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Abstract—We present an extension on the earlier works
of Information Maximizing Generative Adversarial Net-
works (InfoGAN) to perform facial recognition in an
unsupervised manner. Current state of the art techniques
involve deep convolutional neural networks which manipu-
late and learn from individual pixel values. InfoGAN seeks
to continually generate realistic looking images provided
a dataset and statistical variables to train on. When
given Categorical and Continuous variables of appropriate
dimension, InfoGAN successfully distinguished among the
different subjects in our training data. Additionally, the
other higher dimension variables gave insight into how the
network was able to discern between specific individuals
by learning aspects such as facial structure, skin tone, or
expression.

I. INTRODUCTION

Facial recognition is a common practice among count-
less technologies today. Smart phones, web applications,
robots, and even humans perform feature detection and
recognition on a day to day basis. However, these devices
generally perform the task with many layers of convo-
lutional neural networks, which extract raw pixel values
and run complex algorithms on these pixels to distinguish
among faces.

Instead of these traditional methods, we extend on
a certain type of network, Generative Adversarial Net-
works (GAN) [1], to achieve our task. Traditional GANs
consist of two networks, a discriminator and a generator.
The discriminator aims to discern between real images,
which our dataset provides, and generated images, which
the generator network produces. These two networks
compete in this co-evolutionary arms race, where each
network continually tries to best its competitor. The
objective is to learn a generative distribution of data
through a two player minimax game, i.e. finding the

Fig. 1. Example of InfoGAN: A continuous code captured
Rasheed’s and Lilly’s rotation (top) on a continuum from -1 to 1.
Below are 4 categorical representations of Rasheed and Lilly, one for
each image. They are shown naturally, straight ahead, and straight
ahead wearing sunglasses.

Nash Equilibrium. The generator produces increasingly
realistic images that match the dataset, while the dis-
criminator becomes increasingly skilled at discerning
between these images. The GAN co-evolutionary pro-
cess can be thought of as a person attempting to print
counterfeited currency (generator) and a bank attempting
to accept genuine currency (discriminator) where they
label currency (generated images) as real or fake. The
knowledge of which currency the bank accepts is fed
back to the counterfeiter who attempts to produce more
realistic currency.

Naturally, we would want to expand on GAN by
learning a conditional generative distribution, however,
this variant, called CGAN [2], must be given those
conditionals manually to bootstrap learning. These con-
ditionals are either image labels or other auxilliary input.
CGAN defeats the purpose of unsupervision since we are
providing explicit information about the training data.
Therefore, we extend on a variant known as InfoGAN
[3], or Information Maximization Generative Adversarial



Networks, to perform facial recognition in an unsuper-
vised way. InfoGAN attempts to learn those conditionals
automatically by incorporating a third neural network,
which aims to maximize mutual information between the
provided variables and datasets.

We provide our network with facial datasets that con-
tain many images of the same person. InfoGAN works
by trying to generate images that fit the provided input
variables. For example, we may specify a Categorical
variable of dimension two, in which the network could
learn the difference between between two subjects, or, of
dimension 5, where it may learn different features like
wearing glasses, or striking a different pose (Figure 1).
We may also specify a Continuous variable, in which
it could learn to fit a continuous range of a subject’s
rotation.

The fundamentals of the network remain consistent
with how InfoGAN was originally presented. Their
experiment, however, did not provide datasets which
contained similar traits. The facial dataset they trained
on was the CelebA dataset, consisting of over 200,000
images of different faces. Although this gives infoGAN
a broad spectrum of examples to learn from, it won’t
empirically demonstrate that it learned traits essential for
facial recognition.

We hypothesize that InfoGAN will succeed in learn-
ing to differentiate between people if given a proper
dataset. InfoGAN should be able to learn differences in
face structure, hair styles, skin tones, etc. and apply that
knowledge to generate unique images of each particular
person. These are the same traits that humans use to rec-
ognize and classify similar objects. Ultimately, InfoGAN
should be able to classify faces the same ways humans
do.

In order to perform our experiment, we extended
on the open source code from the original experiment
provided by OpenAI. We adapted the source code to
fit the dimensions of our datasets and provided the
necessary parameters for the network to successfully
train.

A. Additional Work

In addition to facial recognition, we were interested
to see how our network would behave when provided
paintings from two famous artists: Van Gogh and Rem-

brandt. Both of these artists have very distinct styles,
with Van Gogh utilizing longer, more fluid brush strokes
while Rembrandt paints with harder and more distinct
lines.

Recent works have used Deep Convolutional Neural
Networks to successfully discern an artist’s content from
its style [4]. How would InfoGAN behave when provided
two distinct artists? We predict it would be able to iden-
tify differences in artistic style and content to generate
images that reflect how humans create and perceive art.

II. INFORMATION MAXIMIZING GENERATIVE

ADVERSARIAL NETWORKS

A. Generative Adversarial Networks

Generative Adversarial Nets consists of two adver-
sarial models: a generative model G that aims to learn
the joint probability of the input images and specified
parameters and a discriminative model D that estimates
the probability that the sample image came from the
dataset rather than G.

For the generator to learn the desired distribution,
pg over the input data x, the generator receives a prior
noise distribution, p(z) and trains a mapping function
to the dataspace, which we can call G(z; θg). Where θg
are the gradients from D. The discriminator, D(x, θd),
now outputs a scalar that specifies the probability that
x originated from the training data rather than pg. This
information is back-propagated through the generator
network.

Both G and D are trained at the same time. The
input parameters of the network are adjusted to mini-
mize the loss function for G, log(1 −D(G(z)) and for
D, logD(X). This two player minimax game can be
modeled with the value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)
[logD(x)] +

Ez∼pz(z)[log(1−D(G(z)))]
(1)

B. Conditional Generative Adversarial Networks

The natural extension to GAN, CGAN, is to provide a
conditional model by supplying extra information, which
can be labeled as y. We condition both the generator and



discriminator with y by explicitly feeding it in as another
input layer. This produces the following value function:

min
G

max
D

V (D,G) = Ex∼pdata(x)
[logD(x|y)] +

Ez∼pz(z)[log(1−D(G(z|y)))]
(2)

C. Information Maximizing Generative Adversarial Net-
works

From CGAN, the extra information y could be
thought of as image labels, making CGAN a semi-
supervised learning model. We explicitly passed in that
information, which states that the generator and discrim-
inator are G(z, y) and D(x, y), respectively.

In InfoGAN, however, we introduce c, which is the
latent code, representing semantic features of the data
distribution. Therefore, the input to the generator has now
been decomposed into two variables: z, the noise vector,
and c, the latent code. The generator and discriminator
now are G(z, c) and D(x).

This new variable, c, is the variable to which the
network learns to fit the generated images. We may
specify several Categorical and Continuous variables as
input and the Generator will fit increasingly realistic
images to those variables. However, since c is a more
generic version of y, we must train a third deep network,
call it Q, which aims to approximate c, the latent code,
given x, an element from the dataset. Q isn’t explicitly
a crafted as a third network because it shares all of the
same features as the discriminator. So we can simplify
the structure of the network sharing the layers of D and
Q, only adjusting the final output layer of Q to produce
different results. A model of network topology is shown
in Figure 2.

Without Q, the generator could easily deteriorate back

Fig. 2. Visual Representation of InfoGAN: The Q network shares
the same properties as the discriminator except it has one fully
connected layer to output Q(c|x).

into G(z), therefore, Q aims to maximize the mutual
information between x and c. In Information Theory,
maximizing the two random variables X and Y, I(X;Y ),
is defined as the difference in their entropies. This also
proposes a new value function:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (3)

min
G

max
D

V1(D,G) = V (D,G) + λI(c;G(z, c)) (4)

Because we want mutual information to be high, we
aim to minimize I(c;G(z, c)), so we require the dis-
tribution of P (c|x). Luckily, the third network, Q(c|x),
gives an accurate approximation of the posterior P (c|x).
I(c;G(z, c)) is computed and minimized using a lower
bound maximization called Variational Information Max-
imization. Finally, InfoGAN is defined as the following
minimax game with a new value function, where L1 is
the variational lower bound:

min
G

max
D

VInfoGAN(D,G,Q) = V (D,G)− λL1(G,Q)

(5)

III. DATASETS

In order to conduct unsupervised facial recognition
with InfoGAN, we required a dataset with few in-
dividuals with many images per individual. However,
many online open sourced databases contained incon-
sistent images, having too many individuals. In the few
datasets found of single individuals, the images often
had extremely high variance (full body vs. portrait) and
included other people, text, or even borders.

We created our own dataset: it consisted of only
two people and captured those individuals in exclusively
portrait photos, containing many different angles. During
capture, the subjects would wear hats or sunglasses for a
portion of the images. Technical description and sample
images are provided in Appendix A.

In addition to this personal dataset, we trained the net-
work on two others. The first dataset, consisting of more
than 900 images, contained photos of five politicians:
George W. Bush, Gerhard Schroeder, Hugo Chavez,
Colin Powell, and Tony Blair. The second dataset, also
containing roughly 900 photos, focused on drawings and
paintings from Vincent Van Gogh and Rembrandt van
Rijn.



Fig. 3. Results from Personal Dataset: When trained on a Categorical variable of dimension 2, the network independently generated images
of both subjects, Rasheed and Lilly, to fill those two slots.

Fig. 4. Results from Personal Dataset: When trained on a Categorical variable of dimension 50, the network discovered glasses on a
subject’s face. Notice the darker areas around the eyes. In the training data, there were 175 photos of each subject wearing glasess.

IV. EXPERIMENTS

A. Personal Dataset

As hypothesized, when the network was trained on
the personal dataset, which consisted of images from two
subjects, it was able to successfully distinguish between
both subjects. In Figure 3, we see two sets of images
that distinctly resemble both subjects. InfoGAN learned
a dimension-2 Categorical variable that fit one subject,
Rasheed, to one dimension and the other suject, Lilly, to
the other.

We additionally specified a Categorical of dimension
50 and pulled out two sets of images, shown in figure
4, where InfoGAN recognized sun glasses on a subject’s
face. By recognizing facial accessories, InfoGAN relates
to our larger hypothesis by drawing out other specific,
relevant, high dimensional, features from the training
data. Additionally, it learned high dimensional charac-
teristics, such as full body rotation, and assigned that to
a continuous variable, as shown in Figure 1. Research has
demonstrated that the motion of faces appear to facilitate
recognition [5], and InfoGAN, by discovering rotation,
supports that hypothesis.

TABLE I. HYPERPARAMETERS FOR PERSONAL DATASET

Epochs 10000
Continuous Variables 2
Categorical Cardinality 2, 5, 10, 20
Categorical Lambda 1
Continuous Lambda 1

B. Politicians

When InfoGAN was trained on a dataset containing
five politicians, it was able to successfully discern be-
tween four of the five subjects, but failed on the subject
with by far the fewest training examples. In Figure 5,
each set of images are distinct from the other, clearly
depicting different individuals from the training data.
InfoGAN exceeded our expectations from the personal
dataset, where we only predicted it would be able to tell
apart two subjects.

However, we note that the fifth politician, Hugo
Chavez, is missing. We assume this is largely due to
the lack of available training data. The Chavez dataset
only contained roughly 70 images, whereas the dataset
contained roughly 100-500 images each of the other
four politicians. Therefore, the results are heavily skewed
toward individuals with a higher amount of images.



Fig. 5. Results from Politicians Dataset: When trained on a Categorical variable of dimension 5, the network independently generated
images of each politician, excluding Hugo Chavez. From top to bottom, we have George W. Bush, Gerhard Schroeder, Tony Blair, and Colin
Powell. The fifth slot, not depicted, had images that contained of a mixture of all subjects. Also shown are two plots of the network objectives.
The top graph is the generator and the bottom is the discriminator.

Also shown in figure 5 are the generator and dis-
criminator objectives. These serve as quantitative ways
to measure the progress and functionality of our net-
work. Logically, both networks should have an inverse
relationship, since the generator increasingly produces
realistic images while the discriminator struggles to
discern between the two sets. The graphs demonstrate
this fact: the generator begins with an upward trend
and the discriminator down. Both networks steadily rise
and fall with time before converging to a straight line.
The generator and discriminator converged to a straight
line at around epoch 6500, at which point they reached
Nash Equilibrium. The input parameters for the politician
results are shown in table 2.

For the discriminator’s objective, the plot shows the

desired loss function. Recall that we want to maximize
D’s objective function, logD(x)+log(1−D(G(z))). The
desired value of this function is 0.5, which implies that
the discriminator won’t be able to distinguish between
the real and fake data. In the discriminator’s plot, the
graph converges to a value of 0.5 though the axis labels
aren’t shown. The plots empiracally show the accuracy of
our networks and provide further proof that the generated
data matches our predictions.

TABLE II. HYPERPARAMETERS FOR POLITICIAN DATASET

Epochs 10000
Continuous Variables 3
Categorical Cardinality 5, 2
Categorical Lambda 0.5
Continuous Lambda 0.5



Fig. 6. Paintings Dataset: Author classification: When trained on a Categorical variable of dimension 2, the network independently generated
images closely resembling artwork produced by Rembrandt van Rijn (top sequence) and Vincent Van Gogh (bottom sequence).

Fig. 7. Paintings Dataset Subject Capture: A categorical variable of dimension 20 was trained in order to capture the many different styles
and subjects that each author painted. The top images are exclusively mid-body portraits painted by Rembrandt. The bottom image is less
clear, but are of flowers painted by Van Gogh.

C. Art: Paintings of Picasso and Rembrandt

InfoGAN, when trained on a relatively complex art
dataset, discerned between the distinct styles and subjects
of both artists. Moreover, due to the generative nature
of InfoGAN, it captured representations of their artistic
techniques and exposed those motifs to the viewer,
thereby aiding a user in understanding the artists. Info-
GAN learned representations of both artists’s style when
given a categorical variable of dimension 2. Notably,
both variables come close to expressing the full range
of the authors’ work, as opposed to a single style. The
network learned the overarching nature of an artist’s
style and content, based on many sample images. Figure
6 depicts our result: the top set of generated image
resembles Rembrandt’s darker, harder, more outlined
figures. The bottom set portrays Van Gogh’s landscapes
and portraitures as well as his softer, and less defined
brush strokes.

When given a Categorical variable of dimension 20,
InfoGAN learned specific categories of work from each
artist. In Figure 7, the top set features exclusively mid-
body portraits, which closely match Rembrandt’s style
in the dataset. The bottom set, though harder to observe,
depict flowers, which are a key object in Van Gogh’s

artwork. The lower quality of the flowers occur because
there are only 18 images of flowers in the Van Gogh
dataset. Figure 7, however, only depicts two out of
the available 20 dimensions of the specified categorical
variable. Many different categories were captured, but
overlap or between variables is also somewhat common.

TABLE III. HYPERPARAMETERS FOR ART DATASET

Epochs 5000
Continuous Variables 2
Categorical Cardinality 2, 20, 50
Categorical Lambda 1
Continuous Lambda 1

V. DISCUSSION

During the training of the network, we want to discuss
three important aspects of how our network functioned.
The first is the number of epochs specified. In tables
1, 2, and 3, we list the number of epochs for which
each network was trained. These were chosen to prevent
overfitting. Originally, we believed that more epochs,
which provides more training time, would aid the gen-
erator, since our datasets offered limited amounts of
training data. However, as seen in the graphs of Figure



5, exemplifying longer, over-fit round of training, the
two networks’ objective flattened about midway through,
which prompted us to limit our amount of training to
around that value of convergence. We discovered that
if the network overtrained, the generator would produce
images that has no resemblance to the original dataset,
or where each latent code represented identical properties
from the data.

Following our original belief that fewer images re-
quire fewer epochs, the quality of an individual image
depends on the amount of training examples in the
dataset. As opposed to the original InfoGAN paper,
which tested the network on the CelebA and MNIST
dataset, containing over 200,000 images each, we were
limited by publicly available material. The politician and
art datasets only had at maximum 500 images per subject
(each with 950 images in total). Hence, we opted to
create our own dataset, with 2,500 photos each of two
subjects. These numbers are still far less than CelebA
and MNIST, but InfoGAN still produced recognizable
images, despite the lower quality and grainy features.
Additionally, the training time per epoch scales with the
number of images and its resolution: the CelebA dataset
takes approximately 14 minutes/epoch, and our personal
dataset around 20 seconds/epoch in Tensorflow on a
Nvidia GTX 1080 graphics card. In order to demonstrate
the striking difference in quality, we trained our network
on the CelebA dataset and compare those images with
our personal set in Figure 8.

Fig. 8. Comparision of Quality: The top two rows of images were
taken from the CelebA dataset. The bottom to rows are taken from
the personal dataset.

A limitation of our research was not only time,
but an intrinsic property of images that most take for
granted: color. Our results from the art and personal
dataset contained images where we forced the network
to generate grayscale. Colored images are created with
several stacked color channels, namely red, green, and
blue (RGB). Grayscale images only contain one alpha

channel, where each pixel value represents the intensity
of light. When training InfoGAN, we must manipulate
our network in such a way that it can accept grayscale
or RGB images. This changes how the discriminator can
process images. With extensive testing, we conclude that
the network has a difficult time parsing through images
of three channels, as opposed to one. This increases the
time complexity of the algorithm, forcing every epoch to
take roughly 3 times as long.

When generating images of color, the art dataset had
a difficult time training the latent codes. We obtained
images which somewhat resembled the subjects, but they
were mostly a block of colors. However, the politician
dataset, produced had exemplary results: the subjects
are clear and distinct from one another. We believe
this is largely due to the obvious differences between
a real photo and a painting. With larger datasets that
can equally match the size of CelebA, we predict that
InfoGAN would be able to support our results with color,
if given the appropriate parameters.

VI. CONCLUSION

InfoGAN successfully discerned among two, and even
five, individuals in the given training dataset. It also
learned key discrete and continuous features of the
subjects like the presence of glasses and their rota-
tion. The network additionally captured Van Gogh’s and
Rembrandt’s artistic subjects and styles, generating sets
of images that portray each artist’s painting technique.
Their overarching styles were accurately captured in
a dimension-2 categorical variable, while their specific
subjects and individual motifs were captured in larger
dimension variables. Continuous properties like brush
stroke thickness, and lighting motifs were also captured
and exposed to the viewer in continuous variables.

Despite the lack of color in two of our experiments,
our results are fascinating because it presents a window
where we may possibly understand how humans rec-
ognize objects and perform recognition. Learning these
traits and styles in a completely unsupervised manner
gives insight into the possibilities of future research,
which include successfully generating colored images,
expanding the personal dataset with more examples, and
performing finer tuning of the Categorical or Continuous
variables and learning rates.
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APPENDIX A
PERSONAL DATASET

TABLE IV. PERSONAL DATASET CONTENTS

Lilly Rasheed
Normal & Angled 1600 1600
Sunglasses 725 725
Sunglasses on Head 175 175
Total 2500 2500

Fig. 9. Sample Normal Images of Lilly: Example ‘Normal &
Angled’ images. Angled images were captured in both directions,
and with the subject’s head at many different vertical and rotational
angles.

Fig. 10. Sample Feature Images of Lilly: These images exemplify
the 4 feature categories. Wearing sunglasses, wearing sunglasses on
forehead, wearing a cap, and arms above her head.

Fig. 11. Sample Normal Images from Rasheed: Example ‘normal
& angled’ images from Rasheed. Angled images were captured in
both directions, and with the subject’s head at many different vertical
and rotational angles.

Fig. 12. Sample Feature Images from Rasheed: These images
exemplify the 3 feature categories demonstrated by Rasheed. Wearing
sunglasses, wearing sunglasses propped on the his forehead and
holding his arms above his head. Rasheed was not photographed
wearing a hat, and therefore that feature was not compared in the
combined facial recognition dataset.

This experiment found that altering the learning
(lambda values) between 0.1 and 10 produced the best
learned representations depending on the dataset and
number of variables provided. In datasets with high-
dimensional data, many more variables were required
in order to provide adequate separation between learned
traits. Higher dimensional variables are able to learn
representations of each individual disentangled represen-
tation, whereas low dimensional variables will attempt
to capture too many attributes into a single variable,
leading to entangled representations and poorer results
on complex data. The following two tables, 5 and 6,
show different parameters we tried during testing that
gave accurate results.



TABLE V. HYPERPARAMETERS FOR FACIAL RECOGNITION -
CATEGORICAL RESULTS

Epochs 2000
Continuous Variables 2
Categorical Cardinality 2, 20, 50
Categorical Lambda 1
Continuous Lambda 1

TABLE VI. HYPERPARAMETERS FOR FACIAL RECOGNITION -
CONTINUOUS RESULTS

Epochs 2000
Continuous Variables 5
Categorical Cardinality 2
Categorical Lambda 7
Continuous Lambda 7

APPENDIX B
POLITICIANS DATASET

This dataset of politicians was provided to the open
source community by the University of Massachusetts
Amherst under the name Labeled Faces in the Wild. All
images used in this study come from their most unedited
collection, as opposed to alternatives which were aligned
with ’deep funneling’ as described on their website:
http://vis-www.cs.umass.edu/lfw/.

TABLE VII. POLITICIAN DATASET CONTENTS

Bush Powell Blair Schroeder Chavez
Total 530 236 144 109 71

Fig. 13. Sample Images of Politicians: Example images from the
Politician dataset. Depicted from left to right are Gerhard Schroeder,
George W. Bush, and Tony Blair

APPENDIX C
ART DATASET

The Art database consisted of 418 paintings from
Vincent Van Gogh and 536 paintings from Rembrandt
van Rijn. The data was collected from the Web Gallary
of Art (www.WGA.hu). These two artists were chosen
because of the volume of their work, and relatively
different styles and subjects.

TABLE VIII. HYPERPARAMETERS FOR ART DATASET -
CONTINUOUS RESULTS

Epochs 3600
Continuous Variables 2
Categorical Cardinality 2, 20, 30
Categorical Lambda 1
Continuous Lambda 1

Fig. 14. Rembrandt Dataset Above is a representative sample of
Rembrandt van Rijn’s work from this study’s dataset as chosen by
the authors.

Fig. 15. Van Gogh Dataset Above is a representative sample of
Vincent Van Gogh’s work from this study’s datase tas chosen by the
authors.

Fig. 16. Style Exposé: Chiaroscuro InfoGAN captured the artistic
style of art labeled as Chiaroscuro - or the contrast of light and shadow
to hightlight a subject. Rembrandt used this technique frequently in
his portraits and infoGAN discovered and generated that motif to
the viewer. Under the generated images are sample photos from the
Rembrandt dataset that highlights Chiaroscuro.



APPENDIX D
ARCHITECTURE

In table 9, we list the dimensions of the input,
convolutional, and fully connected layers for D, G,
and Q. The generator accepts the dimensional map X
which is a random variable representing the mapping
function. The input then basses through multiple layers
that feature ReLU activation functions, and output a
64x64 grayscaled image. This image is then passed into
D, which works backwards and outputs the probability
scalar.

TABLE IX. DISCRIMINATOR AND GENERATOR CNNS USED
ACROSS ALL DATASETS

Discriminator D and Recognition
network Q

Generator G

Input 64x64 Gray image Input X dimensional map
4 x 4 conv. 64 IRELU. stride 2 &
angled

FC. 1024 RELU. batchnorm

4 x 4 conv. 128 IRELU. stride 2.
batchnorm

FC. 8 x 8 x 256 RELU. batchnorm

4 x 4 conv. 256 IRELU. stride 2.
batchnorm

4 x 4 upconv. 256 RELU. batch-
norm

4 x 4 conv. 256 IRELU. batchnorm 4 x 4 upconv. 256 RELU. batch-
norm

4 x 4 conv. 256 IRELU. batchnorm 4 x 4 upconv. 128 RELU. stride 2.
batchnorm

FC. 1024 IRELU. batchnorm 4 x 4 upconv. 64 RELU. stride 2.
batchnorm

FC. output layer 4 x 4 upconv. 1 sigmoid.


