
Bringing Up IAC
Scott Blaha and Alexandr Pshenichkin

Abstract
Intelligent Adaptive Curiosity (IAC) is an attempt at motivation-based
robot learning. IAC has very limited ability to predict and categorize
time-dependent elements of its environment, however. In this paper, we
attempt to integrate IAC’s strong points into a more capable learning
algorithm. We implement this by adding a simple recurrent network as a
memory module for the previously memory-less IAC. We also explore
modifications to the region formation system, in an attempt to create more
sensible and dynamic region formation. Our modified system makes
modest gains in understanding complex input, but remains unable to
handle arbitrarily difficult time-dependencies.

Introduction
The three primary aspects of developmental robotics are abstraction, anticipation,

and motivation. Abstraction is the ability of a robot to form coherent categories about its
world. Anticipation is a robot’s capacity for predicting its future environment. Motivation
drives the robot to explore new areas of its world. A system which fully incorporates all
three of these traits should be capable of operating and learning in a complex
environment. Therefore, we decided to take an existing system and enhance its ability to
exhibit all three developmental abilities.

Intelligent Adaptive Curiosity (Oudeyer and Kaplan 2004), or IAC for short,
displays these traits in varying degrees. IAC was designed to answer the question of
internal motivation; it does an excellent job of looking for novelty in its environment
without direction on the part of the system’s designer. IAC remains internally motivated
to investigate and learn from its environment based on an imperative to minimize error
combined with a random element of action selection. This makes IAC explore new parts
of its environment while keeping learning progress high.

IAC groups sensory inputs into categories using a clustering algorithm. The
intended result of this clustering is to abstract the continuous world into a discrete set of
regions. While the general idea behind IAC’s abstraction mechanism is sound, some of
the issues of its implementation prohibit its use in a real world setting.

As our previous work with IAC (Blaha and Pshenichkin 2006) showed, IAC’s
main weakness is in its anticipation ability. Our experiments demonstrated that IAC
cannot learn complex patterns in its environment, rendering its anticipatory abilities
lacking. Therefore, most of our current work on IAC focuses on improving its
anticipatory aspect.

Despite the fact that it is the ability of IAC to anticipate that is most directly
failing, we found that this is the result of the robot not storing information about previous
time steps (e.g. a memory). Because the robot has no memory, it lacks the ability to make
totally informed predictions about its environment. Rather than modify IAC itself, we
decided to encode memory as an input into the existing framework. This was
accomplished by adding a simple recurrent neural network (Elman 1990) to IAC.

1

Another modification that was tested was an attempt to improve on IAC’s
abstraction mechanism. We tried replacing the region formation via k-means clustering
currently in use by IAC with a Resource Allocating Vector Quantizer (Linaker and
Niklasson 2000). RAVQ is a more intelligent category formation system, since it groups
input vectors without maintaining a list of all inputs ever to the system, unlike IAC’s
naïve region formation. However, our attempts to add RAVQ to IAC were thwarted
because of the nature of our experimental setup. The reasons for this are described in
more detail below.

Experiments
Our experiments started with the same Python implementation of IAC used in our

previous work, as well as the same Pyrobot environment. We made several changes to
these, as described below. The main change made to our IAC implementation was the
addition of a simple recurrent network. Additionally, the amount of random action
performed by the IAC-driven robot was reduced. Finally, in some test runs, the region
formation mechanism of IAC was changed to RAVQ.

For the overall structure of our memory addition to IAC, see Figure 1. The new
simple recurrent network (SRN) receives the robot’s current sensorimotor context as
input and attempts to predict the robot’s sensor values at the next time step. We use the
SRN’s context layer activations as an approximation of a state vector for the
environment. The important point is that this state vector be completely generated by the
robot. The hope is that the SRN’s context layer begins to represent a form of memory,
which IAC can exploit as additional “sensor” data. By concatenating this state vector onto
our original sensorimotor context, we will have provided a form of implicit,
developmental memory to the robot.

Figure 1: The structure of the memory module

2

In addition to the change above, we also modified the action selection method of
IAC. Previously, IAC chose a random action 35% of the time, to encourage exploration
of the environment. However, in our previous work, we found this behavior to be
detrimental to the learning of time-dependent aspects of the environment. Therefore, we
lowered this chance of random action to 5% while the robot was making positive learning
progress (defined by Oudeyer and Kaplan as the approximation of the derivative of the
robot’s error function). See Figure 2 for an analysis of the effect of this change. We were
forced to choose a non-zero chance of random action due to IAC’s tendency to become
fixated on sources of random noise without an element of chance in its actions.

Effect of random action selection on attention

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

Time steps

Pr
ob

ab
ili

ty
 o

f m
ai

nt
ai

ni
ng

 fo
cu

s

0.35 0.05

Figure 2: The effects of changing the probability of randomness

Our robot’s environment was much the same as in our previous work. The robot
sits stationary in the middle of a room, surrounded by light sources (see Figure 3). As
before, the robot’s only motor options are to turn to face each light source. The robot’s
only sensor is a light sensor, whose value is completely determined by the robot’s heading
and the simulation’s current time step. For the function each light’s intensity obeys, see
Table 1. You will notice that these functions are more complex than those used in our
previous work. This is because we hope that our modifications to IAC allow it to learn
more difficult dependencies in time.

Light 1 2 3 4 5 6 7 8

Pattern Constant Random Binary
Random

1-1
Square
Wave

2-2
Square
Wave

4-4
Square
Wave

4-1
Square
Wave

2-1-2-3
Square
Wave

Table 2: Light sources in the environment

3

Figure 3: The robot’s environment

As described above, we ran some experiments with IAC where the k-means
clustering region formation was replaced by a RAVQ. However, RAVQ relies on the
assumption that the robot’s world is generally continuous to generate regions of
sensorimotor space. Our simulated world does not follow this assumption, as sensor
values fluctuate wildly over the course of the experiment. Therefore, as will be seen
below, RAVQ fails to form meaningful abstractions about our world.

As before, we collected error and heading data on each time step during runs of
the robot. Please refer to our previous paper for implementation and experimentation
details. Individual experiments constrained the headings (and hence, the lights) available
to the robot to better test our hypotheses. These individual experiments are described
below.

Results
The first stage of our experiments was to find a reasonable value for the context

layer size of the Simple Recurrent Network. An SRN with too small of a context layer
will fail to learn anything; if the context layer is too big, in contrast, it will overwhelm the
sensorimotor data going to IAC, and the SRN will begin to find nonexistent patterns in
the data set. Having tested several values, we finally settled upon a context layer of equal
size to our sensorimotor vector, as this seemed to provide a noticeable improvement over
smaller sizes and a slight improvement over larger ones. In Figure 4 we see the results of
different sizes of context layers on the prediction error on light 4.

4

Figure 4: Prediction error of blinking light with small, medium, and large context layers respectively

RAVQ’s inapplicability to our experimental setup became apparent during the
early stages of testing. RAVQ expects real-valued input in a mostly continuous world and
is designed to smooth out input over many time steps. Our experimental world features
rapidly-changing discontinuous binary-like inputs. Because of this discrepancy, RAVQ
would view changes in input as simply noise, and average the almost-binary inputs into
flat lines. As Figure 5 shows, RAVQ fails to effectively learn the pattern of a blinking
light, a simple task learned by both stock IAC and our modified version without RAVQ.

Figure 5: Prediction errors while looking at a blinking light with RAVQ

Since our primary goal was to create system that could learn more complex input
patterns, our first set of experiments focused on reducing the robot’s prediction error. To
better determine whether learning was taking place, we narrowed the light choices so that
the system could focus its attention easier on specific lights of our choosing. In each of
these runs, the robot could choose between the binary random light (light 3) and the light
we were testing to see if our modified IAC could learn to predict. We tested lights 5, 6,
and 7 each individually against light 3. Our modified IAC was able to learn to predict the
2-2 square wave light’s pattern, as shown by Figure 6. Unfortunately, it was unable to
learn to predict any of the more difficult lights, as shown by Figures 7 and 8. In the case
of the 4-1 square wave (light 7), we claim that it has not learned to predict the light’s
value (even though most of its predictions are very good later on!) because getting the
right answer 80% of the time on this light is not good enough; the robot should be able to
guess when the light will be off as well.

5

Figure 6: Prediction errors while looking at a 2-2 square wave

Figure 7: Prediction errors while looking at a 4-4 square wave

6

Figure 8: Prediction errors while looking at a 4-1 square wave

Having examined the question of whether or not the system learned and found the
results a bit disappointing, we now turn to the question of whether or not the system was
motivated to learn. We ran the full version of the experiment, permitting the robot to
choose any of the eight input sources. Figure 9 shows the relative attention paid to the
light sources at different points in the experiment. We have identified five distinct regions
(i.e. periods) of the run, which are indicated on the graph by Roman numerals and
discussed in more detail below. As we will see below, the robot tends to focus its
attention on simpler tasks before harder tasks. This pattern has been very robust across all
of our experiments, and we consider it to be one of the advantages of IAC.

In region I, we see that the system very quickly becomes acclimated to the
constant input value (light 1). It then focuses significant attention on light 2, the non-
binary random light source. A comparison of the attention devoted to light 2 and light 3,
however, shows that the non-binary random does not attract extra attention due to its
continuous nature. It is popular at the beginning, however, as IAC’s initial guess (0.5) is
likely to be closer to the true sensor value than it would be for binary-valued data.

In region II, the robot devotes most of its attention to the binary random light, but
also looks at the blinking light. Surprisingly, the robot was unable to fully learn the
blinking light in this run, which can probably be attributed to insufficient attention.

In region III, the robot now focuses on the 2-2 square wave (light 5). Its interest in
the random light sources has declined sharply as the 2-2 square wave presents a better
prospect for learning progress; the attention which IAC pays to the light indicates that this
is a more difficult task to master than the blinking light.

Having learned the 2-2 light, the robot now observes light 6, which is the 4-4
square wave pattern. Attention to randomness is high once again, however, which, for
such a complex pattern, supports the conclusion that that learning is not really achieved
(see Figure 7).

7

Comparative Attention to Light Sources

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400

Time Step

Pe
rc

en
ta

ge
 A

tte
nt

io
n

1 2 3 4 5 6 7 8

I II III IV V

Figure 9: Attention paid to each light source over a full run

Finally, the system settles into a state of confused boredom, as indicated by the
increased attention to previously-learned light sources. The system’s continued attention
to light 6 indicates that it is still failing to produce accurate guesses. Meanwhile, the
constant input and the 4-1 square wave (lights 1 and 7, respectively) receive much more
attention.

Discussion
The addition of an SRN memory module allowed IAC to learn to predict more

complex time-dependent features of its environment. As Figure 10 shows when compared
to Figure 6, our modifications to IAC have produced a tangible improvement in its
learning ability for some time-dependent phenomena. This pattern, however, does not
generalize to higher-order relationships.

It seems that the simplicity of our sensors is an obstacle to IAC learning more
complex patterns. Because there is only one quasi-binary input, our range of possible
patterns is extremely limited. In addition, there is only one sensor value as input, versus 8
motor values and 9 context layer values; this makes it difficult for the SRN to pick out
this value as being more important than the others, particularly because, by adding the
context layer as input, we’ve added many more real-valued inputs that are always on and
always changing.

Since neural networks serve as both our memory and our experts, the issues we
saw in our previous experiments are magnified. Since they use sigmoid activation
functions, they have trouble producing extreme outputs, such as the quasi-binary values
we are working with. As neural networks tend to smooth input, an uneven time

8

dependency such as the 4-1 square wave (light 7) will tend to be simplified down to a
constant value. In the case of our most complex pattern, the 2-1-2-3 square wave (light 8),
there is simply no reason for a neural network to prefer it over random inputs: a real-
valued random function will have lower prediction error, since the network will achieve
more success by just guessing 0.5, whereas the output of a binary random function is not
significantly different from the square wave’s pattern.

Figure 10: Original IAC’s prediction errors while looking at 2-2 square wave

Any future learning task incorporating IAC and simple recurrent networks must
necessarily have more complex input. Increasing the richness of input to the SRN should
improve its ability to encode information about the robot’s environment. Improving the
abstraction mechanism, such as by replacing the region generation and experts with
growing neural gas (Fritzke 1995) and a moving average, would allow the robot to
process and categorize this more complex input.

References
 Blaha, S. and Pshenichkin, A. (2006). “The limitations of IAC”. Unpublished work.
 Elman, J.L. (1990). “Finding structure in time”. Cognitive Science, 14, 179-211.
 Fritzke, B. (1995). “A growing neural gas learns network topologies”. In Advances in

Neural Information Processing Systems, 7, 625-632.
 Linaker, F. and Nikalsson, L. (2000). “Sensory flow segmentation using a resource

allocating vector quantizer”. Advances in Pattern Recognition: Joint IAPR
International Workshops, SSPR 2000 and SPR 2000, Alicante, Spain,
August/September 2000. In Lecture Notes in Computer Science, 1876, 853.

 Oudeyer, P.-Y. and Kaplan, F. (2004). “Intelligent Adaptive Curiosity: a source of
self-development”. In Proceedings of the 4th International Workshop of Epigenetic
Robotics, 117, 127-130.

9

Appendix

We have included, as a supplement, an alternative version of Figure 9 from
another run; it is not part of the paper per se. We hope that it will be easier to separate
typical and transient behaviors by examining both graphs. We have attempted to label the
regions of this figure to coincide with those of the other one; region features are explained
below.

Comparative Attention to Light Sources

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400

Time Step

Pe
rc

en
t A

tte
nt

io
n

1 2 3 4 5 6 7 8

I II III IV V?

Figure 0: Attention paid to each light source over a full run

Region I is nearly identical to Figure 9’s Region I. The robot seems to quickly
learn the constant light and then focus a great deal of its attention on the smoothly
random one.

Region II seems like an improvement over the previous case, as the robot is much
more focused on the blinking light; examining its error, however, reveals strangely
lackluster performance. There is a brief reduction in error, but it seems that the robot’s
learning is soon forgotten.

Both the emphasis on the 2-2 square wave and the resurgence of interest in the
binary random light in Region III are similar to observations from the previous
experiment.

Region IV is completely different from the last experiment’s. Interestingly, the 2-
1-2-3 square wave attracted more focus than the 4-4 square wave. With its attention
equally split between the two, it seems the robot learned neither.

Finally, we’ve labeled the rest of the graph Region V. Based on prediction error,
little if any learning progress happens here.

10

