ηBi =
∑

j w
B
jih

B
j xBi = σ(ηBi )

The network weights are updated using only local variables. Let ap be the presynaptic unit
activation and aq be the post synaptic unit activation, with learning rate λ. Then the forward
weights are updated according to the rule

δwF
pq = λaFp (aBq − aFq ), (1)

and the backward weights are updated according to the rule

δwB
pq = λaBp (aFq − aBq ). (2)

Each unit also has a bias, which is updated in the same way, but assuming a presynaptic input of
1. [2].
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These update rules are similar to the weight update rules of General Recirculation - in fact,
the forward weight update rule is identical - and a mathematical justification that the General
Recirculation update rules minimize error is given in [4]. Experimental evidence that a BAL
network can learn several basic neural network tasks is given in [2].

3 Experiments

We performed three variations on the same experiment. First, we generated ten variations on each
of the three grasp types described in §2 (power, precision, side) and collected motor and visual
data from the simulated iCub. Motor data was collected as the joint angles of the robot’s arm at
each time step. Visual data was collected as Cartesian coordinates of each joint with reference to
the simulator.

These data were then used to train a motor MSOM and a visual MSOM. Both MSOMs were
trained for 100 iterations. The motor MSOM had a learning rate of 0.08 and the visual MSOM
had a learning rate of 0.05. The final representations of each input trajectory were then flattened
and binarized. The binarization process worked as follows: for each grasp example, the maximum
and minimum coordinate values in the flattened MSOM vector were identified, and the midpoint
between them was calculated. Any coordinate less than this midpoint was set to 0, any coordinate
above the midpoint was set to 1. This process corresponds to identifying a population code of
selective neurons for each grasp.

Figure 4: The testing phase of the experiments consists of (A) running the BAL network forward, to
generate visual predictions, and (B) running the BAL network backward, to generate motor predictions.

These vectors were then used for training and testing the BAL network. For each grasp type,
seven examples were used as training data and three were used for testing. After using the BAL
algorithm to learn the testing data, the network was tested and evaluated as follows: for each grasp
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type, the binarized n-dimensional vectors representing all ten variations were used to calculate a
sphere in n-dimensional space whose center was the mean of all ten examples and whose radius was
the mean distance from that center to each vector. Each grasp in the test set was given as input
to the BAL network, and the network’s output was classified as a certain grasp type depending on
which sphere it lay inside (if any) and which center it was closest to. Training and testing were
both bidirectional processes, as shown in Figure 4.

The three experimental conditions differed in the size of MSOM used and the number of BAL
training iterations performed. In the first condition, both motor and visual MSOMs were 3×3 and
the BAL net had 9 motor units, 7 hidden units, and 9 visual units, and underwent 5,000 iterations
of training. In the second condition, the motor MSOM was 12×12, the visual MSOM was 16× 16,
the BAL net had 144 motor units, 160 hidden units, and 256 visual units, and underwent 1,000
iterations of training. In the third condition, the motor MSOM had 144 motor units, 160 hidden
units, and 256 visual units, and underwent 5,000 iterations of training.

4 Results

In all three experimental conditions, the ARMS system was unable to create robust associations
between visual and motor representations of grasp types.

Table 2: Summary of results from the three experimental conditions. Each row represents a grasp type
given as test input. Each column shows the classification of the network’s output. Numbers in plain
text indicate that those outputs lay within the sphere representing that grasp type; italicized numbers
indicate that those outputs did not lie within any sphere but were closest to the center of the sphere
corresponding with that grasp type.

Forward (motor to visual) Backward (visual to motor)
Power Precision Side Power Precision Side

Small MSOMs,
long training

Power 3 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (3)
Precision 3 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (3)

Side 3 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (3)

Big MSOMs,
short training

Power 0 (0) 0 (0) 3 (0) 0 (0) 0 (3) 0 (0)
Precision 0 (0) 0 (0) 3 (0) 0 (0) 0 (3) 0 (0)

Side 0 (0) 0 (0) 3 (0) 0 (0) 0 (3) 0 (0)

Big MSOMs,
long training

Power 0 (3) 0 (0) 0 (0) 0 (3) 0 (0) 0 (0)
Precision 0 (3) 0 (0) 0 (0) 0 (3) 0 (0) 0 (0)

Side 0 (3) 0 (0) 0 (0) 0 (3) 0 (0) 0 (0)

In the first condition, which used small (3×3) MSOMs and 5,000 iterations of BAL training, the
visual prediction output was identical for all nine test inputs in the forward direction, and motor
prediction output was similar but not identical in the backward direction. In the forward direction,
the constant output was classified as a power grasp. In the backward direction, the outputs did
not lie within any of the spheres representing the three grasps, but were closest to the center of the
side grasp sphere.

In the second condition, which used large MSOMs (motor 12×12; visual 16×16) and 1,000 iter-
ations of BAL training, predicted outputs were nearly identical in both the forward and backward
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direction. In the forward direction, all outputs were classfied as side grasps. In the backward
direction, outputs did not lie within the spheres representing any of the three grasp types, but were
closest to the center of the precision grasp sphere.

In the third condition, which used large MSOMS and 5,000 iterations of BAL training, predicted
outputs were nearly identical in both directions. Outputs did not lie within any of the spheres
representing the grasp types in either direction. In both directions, outputs were closest to the
center of the power sphere.

These results are summarized in Table 2. It is clear that ARMS failed to learn any association
between visual and motor representations of grasps. Possible reasons for this failure are discussed
in the next section.

5 Discussion and future directions

Although the ARMS system and our experiments were very closely based on [5], our results failed to
show any learned associations between motor and visual representations of grasps. Some differences
in results are to be expected due to our differing implementations, but that alone does not explain
the magnitude of our failure.

We believe that much of our results can be explained by lack of time. The fact that the BAL
network gives nearly the same output for any input suggests that it is under-trained. In preliminary
experiments to test our BAL implementation (data not shown), we saw the same phenomenon
in networks that simply hadn’t been trained enough. However, running our third experimental
condition, where the BAL net had 144 motor units, 160 hidden units, and 256 visual units, and
underwent 5,000 iterations of training, already took over 48 hours. Training the large MSOMs
also took significant amounts of time. Because of this, we were simply unable to perform enough
experiments to determine the optimal number of hidden units or training iterations. We are hopeful
that ARMS would perform better when given even more time for training both the MSOMs and
the BAL neural net.

Another future direction we are interested in is modifying the system so that the development
of mirror neuron associations and motor learning to take place in parallel, as likely happens in
biological mirror neuron systems. We would like to see a system where phases of observation,
imitation, and association-building happen in alternation, so that the robot builds the associations
between motor and visual representations at the same time as it builds those motor and visual
representations. We believe this would increase the biological plausibility of the model as well as
its robustness and efficiency.
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[2] Igor Farkaš and Krist́ına Rebrová. Bidirectional activation-based neural network learning al-
gorithm. In Artificial Neural Networks and Machine Learning–ICANN 2013, pages 154–161.
Springer, 2013.

[3] Roy Mukamel, Arne D Ekstrom, Jonas Kaplan, Marco Iacoboni, and Itzhak Fried. Single-
neuron responses in humans during execution and observation of actions. Current biology,
20(8):750–756, 2010.

[4] Randall C O’Reilly. Biologically plausible error-driven learning using local activation differences:
The generalized recirculation algorithm. Neural computation, 8(5):895–938, 1996.

[5] Kristina Rebrova, Matej Pechac, and Igor Farkas. Towards a robotic model of the mirror neuron
system. In Development and Learning and Epigenetic Robotics (ICDL), 2013 IEEE Third Joint
International Conference on, pages 1–6. IEEE, 2013.

[6] Giacomo Rizzolatti and Laila Craighero. The mirror-neuron system. Annu. Rev. Neurosci.,
27:169–192, 2004.

[7] Ryo Saegusa, Giorgio Metta, Giulio Sandini, and Lorenzo Natale. Developmental perception of
the self and action. 2013.

[8] Marc Strickert and Barbara Hammer. Merge som for temporal data. Neurocomputing, 64:39–71,
2005.

10


