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Abstract

We address a key problem for computer vision: retrieving images that are instances of visual situations. Visual situ-
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ations are concepts such as “a boxing match”, “a birthday party”, “walking the dog”, “a crowd waiting for a bus,” “a
handshake”, or “a game of ping-pong,” whose instantiations in images are linked more by their common spatial and
semantic structure than by low-level visual similarity. While computer vision has made remarkable progress on recog-
nizing individual objects in images, the problem of visual situation recognition is much more difficult for many reasons,
including the vast variability of possible instances of a given situation, as well as the combinatorics of evaluating pos-
sible pairwise or multiple-object relationships. In this paper we describe a novel architecture we have developed for
visual situation retrieval. Given a situation description, our architecture—called Situate—learns models capturing the
visual features of expected objects as well as probabilistic spatial models capturing the expected spatial configuration
of relationships among objects. Given a new image, Situate uses these models in an attempt to ground (i.e., to create
a bounding box representing) each expected component of the situation in the image via an active search procedure.
Situate uses the resulting grounding to compute a score indicating the degree to which the new image is judged to
contain an instance of the situation. Such scores can be used to rank images in a collection as part of a retrieval system.

In the preliminary study described here, we demonstrate the promise of this system—and the importance of active
grounding—by comparing Situate’s retrieval and grounding performance on one example situation category with that
of two baseline methods, as well as with a related image-retrieval system based on “scene graphs”.

1. Introduction

The ability to automatically search for images with specified properties is a key topic
for computer vision. In a world deluged with image data, automated image search and
retrieval has become as important as text search, and progress in this area will have pro-
found impacts thoughout society, in areas as diverse as medical diagnosis, public health,
national security, privacy, and personal data organization.

Using deep neural networks, automatic detection of individual objects or specific faces
in images has become remarkably successful [1, 2]. One can search an image collection
for photographs containing, say, guitars, wine bottles, Golden Retrievers, or one’s college
roommate, and obtain many if not most of the relevant images with few false positives.

However, in many domains, users need to search for images with more complex or ab-
stract properties, in which multiple objects with specified attributes are related in specific
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ways. Here are some examples: “a boxing match”, “a birthday party”, “a person walking
a dog”, “a crowd waiting for a bus,” “a handshake”, or “a game of ping-pong”. Instances
of such abstract visual concepts—which we call visual situations—are linked more by
their common spatial and semantic structure than by low-level visual similarity or by
the specific objects they contain. In general, automatically recognizing instances of a
given visual situation is a difficult problem for several reasons, including substantial vari-

ability in visual features and spatial layout among different instances. Moreover, while
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Figure 1. Overview of Situate’s training and testing pipeline, with the example situation “Walking the Dog”. (a)
The user specifies the object categories relevant to the given situation. This simple example includes three expected
objects: (Dog-Walker, Leash, and Dog); the double-arrows indicate unnamed (i.e., to be learned) relationships among
these objects. (b) Situate is also given a set of labeled training images, which include only positive examples of the
situation, with relevant objects indicated via labeled bounding boxes. From these training examples, Situate learns
models to recognize the individual objects (“object models”), as well as probabilistic models capturing the expected
spatial configuration of the objects (“spatial models™). (c) Situate uses its learned models to score new (“test”) images
as instances of the given situation, by attempting to ground the expected object categories and their expected spatial
configuration in the image. In this hypothetical example, the test image on the left is a good fit to the learned visual and
spatial features of the situation so obtains a high match score, whereas the test image on the right, with no leash and an
unexpected spatial relationship between Dog-Walker and Dog, is not a good fit, so obtains a low score. These steps will
be described in more detail in Section 2. (This and other figures in this paper are best viewed in color.)

state-of-the-art object detection methods often rely on evaluating large numbers of “object
proposals” at every location and scale of the image, the combinatorics of such exhaustive
evaluation become much worse when the multiple objects, attributes, and possible rela-
tionships of a situation need to be considered. And while successful object detection has
relied on huge amounts of labeled training data [3], there are few large labeled training
sets for visual situations.

In this paper, we describe a novel architecture for retrieving instances of a query vi-
sual situation in a collection of images. Our architecture—called Situate—uses object-
recognition models based on visual features, along with probabilistic models that repre-
sent learned multi-object relationships, in order to compute a rating of an image as an
instance of the query situation. Situate learns these models from labeled training images;
it applies these models to a new image via an active search process that attempts to ground
components of the query situation in the image—that is, to create bounding boxes that lo-
calize relevant objects and relationships, and that ultimately provide a situation match
score for the situation with respect to the image. The match scores can be used to rank the
images in the collection with respect to the query situation; the highest ranking images
can be returned to the user. Figure 1 illustrates Situate’s training and testing pipeline.

We hypothesize that Situate’s learned object and spatial models, used in tandem with its
active situation-grounding method, will result in superior image retrieval performance
than methods without these components. In this preliminary study, we test this hypoth-
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esis by running Situate on a challenging visual-situation dataset, and comparing its per-
formance with two baseline methods: a “lesioned” version of Situate that lacks its spatial
models and the feedback they provide the system, and an adapted version of the widely
used Faster-RCNN object-detection method [2]. We also compare Situate’s performance
with that of a related semantic image retrieval system base don “scene graphs” [4]

2. Situate’s Architecture

Situate’s architecture is inspired by active approaches to perception, in which the per-
ceiver acquires information dynamically, and in which the information acquired continu-
ally feeds back to control the perceptual process. In particular, for humans, recognizing
a visual situation is an active process that unfolds over time, in which prior knowledge
interacts with visual information as it is perceived, in order to guide subsequent eye move-
ments. This interaction of top-down expectations and bottom-up perception enables a
human viewer to very quickly locate relevant aspects of the situation [5, 6, 7, 8, 9]. A
particular inspiration for Situate in the Al literature is the Copycat system of Hofstadter
and Mitchell [10], which applies this kind of active high-level perception to the task of
making analogies in an abstract non-visual domain.

As shown in Figure 1, a user’s initial input to Situate is a specification of the object
categories relevant to a particular situation, along with a training set—a collection of
images representing positive instances of the situation, in which the relevant objects are
labeled with bounding boxes.

2.1. Training

During the training process, Situate learns an object model for each relevant object cat-
egory as well as an object refinement model for each category, described below. Situate
also learns a spatial model that represents information about the expected spatial config-
uration of the relevant objects. Finally, the system learns a set of independent probability
distributions (“priors”) capturing the expected size and shape of each relevant object.

Object Models: The input to each category-specific object model is an object proposal,
which specifies an object category along with set of coordinates specifying bounding box
b in an image. For an object model corresponding to category C, the model’s output
is a prediction of the amount the overlap of » with a ground-truth object of category
C. Following standard practice in the object-detection literature, overlap is measured as
the intersection over union (IOU) of the proposed bounding box with a (human-labeled)
ground-truth bounding box. (The IOU of two boxes measures the area of their intersection
divided by the area of their union.) Figure 2 illustrates how object models work in our
system. The figure shows two object proposals (white rectangles), along with human-
created ground-truth boxes (black rectangles). The Dog proposal overlaps the ground-
truth Dog box, and the Dog model predicts the overlap is 0.4 (here, an overestimate). The
Leash proposal overlaps the ground-truth Dog-Walker box, and the Leash model correctly
predicts zero overlap with a ground-truth Leash box.

Each object model is implemented as a linear combination of features obtained from run-
ning a pretrained convolutional network on the input region. We use the open-source
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Figure 2. Illustration of learned object models. Each category-specific object model inputs an object proposal (speci-
fying a bounding box) and outputs a prediction for the overlap of the proposal with a ground-truth bounding box for the
given category. Two examples are shown. On the left, a Dog proposal (white box) is predicted to have 0.4 overlap with
a Dog ground-truth box (where overlap is measured as intersection over union or IOU). On the right, a Leash proposal
is predicted to have zero overlap with a Leash ground-truth box. The Dog proposal indeed overlaps a Dog ground-truth
box (black box), though by less than 0.4. The Leash proposal overlaps a Dog-Walker ground-truth box but not a Leash
box, so the zero IOU prediction is correct.

VGG-f network pre-trained on Imagenet [11] to obtain 4096 features from the fc7 layer,
and ridge regression to learn the coefficients of the linear model. The ridge regression
model we used [12] is trained on features extracted from training-image crops that par-
tially or completely overlap ground-truth boxes.

Object Refinement Models: Situate similarly learns category-specific object refinement
models from the same training crops used to learn object models. These refinement
models—based on the “bounding-box regression” approach described in [13]—input an
object proposal and output a new, “refined” object proposal that is predicted to have higher
IOU with a ground-truth bounding box of the given category. Like the object models de-
scribed above, each category-specific object refinement model is a linear combination of
4096 features from the pre-trained VGG fc7 layer (obtained by feeding the image crop de-
fined by the object proposal through the VGG network). The refinement model inputs the
original proposal’s bounding box coordinates and outputs new bounding box coordinates.

As we will describe below, the refinement models will be applied to object proposals
whose score from corresponding object models is above a pre-set threshold.

Spatial Model: For a given situation, Situate learns a spatial model that represents the
expected spatial configuration among the relevant objects in that situation. The spatial
model is a multivariate Gaussian distribution learned from human-labeled bounding boxes
in training images. The variables in the distribution are bounding-box parameters—center
coordinates, area ratio (i.e, area of box divided by area of image), and aspect ratio—f{rom
the relevant objects in a given situation. For example, for the Walking the Dog situation
shown in Figure 1(a), the variables are the bounding box center coordinates, area ratios,
and aspect ratios of the Dog Walker, Dog, and Leash boxes. As we will describe below,
when Situate is run on a new image, once it has made a candidate detection of one or
more relevant objects, it conditions the spatial model on those detections to narrow the
expected location, shape, and size of the related objects.
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We used a multivariate Gaussian due to its simplicity and fast speed of sampling, but plan
to investigate using more sophisticated probabilistic models in future work.

Priors on Object Size and Shape: Situate also learns prior expectations of each relevant
object category’s size (area ratio) and shape (aspect ratio). These expectations are learned
by fitting the area ratios and aspect ratios of ground-truth boxes as independent category-
specific log-normal distributions. We used log-normal distributions to model these values
rather than normal distributions, because the former are always positive and give more
weight to smaller values. This made log-normal distributions a better fit for the data.
Note that our system does not learn prior distributions over bounding-box location, since
we do not want the system to model photographers’ biases to put relevant objects near the
center of the image.

2.2. Running Situate on a Test Image

After the models described above have been learned from training data, Situate is ready to
run on new (“test”) images. The input to Situate is an image and the program’s output is
(1) a situation match score that measures Situate’s assessment of this image as an instance
of the given situation, and (2) a set of “groundings”—detections of situation components
in the Workspace, as was illustrated in Figure 1(c).

Following the Copycat architecture of Hofstadter and Mitchell [10], Situate produces
these outputs by attempting to actively ground the situation components via the actions
of perceptual agents in a Workspace. The agents are selected and run over a series of
time steps, and create detections by combining bottom-up visual information with top-
down expectations. The advantage of this active, temporal approach is that detections
made in previous time steps can affect the actions of agents at subsequent time steps.
We hypothesize that this interaction of continually updated top-down expectations and
bottom-up perception will enable the system to quickly and reliably locate relevant aspects
of the situation.

The detailed process by which Situate runs on a test image is illustrated in Figures 3 and
4, which show visualizations of eight time-slices from a run of the program using the
Walking the Dog situation of Figure 1(a). We will explain Situate’s approach via this
example run.

Figure 3(a) shows Situate’s state before any agents have run. The Workspace contains the
unprocessed image. Situate’s goal is to determine how well this image instantiates the
query situation by attempting to locate the relevant objects that best fit Situate’s learned
models for this situation.

The gray squares shown below the Workspace represent the probability distributions over
location for each object category. The uniform gray indicates that at this time step these
are uniform distributions. Once an object is detected, these distributions will be updated
to be conditioned on that detection according to the learned joint distribution. As we de-
scribed above, the system also maintains probability distributions for aspect and area ratio
of each object category (not shown here). Initially these “shape” and “‘size” distributions
are the learned independent priors for each category, but once an object is detected these
distributions will also be conditioned on that detection.
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Figure 3. (a) Time step 0: State of Situate at beginning of a run on a test image. The Workspace contains the image
that agents will act on. The three gray boxes below the Workspace show the current probability distributions over
locations—initially all uniform—for the three relevant object categories. The distributions for aspect ratio (box shape)
and area ratio (box size) for each category are initially set to the learned priors (not shown here). (b) Time step 5: At
each time step, a single agent runs. Here, a Dog proposal (white box) has been created by a proposer agent by sampling
from the current location, shape, and size distributions for Dog. The internal and external support of this proposal are
below the threshold for follow-up, so the proposal will be discarded. (c) Time step 16: A Dog-Walker proposal is being
considered. Its internal support is high enough to cause its proposer agent to post a follow-up refiner agent to the agent
pool. (d) Time step 31: The refiner agent has improved the Dog-Walker proposal, and its support is high enough for its
agent to create a detection (red box). The Dog and Leash location distributions are now conditioned on this detection.

At each time step, one agent is run. The system has two types of agents: proposers and
refiners. A proposer chooses an object category from the list of relevant categories (here,
Dog-Walker, Dog, and Leash), and samples from that category’s current location, shape,
and size distributions to create an object proposal. Figure 3(b) shows such a proposal,
represented as a white box labeled “Dog?.” The proposer agent run at time step 5 created
this proposal; the agent evaluates the proposal via two measures: internal and external
support. The internal support is a function of the Dog object model’s prediction of over-
lap between this proposal and a ground-truth dog. The external support is a function
that measures how well this proposal would fit in with other detections that have been
made. These two measures are combined into a fotal support measure, which reflects the
system’s current judgement of the quality of this proposal for the given situation. If the
internal support is above a pre-defined threshold, the proposal will be marked for possible
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Figure 4. Continued from Figure 3. (e) Time step 65: A Dog detection has been made. The distributions for location,
shape, and size of each object are now conditioned on the two detections in the Workspace. (f) Time step 117: An
alternative proposal for Dog-Walker has been made. Due to the Dog-Walker location distribution conditioned on the
Dog detection, this proposal has higher external support than the current Dog-Walker detection. (g) Time step 200:
After refinement, the new Dog-Walker proposal has been made into a detection, replacing the old Dog-Walker detection.
The spatial distributions have been updated to be conditioned on the current detections in the Workspace. (h) Time step
382: With the help of support from the Dog-Walker and Dog detections, a Leash detection has been made, completing
the grounding of the situation.

refinement; if the total support is above a second threshold, the proposal will be accepted
as a detection. Since internal suppport is very low for the proposal in Figure 3(b), it will
be discarded. (Due to space constraints in this paper, the specific forms of the internal,
external, and total support functions, along with values of the thresholds we used, will be
given in an online supplementary materials section when this paper is published.)

Figure 3(c) shows a Dog-Walker proposal at time step 16. This proposal’s internal support
is high enough for the system to create a refiner agent to try to improve the proposal.

When it runs, the refiner agent will use the learned object-refinement model to attempt
to improve the original object proposal. As we described above, the refinement model
inputs the original bounding-box coordinates and outputs new bounding box coordinates.
The refiner agent creates an object proposal with the new bounding box and evalutes its
internal and external support.



Figure 3(d) shows the result of this process. The refiner agent that resulted from Fig-
ure 3(c) ran at time step 31, and has improved the Dog-Walker bounding box sufficiently
that its total support (here, based only on internal support) is enough for a detection to
be created (red box). A detection is a data structure in the Workspace indicating that the
system is confident that it has located a particular object. The spatial model is now con-
ditioned on this detection, yielding new location distributions for Dog and Leash. (The
size and shape distributions for these categories, not shown here, are also conditioned on
the detection.) Agents will now increasingly focus on searching for objects in higher-
probability areas of these distributions.

Note that 15 times steps have passed between a refiner agent being created (time step 16)
and running (time step 31). Why doesn’t it simply run immediately? This brings us to
the question of how an agent is selected to run at each time step. The system maintains
a fixed-size pool of agents, initially all proposer agents, with refiner agents added as
object proposals are evaluated. At each time step, one agent is chosen at random from
the pool. To avoid the pool being overrun with refiner agents, each refiner’s probability
of being chosen is less than that of the agent that created it. We found this regulation to
be important in balancing the system’s ability to explore new proposals versus refining
existing proposals.

Considering Figure 3(d): The only problem is that the program has identified the wrong
person as the dog-walker. As shown in Figure 4, this will be corrected in subsequent time
steps using additional information discovered by the program.

At time step 65 (Figure 4(e)), a Dog proposal with sufficiently high support has resulted in
a Dog detection in the Workspace. The location, shape, and size probability distributions
have been updated to be jointly conditioned on the two detections (Dog-Walker and Dog).
In particular, notice that the Dog-Walker location distribution has been conditioned on
the Dog detection, and that the current Dog-Walker detection is offset from the center of
that distribution. Similarly, the new Dog detection is offset from the center of the Dog
location distribution. Even though both Dog-Walker and Dog have been detected, these
(and likewise any detection) are treated as provisional detections until the end of the run.
Agents will continue to search for better-fitting alternatives.

At time step 117, after agents have considered several such alternatives (and rejected
them), an agent has created an alternative Dog-Walker proposal (Figure 4(f), white box)
that is closer to the center of the current Dog-Walker distributions, and thus has more
external support than the existing Dog-Walker detection. At time step 200 (Figure 4(g)
a refiner agent has proposed an improved Dog-Walker box that has higher total support
than the previous Dog-Walker detection; the old detection is deleted and the new one
is created. The Dog-Walker and Dog boxes now both have high internal and external
support (that 1s, they support each other very well according to the spatial model). The
Leash location, size, and shape distributions, conditioned on both the Dog-Walker and
Dog distributions, are now quite strongly peaked. This helps the system locate the small,
hard-to-see leash (Figure 4(h)), at which point the run concludes with all of the situation
objects having been detected. (If not all objects are detected, the run stops after a pre-set
maximum number of time steps.) At the end of a run, the system computes the situation
match score as a function of the total support of each detection. In the current version of



Situate, we define the situation match score as the geometric mean over the total support
values of detections in the Workspace. If no detections are made by the end of the run,
the situation match score is set to a minimum value—O0.01 in the current version. We
chose this “padded” geometric mean function as a simple way of combining total support
scores, but will investigate alternative scoring methods in future work.

In summary, the following gives the main loop of Situate.

Input: A test image

Initialization: Initialize location, area-ratio, and aspect-ratio distributions for
each relevant object category. The initial location distributions are uniform; initial
area-ratio and aspect-ratio distributions are learned from training data. Initialize
agent pool with proposer agents.

Main Loop: Repeat until all relevant objects are detected or at most for Max-
Iterations:

1. Choose agent from agent pool.
2. Run agent (and if agent is a proposer, replace it in the agent pool).
3. Update spatial model, conditioned on current detections in the Workspace.

Return: Situation match score S. where
1
S =max [0.01, (H total—support(dﬁ) : (1)
i=1
where n is the number of detections in the Workspace, and d; is the ith detection.
For the experiments described in this paper, we used Max-Iterations = 1,000.

In designing Situate’s architecture, we were inspired by Hofstadter et al.’s idea of mod-
eling perception as a “parallel terraced scan” [10], in which many possible exploration
paths are pursued in parallel, but not all at the same speed or to the same depth. More-
over, the exploration is “active” in the sense that information is used as it is gained to
continually modify the resources given to possible paths. Like the codelets in the archi-
tecture of [10], our (serially run) architecture approximates such a parallel search strategy
by interleaving many independent agents. In principle, many of these explorations could
be performed in parallel. Furthermore, splitting up “proposers” and “refiners” allows the
system to balance time spent on bottom-up exploration with that on focused follow-ups.

An advantage of such an approach is balancing the need to explore many possibilities
while still avoiding exhaustive evaluation of possible situation configurations. However,
one possible problem with our approach is that the system can spend too much time con-
sidering lower quality possibilities (e.g., an incorrect dog-walker) on the basis of incom-
plete information. Hofstadter et al.’s architecture [10] included a temperature variable to
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help address this problem; temperature simultaneously measured the program’s perceived
quality of its interpretation at a particular time step and fed back to control the amount of
randomness in the system. The lower the perceived quality, the higher the temperature,
and the more randomness was injected into the system. This prevented the system from
spending too much time investigating low-quality exploration paths. While we believe
that such a mechanism is essential to successfully regulating this kind of architecture (see
[14] for a discussion of analogous mechanisms in biological systems), implementing a
similar temperature mechanism in Situate is a topic for future work. In the current system
we employed a simple mechanism for injecting randomness: each proposer agent decides
with probability € € [0, 1] to sample from a uniform location distribution rather than the
current location distribution for its object category. In the experiments described below,
we used € = 0.5.

We hypothesize that the approach we have described above will have superior perfor-
mance on grounding elements of situations, and thus on ranking images, than methods
that do not use this kind of active approach, assuming the same amount of training data.
We also hypothesize that our method will be able to achieve this performance with signif-
icantly fewer object-proposal evaluations than non-active methods.

In the next section we review related work. This is followed by a description of the
experiments we performed to test our hypotheses, and a discussion of the results. We
conclude with an assessment of our hypotheses based on these initial experiments, and
plans for future work.

3. Related Work

Our work falls under the broad area of “image understanding,” which has a vast literature
in Al. Here we describe some of the recent approaches most closely related to Situate’s
goals and architecture.

A recent approach to semantic image retrieval uses scene graphs to represent images
and to query image collections. A scene graph is a graphical representation of objects,
attributes, and relationships that encode an image or image region, or desired image
content—e.g., “a tall man wearing a white baseball cap.” Johnson et al. [4] developed
an architecture for semantic image retrieval via “scene graph grounding” which uses a
learned graphical model to determine the most likely set of bounding boxes and relation-
ships between them that ground an input scene graph in a given image. In contrast to
our focus on visual situations, Johnson et al. tested this approach both on highly detailed
scene graphs representing a single target image, as well as on simple scene graphs refer-
ring to a pair of objects (e.g., the man and the hat in the example above). In addition,
Johnson et al.’s approach differs from Situate in that, rather than taking an active, dy-
namic approach to locating objects and relationships, it exhaustively considers a large set
of bounding box proposals and all pairwise relationships amoug those proposals. We will
describe Johnson et al.’s approach in more detail in Section 5, and describe our results
comparing its performance to that of Situate. A different approach to image retrieval via
scene graphs was proposed in [15]: their system embedded both the query scene graph
and test image in a common space and computed a match score. Several groups have
focused on automatically creating scene graphs from image data (e.g., [16, 17, 18]).
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Another widely studied image-understanding task is that of “grounding referential expres-
sions.” Given a phrase such as “the brown dog next to the woman wearing sunglasses,” the
task is to locate the object being referred to, by grounding each object and relation in the
phrase. Examples of recent work in this area include [19, 20, 21]. Like the scene-graph
task described above, research on this task has focused on specific “free-form” phrases
rather than more abstract situation descriptions—the open-ended nature of the task makes
it very difficult, and accuracies reported on large datasets have remained low to date. A
related task is that of detecting visual relationships in images (e.g., [22]); to our knowl-
edge, the literature on this task has focused almost exclusively on pairwise relationships
(e.g. “dog riding surfboard”), rather than multi-object visual situations.

Our situation-retrieval task, like the scene-graph and expression-grounding tasks described
above, shares motivation but contrasts with the well-known tasks of “event recognition”
or “’action recognition” in still images (e.g., [23, 24, 25]). These latter tasks consist of
classifying images into one of several event or action categories, without the requirement
of localizing objects or relationships. A related task, dubbed “Situation Recognition” by
[26], requires a system to, given an image, predict the most salient verb, along with its
subject and object (“semantic roles” [27]). (It should be noted that we use the term “visual
situation” in a more general sense.)

Our task also contrasts with recent work on automatic caption generation for images (e.g.,
[28, 29]), in which image content is statistically associated with a language generator. The
goal of caption-generation systems is to generate a description of any input image. Even
the versions with “attention” (e.g., [30]), which are able to highlight diffuse areas corre-
sponding roughly to relevant objects, are not able to recognize and locate all important
objects, relationships, and actions, or more generally to recognize abstract situations.

While the literature cited above does not include “active” detection methods such as Sit-
uate that involve feedback, there has been considerable work on active object detection
(e.g., [31, 32]), often in the context of active perception in robots [33] and modeling visual
attention [34, 35, 36]. More recently, several groups have framed active object detection
as a Markov decision process and use reinforcement learning to learn a search policy (e.g.,
Caicedo2015).

This section has given a sampling (out of a large literature) of recent work on image under-
standing. While related in motivation and approach to some of these efforts, the specific
problem we are addressing (visual situation retrieval) and method (active grounding of
situation components) is, to our knowledge, unique in the literature.

4. Datasets

The computer vision community has created several important benchmark datasets for
object recognition and detection (e.g., [37, 3]) and for some of the other tasks described
in the previous section that combine vision and language (e.g., [38, 39]). None of these
precisely offers the kind of data that we needed for our situation-retrieval task—that is,
collections of numerous instances of specific multiobject situations, in which the objects
are localized with ground-truth bounding boxes. (For example, the ImSitu “Situation
Recognition” dataset is organized around verbs such as carrying, jumping, and attacking,
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each with one subject (e.g., “dog jumping”) and some with one additional object that the
subject acts upon (e.g., “man carrying baby”).)

For our preliminary work with Situate, we developed a new dataset representing the
“Walking the Dog” situation. We chose this situation category because it is reasonably
easy to find sufficient varied instances to train and test our system, and these instances
offer a variety of interesting challenges. This dataset, the “Portland State Dog-Walking
Images,” contains 500 positive instances of the Dog-Walking situation. The positive in-
stances are photographs taken by members of our group, and in each we labeled (with
bounding boxes) the dog, dog walker, and leash. Each image contained only one of
each target object, but many also contained additional (non-dog-walking) people, along
with cars, buildings, trees, and other “clutter”. The challenges of this dataset include
determining which person is the dog-walker, as well as locating dogs (often small, and
sometimes partially occluded) and leashes (which are very often difficult, based on visual
features alone, to distinguish from other line-like structures in an image), and deciding
if the configuration of these three objects fits the learned dog-walking situation. For the
experiments described below, we split the 500 images into a 400-image training set and a
100-1mage test set.

We also created a negative set of 400 images selected from the Visual Genome dataset
[38]. This set includes images in which people interact with dogs in non-dog-walking
situations, along with images with people but no dogs, dogs but no people, and neither.
The positive and negative images we used can be downloaded from our project website
[40].

Note that our collection is similar to the Stanford 40 Actions [41] “Walking the Dog”
category, but the photographs in our set are more numerous, varied, and have bounding
box labels for each relevant object. As we describe below, we also used a subset (145
images) of the Stanford “Walking the Dog” images—those with exactly one dog and one
leash—as a second set of test examples. This subset can be also be downloaded from our
project website [40].

In future work we will extend Situate to be able to group objects so as to be able to deal
with multiple instances of particular object categories (e.g., “taking multiple dogs for a
walk™).

5. Methods

We performed experiments to evaluate Situate’s image retrieval and situation grounding
abilities. We also assess the importance of Situate’s learned spatial models by compar-
ing with two baseline methods that only use object appearance models (i.e., they do not
use spatial models). Finally, we compare Situate’s performance with that of the Image
Retrieval using Scene Graphs (IRSG) method of Johnson et al. [4]. In each method, we
performed any necessary training using the same training set that we used for Situate.

5.1. Baseline Methods

The first baseline, which we call the “Uniform Sampling” method, is identical to Situate
except that agents always sample locations and bounding box parameters uniformly rather
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than using a learned spatial model. When creating an object proposal, an agent chooses
a center location by sampling uniformly across the entire image, and chooses area and
aspect ratios by sampling uniformly over fixed ranges.

The second baseline is based on the widely-used Faster-RCNN algorithm for object de-
tection [2]. Faster-RCNN is a deep convolutional network that can be trained to propose
bounding boxes and score them with repsect to given object categories; it has been shown
to achieve state-of-the-art performance on object detection. We used an open-source ver-
sion of Faster-RCNN [42] that was pre-trained on the Pascal VOC dataset, and we fine-
tuned it for the Dog-Walker, Dog, and Leash categories using the same training data given
to Situate. We then ran the finetuned Faster-RCNN network on each test image (positive
and negative), and selected the highest scoring bounding box (as scored by Faster-RCNN)
corresponding to each of the relevant object categories. (Following [2], we applied non-
maximum suppression to boxes before selecting the highest scoring box.) Analogous to
Situate, we defined the Situation Grounding Score as the padded geometric mean of the
scores assigned to these bounding boxes by Faster-RCNN. Our goal was to see how well
this specially trained Faster-RCNN model could be used to perform situation retrieval
even though it does not use any situtation model.

5.2. IRSG Method

We also compare Situate’s performance that of Johnson et al.’s “Image Retrieval using
Scene Graphs” (IRSG) method [4]. IRSG is similar to Situate in that it scores an input
image as to how well it instantiates a query description (represented as a scene graph),
and uses image scores to rank images in a collection, with the goal of image retrieval.
Moreoever, IRSG computes its score by attempting to ground components of the query
scene graph in the input image.

IRSG first creates a set of object proposals that are not category specific—it does this
using the geodesic object proposal method of [43]. IRSG then uses R-CNN [13] to give
each object proposal multiple “appearance” scores—one for each object category in the
scene graph. IRSG also uses a Gaussian mixture model (GMM), learned from training
examples, which, given pairs of candidate bounding boxes, returns probabities of differ-
ent possible object relationships . The “unary” object appearance scores and the binary
relationship scores are used in a conditional random field model defined over a factor
graph representing the query. As a simple example, for the query “man wearing hat next
to woman,” the system would exhaustively consider all possible pairs of boxes in each of
the two relationships (“wearing” and “next to”’), and see which configuration minimizes
the energy function defined by the conditional random field.

We obtained the source code for IRSG from the authors of [4] and adapted it in order
to compare it with Situate and our other methods. Instead of geodesic object propos-
als scored by R-CNN, we used the top-scoring 300 boxes per category (Dog-Walker,
Dog, Leash) from our finetuned version of Faster-RCNN (following [2], we applied per-
category non-maximal suppression to obtain these boxes). Since IRSG is (as currently
implemented) limited to pairwise relationships, we trained the GMM on the spatial rela-
tionship between Dog-Walker and Leash, and between Leash and Dog (one could perhaps
formulate this as the scene “Dog-Walker holding Leash and Leash attached to Dog”). The
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factor graph and conditional random field formulation and energy minimization was per-
formed using the same algorithms that were described in [4]. In this way, each positive
and negative test image in our set was scored (using the final energy value).

As we mentioned above, due to space constraints, we omit some details of Situate (e.g.,
the detailed forms of the external and total support functions, thresholds for detections)
and the other methods. We will provide these details in an online supplementary materials
section, along with our code and all data, when this paper is published.

5.3. Evaluation Metric

We ran each method on the three test sets: Portland Dog-Walking (100 images), Stanford
Dog-Walking (145 images), and the 400 negative (non-dog-walking) examples chosen
from the Visual Genome dataset. We use the Stanford images as a second positive test
set to help explore the generality of Situate’s learned models, since these images are from
different sources than those in the Portland set: the former were collected by Stanford
researchers using online image search engines, while the latter consists of photographs
taken by members of our research group.

Our evaluation metric is Single-Image Recall @N (abbreviated RQN). This measures the
probability that, if a single positive example were added to the set of negative examples,
and the collection was ranked by situation match score, the positive example would be
in the N top-ranked images. For example, given our 100 positive and 400 negative test
images, R@Q10 = .57 means that 57 out of 100 of the positive images would be in the top
10 ranked images if they were ranked alone with the 400 negative images.

The Situate and Uniform Sampling methods are stochastic, whereas Faster-RCNN and
our adapted version of IRSG are deterministic. Below, for clarity of presentation, we
give results from typical runs of Situate and Uniform Sampling, but note that runs using
different random seeds produce very similar results with respect to the evaluation metric
we use.

6. Results

Table 1 gives the Single-Image Recall @N resulting from running the four different meth-
ods on the two positive test sets: Portland State Dog-Walking (top table) and Stanford
Dog-Walking (bottom table) and the negative set (the same negative set of 400 images
was used for each positive set). The best result in each row is boldfaced. It can be seen
that Situate produced the best result on all but two rows: R@Q100 for the Portland images
and and R@]1 for the Stanford images. In many cases, Situate’s Single-Image Recall QN
is quite a bit higher than that of the other methods, giving evidence for our hypothesis
that Situate’s active grounding method, together with its learned models, will result in
superior image retrieval performance than methods lacking these components.

7. Discussion

What accounts for Situate’s generally superior performance as compared with the other
methods we tested? What kinds of errors does each method make? We investigated these
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Portland State Dog-Walking Images

N Situate | Uniform | Faster-RCNN | IRSG

1 0.27 0 0.24 0.13
5 0.53 0.16 0.28 0.21
10 0.57 0.30 0.38 0.40
20 0.66 0.41 0.54 0.57
100 0.89 0.74 0.91 0.94

Stanford Dog-Walking Dataset

N Situate | Uniform | Faster-RCNN | IRSG

1 0.21 0 0.28 0.03

5 0.54 0.10 0.31 0.09
10 0.60 0.28 0.37 0.20
20 0.72 0.34 0.51 0.30
100 0.93 0.77 0.91 0.77

Table 1. Results for Single Image Recall@N. The top table gives results for the Portland State Dog-Walking test
set (100 images) and the bottom table gives results for the Stanford Dog-Walking test set (100 images). Four methods
(Situate, Uniform, Faster-RCNN, and IRSG) were run on the positive test sets as well as the negative examples. Each
RQN value is the probability that a single image from the test set would be in the top N ranked images when grouped
with the 400 negative images. The best result in each row is boldfaced.

Faster-RCNN

Situate

%

Figure 5. Final detections by Situate and by Faster-RCNN on the same test image, illustrating how Situate’s context-
aided detections resulted in a correct situation grounding, missed by Faster-RCNN.

questions by viewing the “situation groundings”—that is, the object detections produced
by each method by the end of a run on each test image.

In the positive test images, we found that, while all four methods were good at detecting
dog-walkers and dogs, leashes were often not detected or falsely detected in an incorrect
location. The Uniform-Sampling method was by far the worst at detecting leashes, miss-
ing them entirely in about 80% of the test images. This was largely responsible for its
poor performance.

Faster-RCNN was able to detect leashes with about the same success rate as Situate, but
Situate was considerably better at detecting them together with Dog-Walkers and Dogs—
that is, as parts of coherent situations. Figure 5 contrasts Situate’s detections on the image
from Figure 3 with Faster-RCNN’s detections. As we discussed in Section 2, Situate
was able to correct its initial dog-walker detection with the help of context from its dog
detection, after which it used context from the two detections to locate the hard-to-see
leash. These mechanisms are absent from Faster-RCNN, which was not able to locate the
correct dog-walker or leash. (Faster-RCNN’s detections gave a low score to this image,
due to the low-scoring leash detection.)

This kind of context-aided detection accounted for part of Situate’s superior RQN perfor-
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Situate Faster-RCNN

Figure 6. Final detections by Situate and by Faster-RCNN on the same test image, illustrating a case where Situate
gets stuck by identifying an incorrect dog-walker, and is not able to locate the other objects, resulting in a low score for
this image. In contrast, Faster-RCNN is able to locate the dog and leash (and gives a high score to this image), even
though it has also detected the same incorrect dog-walker.

Figure 7. An example of an object that none of the methods was able to detect: the leash in this misty beach scene.

mance. Another factor was that when Faster-RCNN did make a correct leash detection, it
often gave the detection a low score, since leashes are often only barely visible in these
images. Situate was able to assign higher scores since its detection scores incorporated
external support—that is, support from the context of the other detected objects. Faster-
RCNN has no mechanism for doing this.

There were some cases where Situate failed and Faster-RCNN succeeded, such as the
example in Figure 6. This was an example of Situate identifying the wrong person as the
dog-walker, and being unable to escape from the resulting incorrect spatial probabilities
for the other objects. Faster-RCNN, on the other hand, made the same incorrect dog-
walker identification but was not constrained by this error; it succeeded in locating the
dog and leash.

Finally, in the positive test set there were cases where all methods failed to locate an
object, such as the leash in the misty beach scene of Figure 7. Apparently the object
appearance models for Leash scored this leash very low.

In examining the results on the negative test images, we were able to see that all the meth-
ods were susceptible to false positives—high-scoring but incorrect detections. However,
it seems that Faster-RCNN was more likely to make false-positive detections than Situate,
since Situate’s ability to dynamically perceive and use context prevented some potential
false-positives from scoring highly.

The analysis we described in this section highlights one of the advantages of requiring
the system to ground situation elements as part of the image-ranking process. In much
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Figure 8. Five “non-prototypical” Dog-Walking situations that require conceptual slippage. (Images 1-3:
Portland State Dog-Walking Images. Image 4: http://www.drollnation.com/gallery/2015/12/randomness-
120315-5.jpg. Image 5: http://www.delcopetcare.com/wp-content/uploads/2013/02/dog-walking.jpg.)

of the existing scene categorization work in the literature, such explicit grounding is not
performed; without it, it is often hard to determine why a computer vision system makes
the categorizations—or errors—reported in the results. Here we were able to make sense
of why one method exhibits superior performance to others, and what types of errors are
made by the various methods.

[Note: Final draft will include analysis of ISRG detections.]

8. Conclusions and Future Work

In this paper we have described a preliminary study of Situate, a novel approach to vi-
sual situation retrieval. The results of this study have shown the promise of Situate’s
active situation-grounding architecture: our system’s image-retrieval performance on the
“Walking the Dog” situation generally surpassed that of two baselines as well as a related
image-retrieval system from the recent literature. We showed how Situate is able to use
information as it is gained in order to focus its search, and to use the support of context in
order to locate hard-to-detect objects (e.g., barely visiable leashes, small dogs, partially
occulded objects). In analyzing these results, we were able to understand some of the
reasons for Situate’s superior performance, as well as to identify some of its problems.
This analysis underscores the important role of grounding situation elements as part of
scoring an image.

Visual situation recognition and retrieval is a broad and difficult open problem in com-
puter vision research, and the results we have presented highlight many avenues of future
research. In the near term we plan to improve our algorithm in several ways: incorporat-
ing a fast-to-compute salience measure to provide location prior probabilities to agents;
expanding the kind of object attributes that can be detected by agents (e.g., orientation
and other pose features); expanding the types of relationships that can be identified (e.g.,
recognizing that two objects have the same orientation). We also plan to experiment with
more sophisticated spatial probability models, such as Gaussian mixture models, while
keeping in mind the tradeoff between sophistication and speed of computation.

Most importantly, we will explore the ability of our algorithms to scale to larger datasets
and to generalize to other situation categories.

In the longer term, we will focus on, among other extensions, being able to speed up our
active search method via parallelization. Finally, one of our original motivations for this
project was to create a system that can recognize visual analogies. For example, most
people would consider the images in Figure 8 to be (somewhat stretched) instances of the
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abstract Dog-Walking situation. This kind of recognition requires what Hofstadter and
colleagues have called “conceptual slippage”, in which the roles defining a situation (e.g.,
Dog-Walker) can be fluidly filled by concepts semantically related to the protogype (e.g.,
a “dog-walker” can be a person riding a bicycle, or driving a car, or even another dog).
Making appropriate conceptual slippages is at the heart of analogy-making, which itself
is a core aspect of cognition [44].

The abilities of computer vision remain far from human-level visual understanding, but
we believe that progress on the problem of situation-recognition, particularly incorporat-
ing analogy-making, will play a pivotal role in giving computers the ability to make sense
of what they see.
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