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Abstract
Intelligent  Adaptive  Curiosity  (IAC)  is  an  attempt  at  motivation-based
robot  learning.  IAC has  very  limited  ability  to  predict  and  categorize
time-dependent elements of its  environment, however.  In this paper, we
attempt  to  integrate  IAC’s  strong points  into  a more  capable learning
algorithm. We implement this by adding a simple recurrent network as a
memory  module  for  the  previously  memory-less  IAC.  We also  explore
modifications to the region formation system, in an attempt to create more
sensible  and  dynamic  region  formation.  Our  modified  system  makes
modest  gains  in  understanding  complex  input,  but  remains  unable  to
handle arbitrarily difficult time-dependencies.

Introduction
The three primary aspects of developmental robotics are abstraction, anticipation,

and motivation. Abstraction is the ability of a robot to form coherent categories about its
world. Anticipation is a robot’s capacity for predicting its future environment. Motivation
drives the robot to explore new areas of its world. A system which fully incorporates all
three  of  these  traits  should  be  capable  of  operating  and  learning  in  a  complex
environment. Therefore, we decided to take an existing system and enhance its ability to
exhibit all three developmental abilities.

Intelligent  Adaptive  Curiosity  (Oudeyer  and  Kaplan  2004),  or  IAC for  short,
displays these traits  in  varying degrees.  IAC was designed to  answer the question  of
internal motivation;  it  does an excellent job of looking for novelty in its environment
without direction on the part of the system’s designer. IAC remains internally motivated
to investigate and learn from its environment based on an imperative to minimize error
combined with a random element of action selection. This makes IAC explore new parts
of its environment while keeping learning progress high.

IAC  groups  sensory  inputs  into  categories  using  a  clustering  algorithm.  The
intended result of this clustering is to abstract the continuous world into a discrete set of
regions. While the general idea behind IAC’s abstraction mechanism is sound, some of
the issues of its implementation prohibit its use in a real world setting.

As our previous work with IAC (Blaha and Pshenichkin 2006) showed, IAC’s
main  weakness  is  in  its  anticipation  ability.  Our  experiments  demonstrated  that  IAC
cannot  learn  complex  patterns  in  its  environment,  rendering  its  anticipatory abilities
lacking.  Therefore,  most  of  our  current  work  on  IAC  focuses  on  improving  its
anticipatory aspect.

Despite the fact  that  it  is  the ability of IAC to anticipate that  is  most  directly
failing, we found that this is the result of the robot not storing information about previous
time steps (e.g. a memory). Because the robot has no memory, it lacks the ability to make
totally informed predictions about its environment.  Rather than modify IAC itself, we
decided  to  encode  memory  as  an  input  into  the  existing  framework.  This  was
accomplished by adding a simple recurrent neural network (Elman 1990) to IAC.
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Another  modification  that  was  tested  was  an  attempt  to  improve  on  IAC’s
abstraction mechanism. We tried replacing the region formation via k-means clustering
currently  in  use  by  IAC with  a  Resource  Allocating  Vector  Quantizer  (Linaker  and
Niklasson 2000). RAVQ is a more intelligent category formation system, since it groups
input vectors without maintaining a list  of all inputs ever to the system, unlike IAC’s
naïve  region  formation.  However,  our  attempts  to  add RAVQ to IAC were  thwarted
because of the nature of our experimental setup. The reasons for this are described in
more detail below.

Experiments
Our experiments started with the same Python implementation of IAC used in our

previous work, as well as the same Pyrobot environment. We made several changes to
these, as described below. The main change made to our IAC implementation was the
addition  of  a  simple  recurrent  network.  Additionally,  the  amount  of  random  action
performed by the IAC-driven robot was reduced. Finally, in some test runs, the region
formation mechanism of IAC was changed to RAVQ.

For the overall structure of our memory addition to IAC, see Figure 1. The new
simple  recurrent  network  (SRN)  receives  the  robot’s  current  sensorimotor  context  as
input and attempts to predict the robot’s sensor values at the next time step. We use the
SRN’s  context  layer  activations  as  an  approximation  of  a  state  vector  for  the
environment. The important point is that this state vector be completely generated by the
robot. The hope is that the SRN’s context layer begins to represent a form of memory,
which IAC can exploit as additional “sensor” data. By concatenating this state vector onto
our  original  sensorimotor  context,  we  will  have  provided  a  form  of  implicit,
developmental memory to the robot.

Figure 1: The structure of the memory module
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In addition to the change above, we also modified the action selection method of
IAC. Previously, IAC chose a random action 35% of the time, to encourage exploration
of  the  environment.  However,  in  our  previous  work,  we  found  this  behavior  to  be
detrimental to the learning of time-dependent aspects of the environment. Therefore, we
lowered this chance of random action to 5% while the robot was making positive learning
progress (defined by Oudeyer and Kaplan as the approximation of the derivative of the
robot’s error function). See Figure 2 for an analysis of the effect of this change. We were
forced to choose a non-zero chance of random action due to IAC’s tendency to become
fixated on sources of random noise without an element of chance in its actions.

Effect of random action selection on attention
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Figure 2: The effects of changing the probability of randomness

Our robot’s environment was much the same as in our previous work. The robot
sits stationary in the middle of a room, surrounded by light sources (see Figure 3). As
before, the robot’s only motor options are to turn to face each light source. The robot’s
only sensor is a light sensor, whose value is completely determined by the robot’s heading
and the simulation’s current time step. For the function each light’s intensity obeys, see
Table 1. You will notice that these functions are more complex than those used in our
previous work. This is because we hope that our modifications to IAC allow it to learn
more difficult dependencies in time.

Light 1 2 3 4 5 6 7 8

Pattern Constant Random Binary
Random

1-1
Square
Wave

2-2
Square
Wave

4-4
Square
Wave

4-1
Square
Wave

2-1-2-3
Square
Wave

Table 2: Light sources in the environment
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Figure 3: The robot’s environment

As  described  above,  we  ran  some  experiments  with  IAC where  the  k-means
clustering region formation was replaced by a RAVQ. However, RAVQ relies on the
assumption  that  the  robot’s  world  is  generally  continuous  to  generate  regions  of
sensorimotor  space.  Our simulated  world  does  not  follow this  assumption,  as  sensor
values fluctuate wildly over  the course of  the experiment.  Therefore,  as will  be seen
below, RAVQ fails to form meaningful abstractions about our world.

As before, we collected error and heading data on each time step during runs of
the robot.  Please refer to  our  previous paper for  implementation and experimentation
details. Individual experiments constrained the headings (and hence, the lights) available
to the robot to better test  our hypotheses. These individual  experiments are described
below.

Results
The first stage of our experiments was to find a reasonable value for the context

layer size of the Simple Recurrent Network. An SRN with too small of a context layer
will fail to learn anything; if the context layer is too big, in contrast, it will overwhelm the
sensorimotor data going to IAC, and the SRN will begin to find nonexistent patterns in
the data set. Having tested several values, we finally settled upon a context layer of equal
size to our sensorimotor vector, as this seemed to provide a noticeable improvement over
smaller sizes and a slight improvement over larger ones. In Figure 4 we see the results of
different sizes of context layers on the prediction error on light 4.
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Figure 4: Prediction error of blinking light with small, medium, and large context layers respectively

RAVQ’s inapplicability to  our experimental  setup became apparent  during the
early stages of testing. RAVQ expects real-valued input in a mostly continuous world and
is designed to smooth out input over many time steps. Our experimental world features
rapidly-changing discontinuous binary-like inputs. Because of this discrepancy, RAVQ
would view changes in input as simply noise, and average the almost-binary inputs into
flat lines. As Figure 5 shows, RAVQ fails to effectively learn the pattern of a blinking
light, a simple task learned by both stock IAC and our modified version without RAVQ.

Figure 5: Prediction errors while looking at a blinking light with RAVQ

Since our primary goal was to create system that could learn more complex input
patterns, our first set of experiments focused on reducing the robot’s prediction error. To
better determine whether learning was taking place, we narrowed the light choices so that
the system could focus its attention easier on specific lights of our choosing. In each of
these runs, the robot could choose between the binary random light (light 3) and the light
we were testing to see if our modified IAC could learn to predict. We tested lights 5, 6,
and 7 each individually against light 3. Our modified IAC was able to learn to predict the
2-2 square wave light’s pattern, as shown by Figure 6. Unfortunately, it was unable to
learn to predict any of the more difficult lights, as shown by Figures 7 and 8. In the case
of the 4-1 square wave (light 7), we claim that it has not learned to predict the light’s
value (even though most of its predictions are very good later on!) because getting the
right answer 80% of the time on this light is not good enough; the robot should be able to
guess when the light will be off as well.
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Figure 6: Prediction errors while looking at a 2-2 square wave

Figure 7: Prediction errors while looking at a 4-4 square wave
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Figure 8: Prediction errors while looking at a 4-1 square wave

Having examined the question of whether or not the system learned and found the
results a bit disappointing, we now turn to the question of whether or not the system was
motivated to learn. We ran the full version of the experiment, permitting the robot to
choose any of the eight input sources. Figure 9 shows the relative attention paid to the
light sources at different points in the experiment. We have identified five distinct regions
(i.e.  periods)  of  the  run,  which  are  indicated  on  the  graph  by Roman  numerals  and
discussed  in  more  detail  below.  As  we  will  see  below,  the  robot  tends  to  focus  its
attention on simpler tasks before harder tasks. This pattern has been very robust across all
of our experiments, and we consider it to be one of the advantages of IAC.

In  region  I,  we  see  that  the  system very  quickly  becomes  acclimated  to  the
constant input value (light 1). It then focuses significant attention on light 2, the non-
binary random light source. A comparison of the attention devoted to light 2 and light 3,
however,  shows that the non-binary random does not attract  extra attention due to its
continuous nature. It is popular at the beginning, however, as IAC’s initial guess (0.5) is
likely to be closer to the true sensor value than it would be for binary-valued data. 

In region II, the robot devotes most of its attention to the binary random light, but
also looks at  the blinking light.  Surprisingly,  the robot  was unable to  fully learn the
blinking light in this run, which can probably be attributed to insufficient attention.

In region III, the robot now focuses on the 2-2 square wave (light 5). Its interest in
the random light sources has declined sharply as the 2-2 square wave presents a better
prospect for learning progress; the attention which IAC pays to the light indicates that this
is a more difficult task to master than the blinking light.

Having learned the 2-2 light, the robot now observes light 6, which is the 4-4
square wave pattern. Attention to randomness is high once again, however, which, for
such a complex pattern, supports the conclusion that that learning is not really achieved
(see Figure 7).
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Comparative Attention to Light Sources
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Figure 9: Attention paid to each light source over a full run

Finally, the system settles into a state of confused boredom, as indicated by the
increased attention to previously-learned light sources. The system’s continued attention
to light 6 indicates that it  is  still  failing to produce accurate guesses. Meanwhile,  the
constant input and the 4-1 square wave (lights 1 and 7, respectively) receive much more
attention.

Discussion
The addition of an SRN memory module allowed IAC to learn to predict more

complex time-dependent features of its environment. As Figure 10 shows when compared
to  Figure  6,  our  modifications  to  IAC have  produced  a  tangible  improvement  in  its
learning ability for some time-dependent phenomena. This pattern,  however, does not
generalize to higher-order relationships. 

It seems that the simplicity of our sensors is an obstacle to IAC learning more
complex patterns. Because there is only one quasi-binary input,  our range of possible
patterns is extremely limited. In addition, there is only one sensor value as input, versus 8
motor values and 9 context layer values; this makes it difficult for the SRN to pick out
this value as being more important than the others, particularly because, by adding the
context layer as input, we’ve added many more real-valued inputs that are always on and
always changing.

Since neural networks serve as both our memory and our experts, the issues we
saw  in  our  previous  experiments  are  magnified.  Since  they  use  sigmoid  activation
functions, they have trouble producing extreme outputs, such as the quasi-binary values
we  are  working  with.  As  neural  networks  tend  to  smooth  input,  an  uneven  time
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dependency such as the 4-1 square wave (light 7) will tend to be simplified down to a
constant value. In the case of our most complex pattern, the 2-1-2-3 square wave (light 8),
there is simply no reason for a neural network to prefer it over random inputs: a real-
valued random function will have lower prediction error, since the network will achieve
more success by just guessing 0.5, whereas the output of a binary random function is not
significantly different from the square wave’s pattern.

Figure 10: Original IAC’s prediction errors while looking at 2-2 square wave

Any future learning task incorporating IAC and simple recurrent networks must
necessarily have more complex input. Increasing the richness of input to the SRN should
improve its ability to encode information about the robot’s environment. Improving the
abstraction  mechanism,  such  as  by replacing  the  region  generation  and  experts  with
growing neural  gas  (Fritzke  1995)  and  a  moving  average,  would  allow  the  robot  to
process and categorize this more complex input.
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Appendix

We  have  included,  as  a  supplement,  an  alternative  version  of  Figure  9  from
another run; it is not part of the paper per se. We hope that it will be easier to separate
typical and transient behaviors by examining both graphs. We have attempted to label the
regions of this figure to coincide with those of the other one; region features are explained
below.
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Figure 0: Attention paid to each light source over a full run

Region I is nearly identical to Figure 9’s Region I. The robot seems to quickly
learn  the  constant  light  and  then  focus  a  great  deal  of  its  attention  on  the  smoothly
random one.

Region II seems like an improvement over the previous case, as the robot is much
more  focused  on  the  blinking  light;  examining  its  error,  however,  reveals  strangely
lackluster performance. There is a brief reduction in error, but it seems that the robot’s
learning is soon forgotten.

Both the emphasis on the 2-2 square wave and the resurgence of interest in the
binary  random  light  in  Region  III  are  similar  to  observations  from  the  previous
experiment.

Region IV is completely different from the last experiment’s. Interestingly, the 2-
1-2-3 square wave attracted more focus than the 4-4 square wave.  With  its  attention
equally split between the two, it seems the robot learned neither.

Finally, we’ve labeled the rest of the graph Region V. Based on prediction error,
little if any learning progress happens here.
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