1

Introduction

Psychological development is a difficult process to understand. The basic
problems in understanding how children represent knowledge and how
these representations change over development have been with us for a
long time. Despite a century of intriguing scientific evidence on child de-
velopment, comprehensive theoretical understanding has remained elu-
sive. Part of the reason for this is that the problems of psychological
development are too complex for traditional verbal theories of develop-
ment. One of the main points of this book is that considerable leverage
on these problems can be gained by applying computational modeling to
developmental phenomena. This is because computational modeling is a
good way to capture complex processes, and such models can be exam-
ined in detail to discover insights into the phenomena that they simulate.
In short, this book presents an argument for a new subfield of devel-
opmental psychology, computational developmental psychology.

The present chapter sets the stage by reviewing the main issues in
psychological development and justifying the use of modeling in the
study of such issues, the use of computational models, and the use of
neural-network models in particular. Along the way, it is essential to
describe the principal features of artificial neural networks.

Issues in Psychological Development

Although there are several possible takes on issues in psychological de-
velopment, there is wide agreement among developmental researchers
that the primary issues concern the what and the how of develop-
ment. What is it that develops, and how does it develop? The distinction

2 Chapter 1

between these two issues has often been discussed in terms of the differ-
ence between structure and transition. What are the principal structures
that develop at each particular age or stage, and what is the transition
mechanism that moves a person from one stage to the next? These pri-
mary developmental issues go back a long way. Aristotle, for example,
discussed the distinction as the difference between being and becoming.

Contemporary cognitive science provides a more precise way of
discussing the issue of what develops. Cognition can be analyzed as
a distinction between representation and processing (Thagard, 1996).
How is knowledge represented, and what processes occur over those
representations?

Further unpacking of the transition issue also leads to a number of
secondary issues. How do innate and experiential determinants operate
in producing _cieEl_(tﬁS_r;wfznt? How is it possible for anything genuinely
new be learned? What is the relation between learning and development?

Because stages are often mentioned in discussions of déveldpment,
particular other issues arise. Is development continuous or discontinu-
ous? To the extent that it is discontinuous, why are there plateaus or
stages in_psyzhol;)_g_icql development? What accounts for the particular
orde__r_s_ of stages? In what sense can there be developmental precursors of
psychological stages? Why is there a prolonged period of dévelopment?
And why does psychological developr;lent slow and eventually stop?

Because of the apparent_importa_nce of learning in psychological de-
velopment and the suspicion that current knowledge affects the course
of new learning, a number of other issues arise. How does current
knowledge affect new learning and development? What happens to old
knowledge after new acquisitions?

Concerning such issues, most developmental researchers would agree
on two points: first, that these issues are important to resolve, and sec-
ond, that currently there is no good agreement on their proper resolu-
tion. As this book adopts an issue-oriented approach, I attempt to sketch
answers to these issues in the course of the book. The issues are suffi-
ciently deep and longstanding that definitive resolutions remain elusive,
but the point is that these issues can be made more tractable from the
perspective of artificial neural networks. Some applications to education
and to disordered development are also derived from this approach.

Introduction 3

Why Use Models?

Because there can be substantial resistance to the very idea of modeling
psychological development, it seems appropriate to justify a modeling
perspective. The basic justification is that modeling has been repeatedly
demonstrated to be extremely useful in a variety of other scientific dis-
ciplines that are considerably more advanced than psychology and cogni-
tive science. It is worth documenting this claim in a bit of detail in order to
clarify the relation between models and the phenomena being modeled.
Models have a long and productive history in various branches of
science. A scientific model is basically a concrete representation of some
hidden reality. Hidden realities are typic;;:ll; the tafget of models by vir-
tue of being difficult to study by direct observation. Scientific models
themselves take various forms. A model could be, for example, a draw-
ing, a three-dimensional scale model, a set of symbols, a mathematical
equation, or a computer program. Typically, a model is constructed after
observing the behavior of a real system whose internal functioning is
obscure. Among the qualities of a good scientific model are these:

+ The model implements a theory in a precise, concrete, easy-to-
manipulate way.)

- The model covers (or generates) the phenomena of interest.

+ The mode! helps to explain properties or behavior of the reality that it
represents.

» The model links several different observations together, making them
easier to understand. _

- The model predicts new phenomena that can be tested.

- The model can be improved after observations or experiments reveal
new facts.)

- The model is expressed in a concrete form so that it can be easily
manipulated and measured.

Some of the best examples of successtul models come from the physi-
cal sciences. It is worth reminding readers about some of these models in
physics and chemistry because they demonstrate principles that can illu-
minate the notion of modeling psychological processing.

4 Chapter 1

Figure 1.1
An atomic model of a sodium atom.

Atomic models

One of the most useful and influential of these physical-science models is
the simplified atomic model of Bohr based on earlier work by Rutherford
and others. This model views the atom as a structure consisting of a
spatially small but massive nucleus containing protons and neutrons,
surrounded by shells in which electrons orbit around the nucleus. A
proton is a positively charged particle, and a neutron is a particle with no
charge, just slightly more massive than a proton. An electron is a nega-
tively charged particle with negligible mass. Atoms of the same element
have the same number of protons, and this forms the unique atomic
number of the element. The sum of protons and neutrons is the number
of nucleons, the mass number of the atom. The number of protons
equals the number of electrons.

An atomic model of a sodium atom is shown in figure 1.1. Sodium is
a soft, light metal that reacts rather quickly with air and water. The
nucleus has 11 protons and is surrounded by 11 electrons orbiting in
three shells: 2 in the inner shell, 8 in the middle shell, and 1 in the outer
shell. Such drawings are more realistically done in three dimensions be-
cause the electron orbits are not all in the same plane.

A similar model of a neon atom is shown in figure 1.2. Neon is a rel-
atively inert gas, meaning that it is unlikely to be involved in chemical
reactions. The neon nucleus has 10 protons and is surrounded by 10 elec-
trons orbiting in two shells: 2 in the inner shell and 8 in the outer shell.

The number of electron shells possessed by an atom ranges from 1 to 7
and corresponds to the periods (rows) of the familiar periodic table. The

Introduction)

Figure 1.2
An atomic model of a neon atom.

periodic table summarizes the relations between the atomic structures
and chemical characteristics of the elements. The columns of the periodic
table correspond to the number of electrons in the outermost shell of an
atom of an element.

This model of the atomic structure of elements integrates several cen-
turies of physical data, from the finding that atoms combine to form
molecules in definite proportions, to the discoveries of negatively
charged, positively charged, and neutral particles. Chemists found that
they could use this atomic model to systematically represent the chemical
properties of elements.

It turns out that the key to understanding many chemical reactions is
the number of electrons in the outermost shell. Because these outer-shell
electrons are farthest from the nucleus, they are the most likely to be
involved in chemical reactions. The maximum capacity of the outermost
electron shell is eight electrons, and atoms with eight outer electrons are
extremely stable and thus unlikely to enter into chemical reactions. This
1s why gasses such as neon are termed inert.

Lewis’s (1966) rule of eight holds that an atom with less than eight
outer electrons tends to combine with another atom to fill its outer shell
to the capacity of eight electrons. Lewis devised a simple diagrammatic
model of elements and molecules based on the atomic model and the rule
of eight. In a Lewis diagram, outer-shell electrons are represented by a
set of dots orbiting around the nucleus, which is represented by the
symbol of the element. As noted in the top row of figure 1.3, a hydrogen
atom (H) has a single outer electron, while an oxygen atom (O) has
six outer electrons. Similarly, the top row of figure 1.4 indicates that a

6 Chapter 1

H. H- -O-

N

Figure 1.3
The Lewis atomic model of the formation of a water molecule (H,O) from hy-

drogen (H) and oxygen (O) atoms. Outer electrons from the hydrogen atoms are
shown as open circles, and outer electrons from the oxygen atom are shown as
filled circles to keep them distinct in the representation of the water molecule.

o o o o
O C::

[el oe
° o)
Figure 1.4
The Lewis atomic model of the formation of a molecule of carbon dioxide (CO;)

from carbon (C) and oxygen (O) atoms.

carbon atom (C) has four outer electrons. The number of chemical bonds
that a nonmetal element can form with another element is 8 minus the
number of its outer electrons. Thus, an oxygen atom can form 2 chemi-
cal bonds; a carbon atom can form 4 chemical bonds. Hydrogen is an
exception to the rule of eight in that it can form a single bond, either by
giving up its single electron or adding another single electron.

Figure 1.3 shows a Lewis-atomic-model diagram of the formation of a
water molecule (H,O) from hydrogen and oxygen atoms. The water
molecule is formed when the oxygen atom shares an electron pair with

Introduction 7

each of the two hydrogen atoms. At that point, the oxygen atom has 8
outer electrons, and each hydrogen atom has 2 outer electrons. This is a
relatively stable chemical configuration.

Figure 1.4 shows a Lewis-atomic-model diagram of the formation of
a carbon dioxide molecule from carbon and oxygen atoms. In this case,
two electrons from each of two oxygen atoms bond with two of the
carbon electrons. This creates a stable chemical structure in which each
oxygen atom has a full complement of 8 outer electrons (6 of its own
plus 2 from the carbon atom), as does the carbon atom (4 of its own plus
2 more from each oxygen atom).

The Lewis variant of the atomic model covers about 80 percent of all
compounds in which atoms share some electrons between them. In its
simplicity, Lewis’s model emphasizes the importance of the outer elec-
tron shell in the chemical behavior of elements. Like all good models, it
explains, links, and predicts the phenomena to which it applies. That is,
it explains and predicts the nature of the molecules that are formed when
elements combine in chemical reactions. It does this in a uniform fashion
that links together vast numbers of chemical reactions, which would
otherwise seem quite diverse.

If one traces back the historical roots of the Lewis model, it can be
viewed as the result of incremental improvements in earlier models. In
the fourth century B.C., the classical Greek philosopher Democritus
described each kind of matter as being made up of identical, discrete,
indivisible particles—atoms. In the eighteenth century, Dalton elabo-
rated this idea in a model that described how atoms combine in par-
ticular proportions to create chemical reactions. Following the discovery
of electrons in the nineteenth century, Thomson presented a model of
divisible atoms containing negatively charged particles in a positively
charged sphere, a kind of plum-pudding model. Then, to account for
the behavior of protons emitted from radioactive materials, Rutherford
created a model close to the contemporary atomic model by assuming
divisible atoms composed of positively charged particles concentrated in
a spatially small but massive nucleus, with negatively charged particles
orbiting around it. After the discovery of the neutron, Bohr modified the
Rutherford model to include neutral particles inside the nucleus and
quantified electron orbits. As with most useful models, those of Bohr and

8 Chapter 1

Lewis have undergone progressive improvements. For example, Schro-
dinger described electrons, not by their precise paths, but by regions in
which they are most likely to travel. Further refinements in these models
continue to account for additional data.

Models in other disciplines

Similar examples of useful models, many of them computational, can be
found in other scientific fields, such as econometrics, microbiology, and
meteorology. For example, numerical techniques for predicting weather
use mathematical functions of current information on atmospheric tem-
perature, pressure, and moisture to predict the state of the atmosphere a
bit later. The predicted atmospheric state is used as input to the next
predictive cycle, and this process is iterated for as long as it is useful.
Such weather forecasts for up to the next 24 hours can be quite accurate.
Even forecasts for the next two or three days can be somewhat useful,
After that, forecasting the weather, even with sophisticated computer
simulations, becomes hazardous. Still, the point is that accurate fore-
casting without a model would not be feasible. Current modelers of the
weather are hoping to boost their computer capacity to enable about 2.5
trillion calculations per second, in an effort to increase the accuracy of
their model’s predictions.

Computational psychology
Computational psychology was born in the late 1950s as part of the
multidisciplinary approach to cognition known as cognitive science.
Newell, Shaw, and Simon (1958) built the first artificial-intelligence pro-
gram, which executed proofs in formal logic. It was meant not just as an
engineering feat but also as a cognitive model of how people perform
logic. This effort was later generalized into a cognitive model for human
problem solving in terms of rules (Newell & Simon, 1972). Contem-
porary versions of this idea of modeling human cognition in rules in-
clude the Soar (Newell, 1990) and ACT-R (J. R. Anderson, 1993)
cognitive architectures. Klahr and Wallace (1976) pioneered the applica-
tion of rule-based computation to developmental psychology.

Beginning another line of work in computational psychology, Minsky
(1975) proposed that human knowledge can be represented in structures

Introduction 9

called frames, composed of slots and fillers. This idea begat a body of
research on what became known as case-based reasoning, as individual
cases could be stored and generalized into frames (Kolodner, 1993;
Riesbeck & Schank, 1989). So far, case-based reasoning has not engen-
dered many applications to developmental psychology.

Computational psychology became more brainlike with the intro-
duction of neural-nerwork models, the basis for which can be traced to
the McCulloch and Pitts (1943) proposal for a model of a neuron as a
binary threshold machine. A variety of proposals for learning in net-
works of such devices eventually followed (Rosenblatt, 1962). Learning
algorithms that overcame some of the limitations of these early models
were introduced into psychology in the late 1980s (Rumelhart, Hinton
& Williams, 1986). Application of neural computation to developmental
psychology was firmly established by Elman, Bates, Johnson, Karmiloff-
Smith, Parisi, and Plunkett (1996).

Models versus reality

It is interesting that physical-science models are rarely confused for
reality—they are clearly just models, not the real phenomena that they
model. But in the late twentieth century, when cognitive scientists began
modeling psychological phenomena and researchers in artificial intelli-
gence (Al) began to create devices to undertake cognitive tasks, there was
a curious tendency for model dels to become confused with reality. Perhaps
caught up in the hype for a new and energetic field or overly influenced
by popular science fiction, enthusiastic practitioners and commentators
alike were interpreted to claim that these computer programs were actu-
ally thinking. Critics attacked such claims by pointing out that because
these early models of intelligence lacked semantics and intentionality, it
was ridiculous to claim that they were actually thinking (e.g., Searle,
1980, 1984). The idea that such models actually think became known as
the claim of strong Al The ensuing theoretical disputes seemed to gen-
erate much more heat than light. All but Jost in the commotion was the
more sensible notion of weak AI, that these models of thmkmg were
simply 77odels of thinking. As “models, they could be expected, at best,
to provide the same sort of benefits as models in the physical sciences:
explanation, linkage, prediction, and improvement, all in a concrete,

10 Chapter 1

malleable format. If the model was a success, such benefits could be ex-
pected to be considerable, even if the models did not actually think.
Although empirical research, theory, and modeling are not nearly as
advanced in cognitive science as in physical science, it is a goal of this
book to show that model building is worth doing in the domain of psy-
chological development. It is worth doing for exactly the same reasons as
in other sciences—modeling is an enormous aid to the conduct of em-
pirical research and to theori?ng; namely, modeling makes theorizing
more precise and easier to do, ahd it organizes, explains, and predicts

empirical findings.
Why Computational Modeling?

Even people who accept the notion that modeling has been useful in the
physical sciences may balk at the idea of using computer models of psy-
chological processes, particularly as applied to developing children. The
argument is sometimes made that computers cannot model development
because children develop, but computers do not (Beilin, 1983; Neisser,
1976).

There is nothing magical about using computers to do psychological
modeling. Any of the existing modeling algorithms can be implemented
by human calculations aided perhaps by paper and pencil. Indeed, it has
been argued that anything complex enough to have states could be a
computer, even a roll of toilet paper and some small stones (Searle,
1980)! Such methods, however, would be so time consuming and diffi-
cult that no one would ever do simulations in that way. Modelers use
computers for simulations mainly because of the convenience, accuracy,
and power that computers supply.

Underlying this argument for computers is the notion that cognition,
development, and other psychological processes are too complex for
merely verbal theories. There are needs for precision, complexity, and
theoretical unification that cannot easily be met without using com-
puters. This quickly becomes apparent in using symbolic rules for mod-
eling when a rule-interpreter program is required to keep track of large
numbers of rules, active-memory elements, and variable bindings over
the course of a problem-solving episode. Symbolic, rule-based systems

Introduction 11

are described in chapter 3. Similarly, connectionist models may employ a
large, complex network of many neuronal units, whose activations are a
nonlinear function of their inputs. Connectionist models are more fully
described in chapter 2. In both cases, it 1s much too tedious and difficult
to run simulations by hand, particularly when there are multiple experi-
ments to simulate, each with several different conditions, and variations
in parameter settings to explore. High-speed computers and powerful
programming languages are extremely helpful in such cases.

Indeed, there is a substantial empirical component to computer simu-
lations, even to the extent that simulation results may need to be sub-
jected to statistical procedures such as analysis of variance to determine
the nature and significance of condition effects. Multiple networks, each
starting with unique connection weights and learning in a unique envi-
ronment, might correspond to multiple human participants, and simu-
lations might mimic the complexity of psychological experiments or
longitudinal studies.! If this is true, does computational modeling fall
under the heading of theoretical work or empirical work? In a way,
modeling is both; modeling is theoretical work with an empirical com-
ponent. A model may implement a theory by specifying various environ-
mental and innate constraints, but its output may need to be replicated
with multiple runs and statistically analyzed to determine exactly what
happened and whether the results are statistically reliable.

Before leaving this section on benefits of computational modeling, it is
appropriate to take note of Newell’s (1990) challenge of computational
sufficiency. His challenge goes like this: if you believe that you have a
coherent and correct psychological theory of some set of phenomena,
then you should be able to implement that theory on a modern digi-
tal computer to effectively simulate those phenomena. Such an exercise
would amount to considerably more than mere flamboyance. For in
implementing a theory computationally, a researcher typically discovers
all sorts of contradictions, poor specifications, and other formidable
challenges. Solving these various problems to complete the simulation
invariably improves the original theory in many ways, principally by iden-
tifying weaknesses, suggesting computationally feasible fixes, and being
more specific about almost everything in the theory—how knowledge is
represented, how it is processed, etc. Newell’s challenge is a significant

12 Chapter 1

one that every serious psychological researcher should consider. If the
challenge is successfully met, then one has produced a model that is
computationally sufficient to actually produce a simulation of the phe-
nomenon-—not merely a somewhat convincing verbal story about what
might be going on, but a clear proposal that is good enough to actually
work.

It should not be forgotten that psychologists are very skilled at verbal
explanation, particularly after the results are in. I have never seen a psy-
chological result that went unexplained for any significant period of
time. Witnessing enough of these “theoretical” explanations reminds
one of the quotation attributed to the German poet Goethe: “When
ideas fail, words come in very handy.” Newell’s computational challenge
is about firming up theoretical ideas so we can more easily determine
whether they fail or not.

Notice that Newell’s challenge is one of sufficiency, rather than neces-
sity. He is claiming not that a successful simulation makes a convincing
case for a particular model’s being necessary to capture a phenomenon—
only that a successful model is sufficient. The reason for demurring from
computational necessity is simple. Tomorrow or the next day, someone
may come up with a better model. This not only happens frequently in
science; experienced modelers fully expect it to happen. Recall that one
of the benefits of modeling specified earlier was that a good model can be
improved after observations or experiments reveal new facts. The very
specificity and sufficiency of a good model facilitates such improvements.
It is relatively easy to see how and where a well-specified model is failing,
which in turn helps one to fix it. So it is unreasonable to expect that a
given model will ever be the final word, that it is in fact necessary as an
explanation of some phenomenon. Sufficiency is all that one may hope
for in a model, but sufficiency is still often a significant challenge, partic-
ularly in models of psychological processes.

Notice finally that this argument about sufficiency and necessity ap-
plies equally well to traditional verbal theories. The best any theory can
do is to provide a sufficient explanation of something. A theory cannot
be expected to provide a necessary explanation, because a better theory
may come along at any future time. As with most issues, the difference is
that the argument can be a bit clearer with computational models than

Introduction 13

without because sufficiency can be easier to assess with a running com-
putational model. To see if a model is computationally sufficient, just run
the model with the same inputs as given to human participants and see if
it produces the same responses that they do.

What Is Neural Computation??

As will be seen, there is considerable choice in techniques for compu-
tational modeling of psychological development. Consequently, it is im-
portant to justify the use of any particular technique, such as neural
networks. Even before providing that justification, it is important to
know what neural networks are and how they function.

This area of study is known by various names, including neural net-
works, artificial neural networks, neural computation, neural modeling,
connectionism, and parallel distributed processing. In this book, these
names are used interchangeably without any distinction in meaning.

Neural networks were inspired by two different sources: neuroscience
and the mathematics of statistical mechanics. The neuroscience inspira-
tion is based on highly simplified abstractions of how information is
processed in biological neurons (brain cells). Simplified abstraction s, of
course, an essential feature of scientific modeling.

Biological neurons fire by sending electrical impulses from their cell
body down the axonal branches. At the ends of axonal branches are tiny
gaps (synapses), whose chemical activity allows the transmission of these
impulses to the nearby dendrites of other neurons. A neuron’s average
rate of firing can be taken as an index of its general activity level. Rates
of neural firing range from 0 up to about 300 Hz. Brains have large
numbers of neurons with extensive synaptic connections to neighboring
neurons. For example, the human brain is estimated to contain 10!
neurons, each neuron having several thousand synaptic input con-
nections. Brain neurons are organized in up to six layers of connec-
tivity, with some connections bypassing intermediate layers. The signals
coming across synaptic gaps either tend to raise or lower the electrical
potential of the receiving neuron, but in any case are integrated in some
way by the cell body of the receiving neuron. When the integrated
potential exceeds a threshold, the receiving neuron itself fires. Although

14 Chapter 1

this account ignores many relevant details in the active area of neuro-
science, it is imagined that much of this detail is unimportant for guiding
a general study of the properties of neural networks.

The amount of neurological detail that is used to constrain neural
modeling varies considerably. There are numerous attempts to model
actual neurological circuits for low-level processes and many more
attempts to use general neuroscience principles in the modeling of both
low- and high-level processes. Most of the material in this book falls
into the latter category. Too little is known about the actual underlying
neural circuits involved in psychological development for very detailed
neural modeling.

Inspiration for neural modeling can also be found in the mathematics
of a branch of physics called statistical mechanics. Like some physical
systems, neural networks are composed of potentially large numbers
of elements whose interactions can have emergent properties. Thus,
the mathematics developed for such complex systems in physics can
be usefully applied to neural networks. Indeed, many neural-network
researchers are physicists by training, e.g., Hertz, Krogh, and Palmer
(1991). Some of the relevant mathematics essential to understanding
neural networks as applied to psychological development are presented

in chapter 2.

Activity and connectivity

For the most part, artificial neural networks can be understood in terms
of the twin notions of activity and connectivity (Mareschal & Thomas,
2001). As noted in the first row of table 1.1, neural networks are com-
posed of two types of elements: units and connection weights. Units in
these artificial neural networks correspond roughly to neurons in bio-
logical networks (brains); connection weights correspond roughly to
biological synapses. Activity in units corresponds roughly to firing rate in
neurons, whereas connection weights correspond roughly to the ability
of neurons to excite or inhibit the activity of other neurons. Both units
and connection weights are implemented in neural networks as real
numbers. At the psychological level of memory, unit activity corresponds
to active memory, known in the past as working memory or short-term

Introduction 15

Table 1.1
Activity and connectivity in artificial neural networks

Activity Connectivity
Elements Units Connection weights
Brain analogy Neurons Synapses
Behavior Firing rate Excitation, inhibition
Implementation Real numbers Real numbers
Memory type Active Long-term
Time scale of change Seconds Seconds to years
Diagram representation Circles Lines

memory, while connection weights encode the system’s long-term mem-
ory. Whereas unit activations change over seconds, changes in connec-
tion weights can occur rather quickly or over a period of years when
representing very long-term learning over the course of development.
Finally, in conventional diagrams of neural networks, units are repre-
sented as circles and connection weights are represented as lines.

Network topology

An artificial neural network 1s a set of units and connection weights
organized in a particular topology. A wide variety of network topol-
ogies are possible. The most general network topology is one in which
each unit is connected to each other unit, implementing a so-called auto-
associator network (McClelland & Rumelhart, 1985). Each unit in an
auto-associator network gets input from the environment and sends
output to the environment as well.

All other network topologies can be understood in terms of restricting
connections within an auto-associator network. Some units might receive
no input from the environment, or some units might not send any output
to the environment. Some connections in the auto-associator topology
could be deleted, or constraints might be placed on the values of some
connection weights. For example, certain groups of units might have
mutually inhibitory connections, implementing a winner-take-all net-
work level. In such a winner-take-all level, only one unit tends to be
active. This could implement so-called grandmotber cells, in which, for

16 Chapter 1

Qutputs O

Hiddens

Inputs

Figure 1.5
A sample multilayer, feed-forward, back-propagation nerwork.

instance, there is one neuron for recognizing a person’s grandmother
(Page, 2000).

Easily the most popular network topology in connectionist modeling is
the so-called multilayer, feed-forward, back-propagation network, shown
in figure 1.5. This network topology has a layer of input units, a layer of
output units, and one or more layers of hidden units. Hidden units are
so-called because they are hidden from the environment—they neither
receive input from the environment nor send output to the environment.
If input units can be seen as analogous to sensory neurons and output
units as analogous to motor neurons, then hidden units can be viewed
as analogous to interneurons.? As such, hidden units are involved in
important computations performed in between the input and output
layers. As explained in chapter 2, the nature of the activation functions
for hidden units is important in enabling these critical, intermediate
computations.

Further deletion of connection weights from the fully connected auto-
associator connection scheme ensures that typical feed-forward networks
have no backward connections, lateral connections within layers, or
cross-layer forward connections.

Most neural networks are hand- designed and static, in the sense that
their topology remains unchanged over the course of learning. Later I
discuss neural]earmng algonthms “in which network topology is con-
structed automatically during the course of learning. This innovation of

Introduction 17

allowing network growth proves to be particularly important in simu-
lating many aspects of psychological development.

Integration of inputs
Each unit in a neural network is running a simple program in which it
computes a weighted sum of inputs coming from other units and out-
puts a number, which is a nonlinear function of the weighted sum of
inputs. This output is then sent on to other units running this same sim-
ple program.

In a feed-forward network, of the sort commonly used in simulations
of psychological development, activations are passed forward from the
input units to the hidden units, and then on to the output units.

Representation

Representation of knowledge in neural networks is often described as
being either local or distributed. The aforementioned grandmother {or
grandfather) cells constitute a so-called local representation, in which
instantiation of a concept is represented by activation of a single unit. In
contrast, so-called distributed representations use a number of units to
represent a given concept or idea. Each such distributed unit is typically
involved in representing many different concepts. There is some contro-
versy about whether it is preferable to use local or distributed knowledge
representations in neural-network simulations. Whereas distributed rep-
resentations may offer some advantages in terms of robustness and gen-
eralization, local representations may be easier to port to other cognitive
functions because a local representation is compactly represented on a
single unit.

Learning

In what is called supervised learning, the discrepancy between actual
network outputs and target outputs that the network is supposed to
produce is computed as network error. Networks are often trained by
presenting many examples of input-output pairs. Each such pair specifies
a particular pattern of input activations that should produce a particu-
lar pattern of output activations. Network weights are adjusted to re-
duce the discrepancy between actual and target output activations, using

18 Chapter 1

techniques presented in more detail in chapter 2. In the case of many
multilayer networks, error is propagated backward to earlier layers
of weights; hence the term back-propagation learning. Unsupervised
learning can also occur, without output targets, as networks learn to
group together similar input patterns. Output unit activations in these
cases can implement a topographic feature map of the inputs.

Summary
Many of these features of neural networks are elaborated considerably in

chapter 2. For now, it is only important to convey these characteristics of

neural networks:

- They embody many of the basic features of brains.
- They utilize some of the mathematics from statistical mechanics for

understanding complex system dynamics and emergent properties.
- They simulate both active and long-term memory processes.

- They can learn by modifying connection weights, in either supervised

or unsupervised paradigms.
Why Use Neural Networks for Modeling?

Even if one agrees that modeling can be a useful tool in studying psycho-
logical development, it is not a forgone conclusion that neural networks
ought to be employed for the modeling. In fact, there are a number of
promising modeling methods that could be selected for developmental
research. In rather sharp contrast to neural-network techniques, many of
them involve symbolic computation and represent knowledge in terms
of rules or frames. Rules are if-then statements that specify what actions
to take when certain conditions are satisfied. Frames are slot and filler
structures that organize knowledge about objects or events. Later in the
book, symbolic techniques, particularly rules, are examined and com-
pared to neural-network methods.

Justifications for the use of neural modeling in the developmental arena
range from demonstrated success of these models to their having such
features as neural plausibility, graded representations, self-organization,
and principled naturalness (Elman et al., 1996; Shultz, 2001).

Introduction 19

Demonstrated success

One of the most compelling reasons for using neural networks to study
psychological development is their demonstrated success. But how can
relative modeling success be measured in any objective fashion? Surely
any such measure would result in endless controversy.

A crude indication of modeling success would be a simple count of
published papers in each relevant category of model, the assumption
being that researchers prefer models that actually work. An extremely
cheap way to do such a count is to consult some recent, balanced survey
of modeling in psychological development. Fortunately for this argu-
ment, there is such a survey in our field, a chapter in the latest edition of
the venerable Handbook of Child Psychology, coauthored by a leading
practitioner from each of the two main categories of computational
models—rule-based and connectionist (Klahr & MacWhinney, 1998).

My classification of the 37 published computational models of psy-
chological development in that survey yields 5 rule-based models, 28
connectionist models, and 4 ad hoc models that were neither rule-based
nor connectionist. This outcome is especially interesting in view of the
fact that the first connectionist model was predated by several models
in the other two categories. Despite the relatively short time that con-
nectionist models of development have been around, by 1998 they
already accounted for the vast majority of publications on computational
modeling of psychological development. Admittedly, not all computa-
tional developmental models are reviewed in that chapter, but it is likely
that a more inclusive review would find a preponderance of connec-
tionist simulations at least as great. A more inclusive count of computa-
tional models can be undertaken by using material throughout this book.

This preliminary count is also interesting because it #may not generalize
to computational modeling of psychology in general. For example, a
recent textbook on cognitive science claimed, without presenting the
results of a formal count, that rule-based models were numerically pre-
dominant. “Of all the computational-representational approaches de-
scribed in this book, which has had the most psychological applications?
The answer is clear: rule-based systems” (Thagard, 1996, p. 51). Perhaps
connectionism is particularly well suited to developmental problems,
as some have argued (Plunkett & Sinha, 1992). It is doubtful that the

20 Chapter 1

relative numbers of publications of different categories of models would
have changed drastically in just two years, from 1996 to 1998.

In later chapters, the degree to which connectionist and other models
really do succeed is given a closer examination. For now, it is perhaps
sufficient to make the point that connectionist models have already
demonstrated considerable comparative success in a wide variety of de-
velopmental domains, from visual perception to language acquisition,

concept formation, and problem solving and reasoning.

Neural plausibility

Another reason to favor neural networks over the more traditional sym-
bolic modeling methods is that neural networks are compatible with
what is known about the brain. The principles by which artificial neural
networks function were, after all, patterned on knowledge of brains and
neurons. And even though many neural-network models are not accurate
at the level of simulating particular brain ci_r_cﬁ@ts,/qg least they conform
to brain-style computation, as it is currently known. This provides a kind
of nell_rolo:giéal plausibility that is simply absent from many other mod-
eling methods. Indeed, the classical symbol-system view of cognition
prided itself on its independence of neural phenomena. It was often
called functionalism because it was concerned strictly with how cogni-
tion functioned rather than how it was implemented in the brain. The
dan;gér of this kirﬁgstr-o;g_ functionalism is, of course, that it ignores
a host of possible constraints on theories that could be supplied by
knowledge of the nervous system. One of the great strengths of cognitive
science has been to freely borrow constraints from neighboring dis-
ciplines. Because cognition is so difficult to study, the more constraints
that can be placed on studies, the more accurate will be the models.
The hope is that converging constraints from various cognitive disci-
plines will help to unlock the fundamental mysteries of cognition. Why
arbitrarily close off access to the probably relevant constraints of neuro-
science, particularly in our present era of rapid progress in neuroscien-
tific research? For the study of psychological development in particular,
there is the burgeoning neighboring discipline of developmental cognitive
neuroscience (Johnson, 1997). Modelers who choose to ignore this work

do so at their own peril.

Introduction 21

Graded representations

Human knowledge is very often approximate and graded, rather than
categorically precise. For example, we may be unsure whether something
is true and thus only partly believe it, hold ambivalent attitudes about
something, or only roughly estimate a fact. Such graded knowledge can
be naturally implemented in neural networks whether the representa-
tion technique is local or distributed. In the case of local representation
schemes, a unit’s graded response is guaranteed by the fact that the unit
is not simply off or on, but can assume any of a range of continuous
values. In distributed representation schemes, this graded response is
further enhanced by the fact that differing numbers of participating units
may be relatively active. Graded responsiveness has been well exploited
in the connectionist simulation of a variety of developmental phenom-
ena. For example, precursors of a mature object concept may reflect
partial knowledge representations {Munakata, McClelland, Johnson &
Siegler, 1997), and small-number conservation problems may be solved
correctly before large-number conservation problems (Shultz, 1998).4

Self-organization

In biological systems, pattern and order can emerge without the need for
explicit internal or external instructions (Oyama, 1985). Many aspects of
psychological development are also suspected to be self-organized rather
than determined by either genetics or environment (Karmiloff-Smith,
1992; Mareschal & Thomas, 2001). This means that significant devel-
opment can occur without the system being poked or prodded to de-
velop. Instead, development arises from processes that are endogenous to
the developing system. To get an explanatory handle on such processes
would presumably require some kind of modeling, using techniques that
themselves are capable of self-organization.

Some artificial neural networks are able to discover for themselves the
important features, representations, and correlations that may be present
in the environment. Such networks, in other words, display a certain
amount of self-organization that could perhaps be exploited in the ser-
vice of modeling self-organizing psychological development. This quality
of self-organization in formal modeling is apparently somewhat rare and
thus precious.

22 Chapter 1

Principled naturalness

In successful modeling, it is essential, of course, to cover the data and
phenomena being modeled. To cover a phenomenon means that the
model reproduces the behavior being modeled. However, mere coverage
is often not sufficient for a model to be considered a leading contender
for scientific study. It is also essential that a model cover phenomena for
the right reasons. The right reasons are parameters that operate accord-
ing to established scientific principles that are consistent from one do-
main of application to the next. In contrast, even an inappropriate model
could be made to seem to cover some phenomenon by clever manipula-
tion of key model parameters that have no scientific basis.

One of the main attractions of neural-network techniques is that they
work according to well-established principles of neuroscience and mathe-
matics. They often don’t need a lot of parameter tweaking or hand de-
signing to achieve adequate data coverage.

If I may be permitted a bit of autobiographical leeway, I can describe
the origin of my own fascination with neural-network techniques. I had
been searching for appropriate modeling techniques for a few years be-
cause I felt that I needed to gain a deeper theoretical understanding of
the phenomena that I was studying with the conventional psychological
techniques of verbal theorizing and human experimentation. In such an
exploratory mode, I built a number of computational models with sym-
bolic techniques such as rules. Although I invariably felt that I learned
something and gained theoretical insight by building such models, I also
became uneasy because almost nothing that I learned seemed to general-
ize from one model to the next. This was because each domain seemed
to require a distinct scheme for knowledge representation and a unique
rule base. There was data coverage, for sure, but the coverage had more
to do with how I designed the models rather than with more abstract
principles.

In contrast, when [started modeling with neural networks, I was
impressed with the fact that almost everything that I learned from one
model would generalize effectively to the next domain. The apparent
reason for this was that the neural-network models were following basic
principles that applied without substantial change to several specific
domains. This was particularly true of generative techniques such as

Introduction 23

cascade-correlation, which not only learned the connection weights but
also designed the topology of the network automatically.

Why Use Generative Neural Networks?

Most researchers who apply neural networks to psychological develop-
ment use some variant of static, multilayered, feed-forward networks.
In this technique, the network topology is designed by hand, as are the
training patterns; the network weights are learned automatically. As
noted in some detail in the next chapter, there are a number of problems
with this kind of scheme. For example, the programmer needs to design
the network topology, in most cases without knowledge of the under-
lying circuitry of real neurons. How many hidden units should be
employed? In how many layers should they be arranged? Should some
network sections be segregated so that not every unit in one layer con-
nects to every unit in the next layer? At present, there is more art than
science to settling such issues. There are several rules of thumb, but no
comprehensive scientific principles (Reed 8 Marks, 1995). If there were
comprehensive scientific principles governing network design, then such
networks could be designed automatically.

In contrast, generative networks incorporate topology design into the,
learning process. Generative networks search not only in weight space
for the right combinations of weight values but also in topology space to
find the right arrangement of network units for the particular problem
being learned. In the next chapter, we examine in detail how these two
simultaneous searches are possible. The principles of network design in
generative networks may turn out to be psychologically and neuro-
logically incorrect, but at least they are principled and well specified in a
mathematical and computational sense.

Other advantages of generative networks will be identified as we prog-
ress. And there will be a few cases of head-to-head competition of static
and generative network models. For now, it is only important to note
that coherent cases can be made for modeling, for computational mod-
eling, for neural-network modeling, and for generative-neural-network
modeling of psychological development. Objections to all of these ideas
are addressed in chapter 6.

24 Chapter 1

Conclusions

This chapter began by reviewing some of the important, enduring issues
in developmental psychology. Among the issues identified as important
are structure and transition, representation and processing, innate and
experiential determinants of development, stages of development, the
purpose and end of development, and the relation between knowledge
and learning. Because this book tries to gain some leverage on these
issues through computational modeling, using generative connectionist
models, it seemed important to justify a number of strategic research
decisions. Arguments were made for the importance of modeling in
scientific work, reasons for computer modeling, the advantages of a
connectionist approach to modeling, and a generative approach in par-
ticular. Along the way, the basics of neural networks were introduced. In
chapter 2, the neural-network machinery most commonly applied to
psychological development is presented in a more detailed and substan-
tial way. Readers who already know this material or want to continue to
avoid it may decide to move directly on to chapter 3. Chapters 3 to 7 can
be read and appreciated without the rather technical material in chapter
2, but understanding those chapters would be enhanced by this material.

2

A Neural-Network Primer

In chapter 1, [argued that it can be fruitful to apply neural-network
models to the study of basic issues in psychological development. 1 dis-
cussed some of the basic features of such networks and promised to
supply important details in this chapter. Because the field of neural net-
works is vast and not all of its techniques have been used in devel-
opmental research, my plan is to cover only the most frequently used
techniques. Although all of these methods are presented in detail some-
where else in the literature, I present all the essentials here (one-stop
shopping) with sufficient background to enable understanding of key
ideas by basically all readers, not just those with an extensive back-
ground in neural networks and mathematics. If you know algebra and
some calculus, you should be able to follow the discussion quite easily.
Four different appendixes present additional background on the key
notion of slopes and their computation in neural learning.

Because the notion of linear separability is of recurring importance in
neural-network research, I start with a brief discussion of the distinction
between linearly separable and linearly nonseparable tasks.

Because of its prominence in developmental simulations, I give an
extensive presentation of back-propagation, a technique for supervised
learning from examples in multilayered feed-forward networks. This is
preceded by a discussion of how network units integrate their inputs
and determine how active they should be as a result of that integration
(activation functions), as well as the basics of weight adjustment. 1 then
present three important variations on the back-propagation algorithm,
again because of their prominence in simulations of development. One of

26 Chapter 2

these variations is cascade-correlation, a generative algorithm for build-
ing network topology during learning. Such increases in the computa-
tional and representational power of networks allow for simulation of
underlying qualitative changes in development, long a basic assumption
of Piaget and other developmental theorists. Another significant varia-
tion on back-propagation is that of simple recurrent networks, a tech-
nique that allows processing sequential inputs, such as sentences, by
implementing a kind of working memory for what has just been pro-
cessed in the previous step. The third variation on back-propagation is
that of encoder nerworks. These are networks that learn to recognize
stimulus patterns by encoding them onto hidden units and then decoding
them onto output units. Application of encoder networks has enabled
the simulation of various recognition-memory phenomena such as seen
in the literature on habituation in infants.

Then I present auto-associator networks. As noted in chapter 1, these
are fully connected networks in which each unit plays the roles of
both input and output units. Although there are no hidden units, which
would be required for learning nonlinear functions,! there is recurrence,
with cycling of activation updates. Such networks have the potential to
learn linear relations among stimulus patterns and to engage in pattern
completion when presented with partial or degraded stimulus inputs.
Auto-associators have been used to implement recognition memories in
habituation studies and learning of category names.

An unsupervised-learning technique called feature mapping has been
used to identify the main features of stimuli in concept-acquisition and
object-permanence simulations. This allows a network to learn to group
together stimuli that are similar in their descriptions, through a pro-
cess of self-organization, without any correction from environmental
feedback.

With so many types of neural networks in current use for develop-
mental studies, it is not always apparent which technique should be
selected for any particular application. To provide some advice on this, a
rule-learning program processes examples of current neural models to
determine a small and coherent set of rules for algorithm selection. This
exercise has the added advantage of presenting the leading symbolic rule-
learning program for developmental research.

A Neural-Network Primer 27

Finally, interested readers are pointed towards neural software that
facilitates the use of these various types of networks. Such software
makes it much easier to begin neural-network simulations, often without
a background in programming languages.

Linear Separability

Many artificial neural networks can learn functions that map inputs onto
outputs. Of considerable theoretical and historical importance is whether
the functions being learned, and the tasks that they represent, are linearly
separable or not. A linearly separable function is one whose outputs are
some linear combination of its inputs. This notion of linearity is usually
clearer when illustrated graphically.

If the training patterns representing a linearly separable function are
plotted in a multidimensional input space, where each dimension refers
to variation in one of the inputs, then it is possible to separate the values
on one output unit from each other by a plane. In contrast, no such
planes can be found for linearly nonseparable tasks.

Examples of two linearly separable and two linearly nonseparable
datasets are shown in figure 2.1. For visual simplicity, each of these pat-
tern sets has just two continuous input units and a single binary output
unit. In such two-dimensional problems, the “plane” separating input
patterns with different output values is just a straight line. The planes
used to separate patterns are of higher dimensionality for problems with
more than two inputs. Planes of varying dimensionality are more gener-
ally referred to as hyperplanes. In each plot in figure 2.1, there are 60
randomly selected x, y pairs of input values. Some of them have one
output value, represented in the figure by an open square and others
have a different output value, represented by a filled diamond shape.

The datasets depicted in figures 2.1a and 2.1b are linearly separable,
as revealed by an overlaid straight line that separates patterns of one
output value from those with the other output value. The dataset plotted
in figure 2.1a can be viewed as distinguishing large sums of the x and y
inputs (indicated by open squares) from smaller sums (indicated by filled
diamonds). Hence, the boundary line has a negative slope. The dataset
plotted in figure 2.1b has a boundary line with a positive slope. This

28 Chapter 2

y y
|
X X
c d
§ o o0 g ¢ oo &
o® a o o ® o
o IS o oo
. e O . L3 B & o
. e . . o 0 g
a* tee o oa .t * a o
. o
y * y . D.
. . o 'Y
O o e . oo o a K
.. a a B s, o o
oo . = o a Lt
o
g® & o 5] = P o . *
X X
Figure 2.1

The two-dimensional input spaces for four functions, two of which are linearly
separable (a and b) and two of which are not (c and d).

function can be viewed as distinguishing cases where x > y (diamonds)
from cases in which y > x (squares).

In the case of the two datasets that are not linearly separable (figures
2.1c and 2.1d), there is no way to draw a straight line to separate pat-
terns with the two different output values. Figure 2.1c shows a center-
surround function, with one class occupying the inside of the input space
(diamonds), and the other occupying the periphery (squares). The dataset
in figure 2.1d is a continuous version of the exclusive-or function in
which the quadrants of the input space with low values on both x and
y or high values on both x and y (squares) differ from the other two
quadrants (diamonds).

Artificial neural networks typically find linearly separable problems
easier to learn than those that are not linearly separable. Ordinarily, the
more nonlinearity in the problem, the harder it is to learn. In particular,
as we will soon see, successful learning of a nonlinear dataset requires
the use of so-called hidden units with nonlinear activation functions.

A Neural-Network Primer 29

Because all neural-network learning algorithms need to specify how
network units integrate their inputs, how this input affects their activity,
and how to adjust weights, I turn next to these topics.

Integration of Inputs

In chapter 1, I noted that network units integrate their inputs by sum-
ming the weighted activations of sending units. Somewhat more for-
mally, the weighted input x; to unit ; is computed as follows:

X = Zwi/)’i (2.1)

Here w;; is the connection weight between sending unit i and receiving
unit /, and y; is the activation of sending unit i. Equation 2.1 says to
multiply the activation of each sending unit i by the connection weight
to receiving unit ; and to sum these weighted activations over all of
the units indexed by i that send inputs to receiving unit j. Negatively
weighted activations (which occur when either the sending-unit activa-
tion or the connection weight is negative) tend to inhibit the activation of
the receiving unit, while positively weighted activations (which occur
when both the sending-unit activation and the connection weight are
positive or both are negative) tend to excite the activation of the receiv-
ing unit. Of course, summing the weighted activations determines the
overall or net effect on the receiving unit. For this reason, the sum of
weighted inputs defined in equation 2.1 is often referred to as the net
input to a receving unit.

As an example of these computations, consider the simple four-unit
network shown in figure 2.2. The three sending units at the bottom of
figure 2.2 have activations of 0, 1.0, and —1.0. The corresponding con-
nection weights to the receiving unit are 0.5, 1.0, and —0.8, respectively.
In this case, net input to the receiving unit is computed as (0 x 0.5) +
(1.0x1.0)+(-1.0x-0.8)=0+1.0+08=1.8.

Activation Functions

How net input to a unit is translated into activity for the unit depends
on the activation function of the unit. With a linear activation function,

30 Chapter 2

Receiving unit Q

Net input 1.8

Connection
weights

Sending
units

Sending 0 1.0 -1.0
activations

Figure 2.2
An example of computing net input in a part of a simple network.

the activity of the receiving unit could equal its net input. However, the
nature of network computations that can be accomplished with linear
activation functions is extremely limited. Also, linear activation functions
do not conform to the characteristics of biological neurons, which are
known to have a floor and a ceiling of activity. That is, real neurons have
a minimum level of activity, such as none, and a maximal level of activ-
ity, typically about 300 Hz (cycles per second).

To implement these more realistic characteristics, one typically
uses a nonlinear activation function, such as a sigmoid function or a
hyperbolic-tangent function. A sigmoid activation function is shown in
figure 2.3 as an example. This is the function:

1

Yj
Here x is the net input to unit j, and e is the exponential function. This
activation function specifies that the negative exponential of the net input
is added to 1 and divided into 1 before subtracting 0.5 to yield the acti-
vation of the receiving unit. As figure 2.3 reveals, for net inputs ranging
from —10 to 10, this function has a floor at —0.5 and a ceiling at 0.5,
with a threshold at 0.2

To fully understand this function, we can deconstruct it and then re-
build it step by step. We can start with the simple exponential function

A Neural-Network Primer 31

0.6

0.4 1

0.2 1

(1/(1+e”x))-0.5
o

-0.4
-0.6 . . : :
-10 -5 0 5 10
Net input
Figure 2.3

Sigmoid activation function.

y = e*, again with net inputs ranging from —10 to 10, as shown in figure
2.4. With negative x, this function starts very close to 0, but it increases
more and more rapidly as x increases. At x = 0, the exponential function
yields a value of 1. As x increases above 0, the exponential function
grows very fast indeed.

The next step in rebuilding the sigmoid function is to understand the
negative exponential function y = ¢™*, shown in figure 2.5. The negative
exponential does just the reverse of the exponential: it starts very high
with a negative x and then decreases less and less rapidly as x increases.
Like the exponential function, at x = 0 the negative exponential function
yields a value of 1. The main point for understanding the sigmoid func-
tion is that as x increases, the negative exponential function approaches
a value of 0.

This fact is helpful in understanding how dividing 1 by the sum of 1
and the negative exponential produces a smooth function with a floor
and ceiling and a steep threshold between them. This is illustrated by the
asigmoid function plotted in figure 2.63

1

= (2.3)

Yi

32 Chapter 2

25000
20000]
15000 -
< 10000

5000 4

-5000 : . . :
-10 -5 0 5 10

Net input (x)

Figure 2.4
Exponential function.

25000 -
20000 4
15000 -
x
< 10000 {
[

5000 -

-5000 : ; . :
-10 -5 0 5 10

Net input {x)

Figure 2.5
Negative exponential function.

A Neural-Network Primer 33

0.75 1
X 05
<
Lid]
+
EE 0.254
O 4
-0.25 T T : .
-10 -5 0 5 10
Net input (x)
Figure 2.6

Asigmoid function.

—X

In the asigmoid function, when x is highly negative, e ™ is extremely

large, creating a large denominator in equation 2.3 and a value of y
very close to 0, the floor of the asigmoid function. As x increases, e™
approaches 0, and the denominator in equation 2.3 approaches 1. This
yields a ceiling for the asigmoid function of 1. The threshold of the asig-
moid function is at 0.5. This activation function, which is quite com-
monly used in neural network research, i is ca led aszgmoza—gecause it is
asymmetric around 0, always vleldmg_posmve values - o

Subtracting 0.5 from ‘the asigmoid function, as in equation 2.2, is the
final step in producing the sigmoid function (figure 2.3), which is sym-
metrical around 0, with a floor at —0.5, a ceiling at 0.5, and a threshold
at 0. The sigmoid function is the default activation function in the
cascade- correlatlon alggrlthm ‘which 1<Teat11red1MWboolﬁnd in
Wevelopmental simulations.

The importance of having a nonlinear activation function, such as
the sigmoid function, in neural networks is to enable the learning of
nonlinear target functions. Simpler, linear functions, like those in figures
2.1a and 2.1b, have outputs that are some linear combination of the

inputs. However, because many aspects of the world exhibit nonlinear

34 Chapter 2

functions, such as those in figures 2.1c and 2.1d, it is important for cog-
nitive models to be able to capture this kind of more complex learning.

There are now proofs that a network with a single layer of hidden
units can learn any continuous function to any degree of accuracy if this
layer contains a sufficient number of hidden units (Hertz et al., 1991).
And there are proofs that any function can be learned by a network with
two hidden layers, again provided that there are enough hidden units in
each of the two layers.

Weight Adjustment

Neural networks learn chiefly by modifying their connection weights to
reduce error. Connection weights are typically trained by presenting ex-
ample pairs of input and output values. Because there are often multiple
inputs and multiple outputs, these example values are presented in the
form of vector pairs—in each pair, one vector holds input values and the
other holds output values. In general, each vector contains real numbers.
Gradually, by processing such examples, a network learns to produce the
correct output vector in response to each input vector. Vector pairs used
in such training are typically known as the training set.

During learning, error at the output units, for a single pattern, is com-
puted as the sum of squared discrepancies between outputs and targets:

E %Zm ~4)? (24)

Here y; is the network’s actual output at unit /, and ¢, is the target output
for unit j specified in the training set. The goal of learning is to minimize
error as measured by equation 2.4. Because error is some function of the
network’s connection weights, the_;gél_Qigin_irg_i_z_i_l__g__er_r_or_is__a,ccom—
plished _Evjqq]_—ﬁ{n% the network’s connection weights. It is perhaps

somewhat surprising that such connection-weight adjustments can be
do_r_l__g with Q_n_l}_ﬂ_gn1__c9-mputations2 i.e., without worrying what other
w(eights are doing.

To understand how this kind of learning works, suppose that the error
contributed by a single connection weight is some unknown parabolic

function of the value of that connection weight. As shown in figure 2.7,

A Neural-Network Primer 35

Error

Wiy Wy

Weight

Figure 2.7 -

A hypothetical function relating the value of a single network weight to error.
Slopes of the error function at two weight values (w, and w;) are shown with
dashed lines.

the assumption is that the error contributed by variation in a single
weight takes the form of a parabola with the arms opening upwards.
This assumption makes sense on the view that there is some optimal
value for each connection weight where either increasing or decreasing
the value of the weight from this optimum serves to increase error. If we
knew the exact shape of this error function, learning would be easy—just
make each connection equal to the value that minimizes error. The
problem is, of course, that life is not so simple. These error functions are
unknown to the learner, and are unlikely to be a simple, smooth parab-
ola, as pictured in figure 2.7. The learner, as modeled by a neural net-
work, knows about the size of the discrepancy between actual responses
and target responses in the training set, but not about the shape of the
error function. -
Even if the exact shape of the error function is unknown, the scant
information available can be used to compute the slope of this function
at each connection-weight value that has been experienced. The slope (or
gradient) is the first derivative of a function, evaluated at a particular

36 Chapter 2

point. Slope quantifies how rapidly the y value changes as the x vari-
able changes—in this case, how rapidly error changes as a function of
changes in a connection weight. Two such hypothetical slopes are shown
in figure 2.7, for two different weight values (v and w>). If the slope for
a given weight value and error can be computed, then the direction in
which the connection weight should be changed is obvious. If the slope is
currently negative (as at wy), then the weight should be increased to
move error toward the minimum. Conversely, if the slope is currently
positive {as at w;), then the weight should be decreased to move error
toward the minimum.

The greater dilemma is figuring out how much to change a connection
weight. If the weight 1s changed too much, the deepest part of the error
valley could be missed, creating an oscillation in weight adjustments that
never settles into the minimum error. The general solution is to take very
tiny steps of weight change so as not to miss the m‘inimun_n error, but this
maEes_ learning quite slow. Knowing the slope can also be helpful in
decidfng how much to change a weight. The idea is to make the amount
of weight change proportional to slope. With a currently steep slope, as
at wy, a rather large change in weight is called for. With a currently
shallow slope, as at w,, weight change should be rather small, as the
error minimum may be nearby. This technique of using information on
the slope of the error function is often known as gradient descent be-
cause it involves trying to slide downbhill on the error surface to reach the
point of m]nimAuimierror in weight space.

Thus, being able to compute the first derivative of error with respect
to weight offers a tremendous advantage in getting feed-forward neural
networks to learn from examples in the training set. Generally, the
amount of weight change is considered to be a negative proportion of the
partial derivative of error with respect to weight:

OE

= 2.5
raw’_/_ ()

Aw,-,- = —
The parameter 7 in this equation represents the learning rate and is gener-
ally set to a moderate proportion, such as 0.5, to keep the weight ad-
justments from oscillating wildly across the minimum error (McClelland
& Rumelhart, 1988).

.

