
Adaptive Robotics - Final Report
Extending Q-Learning to Infinite Spaces

Eric Christiansen
Michael Gorbach

May 13, 2008

Abstract

One of the drawbacks of standard reinforcement learning techniques is that they
only operate when both the state and action spaces are finite. Q-learning is one such
algorithm. We propose an extension of Q-learning to infinite state and action sets
called CHAMPAGNE, using a simple “Local Expert” function approximation method.
We then experimentally test the performance of the algorithm on several navigation
tasks. The algorithm is able to successfully solve a T-maze in pyrobot after reasonable
training. We present results from varying the input type, reinforcement delay, and
maximum memory size for this algorithm.

1 Introduction

The essence of the Q-learning algorithm is the task of filling in entries in a 2 dimensional
table, where one axis corresponds to the finite set of possible states the system can be
in, and the other axis corresponds to the finite set of possible actions the system can
take, and where the i, j entry in the table is estimates the intrinsic value of performing
action j when in state i. Any particular estimate i, j in the table is reliant solely on
observations made when the jth action is performed from the ith state; the canonical
Q-learning algorithm for updating estimates assumes no relationship between different
states and different actions. This often means it does not take into account important
knowledge about the problem. In this paper, we implement a simple extension of
Q-learning to infinite sets of states and actions.

2 Methods

We wish to extend Q-learning to infinite state and action sets. Clearly, the existing
Q-learning algorithm, given a finite running time, could never produce an estimate for
every entry in an infinitely large table. What is needed is a means of interpolating
between the entries in the table.

1



The interpolation task can be understood as a function estimation task, where the
domain is the set of all pairs of states and actions, and the codomain is R, corresponding
to reward. We seek an algorithm which can perform this function estimation well, so
that we can fairly say our method extends Q-learning to infinite spaces. The simplest
method for implementing this approximation, which we call Local Expert Regression,
turns out to be effective in solving navigation tasks. The method is described below.

To implement a Q-learning like algorithm, the function approximation must be
supplemented with another element: estimation maximization. Given the estimated
function, which gives a reward for every state and action pair, estimation optimization
determines which action the agent should take from a particular state. Estimation
optimization chooses the best move for the agent each turn.

2.1 CHAMPAGNE

2.1.1 Function Approximation: Local Expert Regression

Given a training set of points {pi} from the domain, and a set of values {R(pi)}
associated with each point, let p be a point in the domain. We estimate R(p) by
finding a pmin ∈ {pi} such that ||p−pmin|| ≤ ||p−pi|| for every i, i.e. we let pmin be the
point in the training set closest to p in the Euclidean metric. Our estimate for R(p) is
then R(pmin).

If our domain is bounded, and the function f we are trying to estimate is uniformly
continous, then this algorithm is guaranteed to yield an arbitrarily good approximation
of f given enough training points. Here, uniform continuity has a precise analytical
meaning, but can be interpreted to mean that knowing the value of f at a point yields
information about the values of f near that point. This condition on f is entirely
reasonable; the set of functions a neural net can model is in fact a subset of the set of
uniformly continuous functions.

In practice, our domain is a space D that is a cartesian product of two spaces:
D = S ×A. Here, S is the space of all possible (sensor) states of the robot, while A is
the space of all possible robot actions. The Local Expert scheme gives an estimate R̂
for the function R : D → R.

2.1.2 Estimation Optimization

As noted above, in order to create a complete learning system, a function approximation
scheme (in this case, Local Expert Regression), must be combined with a scheme for
estimation optimization. The current state sc ∈ S defines a subspace Sc of D. The
goal of an estimation optimization scheme is to maximize the value of R̂ on Sc.

In Q-Learning, this is a simple task because there is a finite set of actions asso-
ciated with a state, so we can exhaustively evaluate R̂ for each state/action pair in
Sc. However, in our case Sc is infinite (of the same dimension as A), so we perform
an approximate optimization of R̂ by sampling nsample points in Sc and returning the
point with best R̂. If R is reward, we try to maximize R̂. If R is error, we try to
minimize R̂.

2



Note that Q-Learning additionally uses an exploration parameter, which determines
how often the system will choose a random move instead of the estimated optimal move.
In CHAMPAGNE, the nsample parameter implicitly leads to exploration; the fact that
nsample is finite and so optimization isn’t exact leads to non-optimal actions being
explored. In CHAMPAGNE, nsample also grows with the square root of the number
of moves previously taken. This was done to allow more strongly random exploration
initially, followed later by fine-tuning towards an optimal solution.

2.1.3 Delayed Reward

In practice, the function we want to estimate assigns a reward to each point in the
domain. However, in many robotics applications, knowledge of reward corresponding
to each point in the domain is unavailable. Instead, we have only reward for a sequence
of moves by the robot. The natural question is how this summary reward should be
assigned among the sequence of moves leading up to the reward. For example, a
Chess-playing agent may make many moves before the game is over, but reinforcement
takes place only at the end of the game, and it isn’t obvious how each individual move
affected the overall performance.

In CHAMPAGNE, we have a simple method of distributing cumulative reward. If
the cumulative reward after a sequence of m moves is RC , then the reward assigned to
each move in the sequence is RC

m .

2.1.4 Finite Memory

The Local Expert algorithm, as formulated above, requires all observations that the
agent makes to be stored indefinitely. This implies unbounded memory requirements.
We can easily sidestep this difficulty by limiting the number of observations stored.
Specifically, we can keep only the last nmemsize observations, and throw older ones out.

2.2 Specific Tasks

To validate CHAMPAGNE we needed to define a performance metric. Several different
robot navigation tasks were used for this purpose.

2.2.1 Target Following Game

As an initial test for the algorithm, we used a simple target-following navigation task.
The game is played in rounds, each m turns long. Each round, a target point (xt, yt)
is randomly set in the unit square. The agent itself, represented as a point, is started
at another random point (x0, y0) in the unit square. Each turn, the agent can move a
distance of dmax in any direction from 0 to 2π to a new position (xc, yc). At the end
of each turn, the agent is reinforced with the euclidean distance (error) between its
current position and the target point. As “sensor values”, the agent perceives both its
location and that of the target point.

We thus have a 4 dimensional real sensor space S = {xt, yt, xc, yc}, and a 2 dimen-
sional action space A = {d, θ}, giving a total 6 dimensional space D = S × A. Our

3



function approximation then maps D → R, where R is the (scalar) reward, or in this
case the error.

2.2.2 T-Maze Task

As a more difficult task for our algorithm, we used a T-Maze navigation problem similar
to that discussed in the SODA paper [1]. See Figure 1 for a diagram of the T-Maze
world.

Figure 1: An illustration of the T-Maze task world. The robot and the target are in purple.
The target is shown here as a purple light, but the robot can not perceive it.

The movement of the robot was set up similarly to that of the target-following task
(2.2.1). The robot was able to move, each turn, in any direction up to an adjustable
maximum distance dmax. The robot was repositioned to a fixed starting point in the
top left corner at the beginning of each round, and then given a total of m moves to find
the target. The moves of the robot were controlled a brain running the CHAMPAGNE
algorithm discussed in 2.1.

To examine the performance of the algorithm with increasingly difficult problems,
several variations of this task were studied. We varied three parameters: the values
given as sensor input, the delay of the reinforcement, and memory size. Two types of
sensor inputs were examined. Coordinate input involved giving the robot, as sensor
data, the exact coordinates of its position and that of the target. Sonar input involved
giving the robot readings from 4 of its 8 sonar sensors as input (skipping every other
sensor, going around the robot’s body). Obviously, we expected the use of coordinate
input to make the task significantly easier to solve. We also varied the type of rein-
forcement given to the robot. In immediate reinforcement, the robot was given the
error (euclidean distance from target) after each move. In delayed reinforcement, the
robot was given the sum of its errors over a round as the only reinforcement, at the
end of each round. The delayed reinforcement was distributed according the discussion
in 2.1.3.

4



3 Results

Figure 2 presents a learning curve for the target-following task. Here, and in all further
tasks, we used a round of m = 10. For this task, the maximum move distance was
dmax = 0.5, and the world size was 1× 1. As expected, we saw rapid convergence and
this task served as a sanity check for the the method.

Figure 2: Performance in target following task. The x-axis is the number of training rounds
and the y-axis shows cumulative error over each round. The blue curve is mean performance,
and the red lines are plus and minus one standard deviation. The graph comes from 1200
independent runs.

Figures 3 and 4 present the results of measuring learning performance across dif-
ferent variants of the T-Maze task. For all the remaining trials, we used dmax = 2
and a world size of 10× 20. We independently varied the type of sensor input and the
reinforcement delay. As expected, convergence is very rapid for coordinate sensor and
immediate reinforcement. Interestingly, sonar sensors with immediate reinforcement
and coordinate sensor with delayed reinforcement performed about equally, suggesting
that these sets of additional information have roughly equal value to the algorithm.

5



The task with delayed reinforcement and sonar sensor was significantly harder than any
of the other tasks. However, the agent was able to learn achieved good performance
with sufficient training (see Fig. 5). We see that the agent continues to improve to a
significant degree with additional training.

Figures 5 and 6 present the results of varying the memory size. We restrict the
memory size to 100, 1000, and 10,000 observations, as well as allowing for unlimited
memory size. In nearly every case, increasing the memory size improved performance
(see fig. 5). Extremely small memory sizes made learning difficult, though some
learning is evident in these curves. It is interesting to note that going from 10,000 to
unlimited memory size in the sonar sensors and delayed reinforcement condition did
not significant improve performance. This may be due to the difficulty of the condition
causing a large of amount non-useful data to be held in memory.

Figure 3: Performance versus sensor and reinforcement types. The blue curve shows the
performance of an agent with coordinate sensors and immediate reinforcement. The red curve
corresponds to sonar sensors and immediate reinforcement. The green curve corresponds to
coordinate sensors and delayed reinforcement. The cyan curve corresponds to sonar sensors
and delayed reinforcement. All robots had unlimited memory size. The graph comes from
100 independent runs.

6



D 

A C 

B 

F
ig

u
re

4:
P
er

fo
rm

an
ce

ve
rs

u
s

se
n
so

r
an

d
re

in
fo

rc
em

en
t

ty
p
es

.
E

ac
h

gr
ap

h
h
as

th
e

n
u
m

b
er

of
ro

u
n
d
s

tr
ai

n
ed

on
th

e
x
-a

x
is

,
an

d
to

ta
l
er

ro
r

on
th

e
y
-a

x
is

.
T

h
e

li
n
es

b
ou

n
d
in

g
ea

ch
ce

n
tr

al
cu

rv
e

ar
e

p
lu

s
an

d
m

in
u
s

on
e

st
an

d
ar

d
d
ev

ia
ti

on
.

G
ra

p
h

A
sh

ow
s

th
e

p
er

fo
rm

an
ce

of
an

ag
en

t
w

it
h

co
or

d
in

at
e

se
n
so

rs
an

d
im

m
ed

ia
te

re
in

fo
rc

em
en

t.
B

co
rr

es
p
on

d
s

to
so

n
ar

se
n
so

rs
an

d
im

m
ed

ia
te

re
in

fo
rc

em
en

t.
C

co
rr

es
p
on

d
s

to
co

or
d
in

at
e

se
n
so

rs
an

d
d
el

ay
ed

re
in

fo
rc

em
en

t.
D

co
rr

es
p
on

d
s

to
so

n
ar

se
n
so

rs
an

d
d
el

ay
ed

re
in

fo
rc

em
en

t.
A

ll
ro

b
ot

s
h
ad

u
n
li
m

it
ed

m
em

or
y

si
ze

.
T

h
e

gr
ap

h
co

m
es

fr
om

10
0

in
d
ep

en
d
en

t
ru

n
s.

7



F
ig

u
re

5:
P
er

fo
rm

an
ce

ve
rs

u
s

m
em

or
y

si
ze

.
E

ac
h

gr
ap

h
h
as

th
e

n
u
m

b
er

of
ro

u
n
d
s

tr
ai

n
ed

on
th

e
x
-a

x
is

,
an

d
to

ta
l
er

ro
r

on
th

e
y
-a

x
is

.
B

lu
e:

p
er

fo
rm

an
ce

of
an

ag
en

t
w

it
h

co
or

d
in

at
e

se
n
so

rs
,
im

m
ed

ia
te

re
in

fo
rc

em
en

t,
an

d
m

em
or

y
si

ze
of

10
0

ob
se

rv
at

io
n
s.

G
re

en
:

co
or

d
in

at
e

se
n
so

rs
,

im
m

ed
ia

te
re

in
fo

rc
em

en
t,

an
d

m
em

or
y

si
ze

of
10

00
.

R
ed

:
co

or
d
in

at
e

se
n
so

rs
,

im
m

ed
ia

te
re

in
fo

rc
em

en
t,

an
d

m
em

or
y

si
ze

of
10

00
0.

L
ow

er
cy

an
:

co
or

d
in

at
e

se
n
so

rs
,

im
m

ed
ia

te
re

in
fo

rc
em

en
t,

an
d

u
n
li
m

it
ed

m
em

or
y.

P
u
rp

le
:

so
n
ar

se
n
so

rs
,
d
el

ay
ed

re
in

fo
rc

em
en

t,
an

d
m

em
or

y
si

ze
of

10
0.

Y
el

lo
w

:
so

n
ar

se
n
so

rs
,
d
el

ay
ed

re
in

fo
rc

em
en

t,
an

d
m

em
or

y
si

ze
of

10
00

.
B

la
ck

:
so

n
ar

se
n
so

rs
,
d
el

ay
ed

re
in

fo
rc

em
en

t,
an

d
m

em
or

y
si

ze
of

10
00

0.
U

p
p
er

cy
an

:
so

n
ar

se
n
so

rs
,
d
el

ay
ed

re
in

fo
rc

em
en

t,
an

d
u
n
li
m

it
ed

m
em

or
y.

T
h
e

gr
ap

h
co

m
es

fr
om

10
in

d
ep

en
d
en

t
ru

n
s,

an
d

a
10

-s
te

p
m

ov
in

g
av

er
ag

e
w

as
u
se

d
fo

r
sm

o
ot

h
in

g.

8



A
B

C
D H

G
F

E

F
ig

u
re

6:
P
er

fo
rm

an
ce

ve
rs

u
s

m
em

or
y

si
ze

.
E

ac
h

gr
ap

h
h
as

th
e

n
u
m

b
er

of
ro

u
n
d
s

tr
ai

n
ed

on
th

e
x
-a

x
is

,
an

d
to

ta
l

er
ro

r
on

th
e

y
-a

x
is

.
T

h
e

li
n
es

b
ou

n
d
in

g
ea

ch
ce

n
tr

al
cu

rv
e

ar
e

p
lu

s
an

d
m

in
u
s

on
e

st
an

d
ar

d
d
ev

ia
ti

on
.

G
ra

p
h

A
sh

ow
s

th
e

p
er

fo
rm

an
ce

of
an

ag
en

t
w

it
h

co
or

d
in

at
e

se
n
so

rs
,
im

m
ed

ia
te

re
in

fo
rc

em
en

t,
an

d
m

em
or

y
si

ze
of

10
0

ob
se

rv
at

io
n
s.

B
co

rr
es

p
on

d
s
to

co
or

d
in

at
e

se
n
so

rs
,
im

m
ed

ia
te

re
in

fo
rc

em
en

t,
an

d
m

em
or

y
si

ze
of

10
00

.
C

co
rr

es
p
on

d
s
to

co
or

d
in

at
e

se
n
so

rs
,

im
m

ed
ia

te
re

in
fo

rc
em

en
t,

an
d

m
em

or
y

si
ze

of
10

00
0.

D
co

rr
es

p
on

d
s

to
co

or
d
in

at
e

se
n
so

rs
,
im

m
ed

ia
te

re
in

fo
rc

em
en

t,
an

d
u
n
li
m

it
ed

m
em

or
y.

E
co

rr
es

p
on

d
s

to
so

n
ar

se
n
so

rs
,

d
el

ay
ed

re
in

fo
rc

em
en

t,
an

d
m

em
or

y
si

ze
of

10
0.

F
co

rr
es

p
on

d
s

to
so

n
ar

se
n
so

rs
,
d
el

ay
ed

re
in

fo
rc

em
en

t,
an

d
m

em
or

y
si

ze
of

10
00

.
G

co
rr

es
p
on

d
s

to
so

n
ar

se
n
so

rs
,
d
el

ay
ed

re
in

fo
rc

em
en

t,
an

d
m

em
or

y
si

ze
of

10
00

0.
H

co
rr

es
p
on

d
s

to
so

n
ar

se
n
so

rs
,

d
el

ay
ed

re
in

fo
rc

em
en

t,
an

d
u
n
li
m

it
ed

m
em

or
y.

T
h
e

gr
ap

h
co

m
es

fr
om

10
in

d
ep

en
d
en

t
ru

n
s,

an
d

a
10

-s
te

p
m

ov
in

g
av

er
ag

e
w

as
u
se

d
fo

r
sm

o
ot

h
in

g.

9



4 Discussion

4.1 CHAMPAGNE and SODA

One of the original goals of CHAMPAGNE was to solve a task similar to the SODA
T-Maze with a simpler algorithm. In a direct sense, CHAMPAGNE did succeed in
solving the T-Maze, however the solution is in some senses not comparable with that
of SODA. There are several important differences.

First, the reinforcement system is CHAMPAGNE is different from that of SODA.
The SODA agent was given only a binary reinforcement indicating whether or not it
had reachd a target area, at the end of every round. The CHAMPAGNE agent, while
also being reinforced at the end of round in a delayed fashion, was reinforced not with
a binary value like SODA, but with its sum distance from the target. The allowed
CHAMPAGNE to gradually optimize the route, however it made the task significantly
easier than in SODA.

Second, SODA was dealing with reinforcement having a significantly longer delay
than in our experiments. In CHAMPAGNE, the step size and round length had to cor-
respond so that the robot could cover the distance in the given time. The round length
was 10, while the step size was 2, for a 10×20 world. The reinforcement delay in these
trials was therefore 10 moves, which was significantly fewer than for SODA. One way to
address this issue for CHAMPAGNE is to implement a concept of inertia. The change
in “move orders” each turn can be limited. Specifically, the change in the move vector
(d, θ) would be limited to small rectangular region in the action subspace. This would
allow CHAMPAGNE to continue functioning well with significantly smaller step sizes,
and would allow testing of CHAMPAGNE with correspondingly longer reinforcement
delay.

Third, the SODA actions were at a different semantic level than those used CHAM-
PAGNE. While CHAMPAGNE actions consisted of giving a move distance and direc-
tion (d, θ), in SODA the agent started by considering low-level commands to engines,
and abstracted them to higher-level trajectory-following control rules. The SODA
agent was deciding between “keep going” actions and slight corrections.

Fourth, the way we simulated movement was not as physically accurate as the
way the SODA simulator did. For reasons of code efficiency, we chose to ”teleport”
the robot to the target it specified at each turn, instead of driving the robot to that
location. This let the robot cut corners (though it could not teleport past walls, as
our code prevented the robot from leaving the world). Since the robot could only cut
a corner if it had nearly passed it, we do not believe that this physical incongruity had
much effect on our results.

4.2 Comparison with other Methods

It is important to compare the performance of CHAMPAGNE with other reinforcement
learning methods. We explored two alternatives: Q-learning and a neural net approach.

10



4.2.1 Q-learning

In the Q-learning alternative, we first discretize our state and action space by imposing
a lattice on the space separating each dimension into l equally-sized bins. This breaks
our space up into ld hypercubes, which we make into entries in a standard Q-table
setup. We then perform Q-learning on this table.

In testing, we never achieved good performance with this algorithm. There are at
least two reasons this could have happened. First, it could be that we had a bug in the
implementation. Second, we may have encountered one of the fundamental problems
with discretizing a space before anything is known about it. While CHAMPAGNE
preferentially made observations and thus added table entries in regions corresponding
to high performance, the Q-learning algorithm was stuck with the discretization it
made at the very beginning of its training.

4.2.2 Neural Nets

The Local Expert Regression algorithm in CHAMPAGNE was simply a function ap-
proximator, and so can be swapped out with any other algorithm which performs
regression. A standard method of nonparametric regression uses a neural net, where
each training input is a point from the set of states and actions, and each target output
is the estimated reward at that point. In practice, we were never able to find a neural
net implementation that was nearly fast enough to compete with our CHAMPAGNE
implementation, which used a kd-tree to store the observations. An advantage of using
a neural net for function estimation is that, once the net is trained, the observations
can be thrown away. The flip-side is that if we don’t keep the observations, the system
is vulnerable to catastrophic forgetting.

5 Conclusion

The simple CHAMPAGNE algorithm was able to successfully perform both the target-
following and SODA T-Maze tasks. However, as noted in section 4.1, the experimental
setup used here makes the CHAMPAGNE solution of the T-Maze task not entirely
comparable to that in the SODA paper.

11



6 Future Work

• As noted in 4.2, it is important to complete the comparative analysis of cham-
pagne with algorithms such as Q-Learning and the neural net approach.

• Modify CHAMPAGNE such that earlier observations can be changed directly,
updating using a rule similar to that of Q-Learning.

• It is possible to solve the estimation optimization problem described in section
2.1.2 exactly, as opposed to approximately. This would require an implementation
that would keep full d-dimensional Voronoi diagram consistently updated at each
observation. This may not be practical given the computational cost of Voronoi
diagram algorithms. This may be able to be reduced due to the fact that we are
interested in a maximizing only over a subspace defined by the current action.

• The Curse of Dimensionality is fairly universal, but it would be interesting to see
how affected by the curse CHAMPAGNE is. One way to do this is to increase
the number of sensors available to the robot.

• Every function estimation scheme puts an implicit prior over the set of possible
data generators, and if that prior is not appropriate to a task, it will be difficult
for the estimator to perform well on that task. It would be interesting to precisely
state the assumptions our model makes.

References

1. Development navigation behavior through self-organizing distinctive state ab-
straction. Provost, et al. Artificial Intelligence Lab. University of Texas at
Austin. 2005.

12


