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Abstract—This paper describes and tests a developmental
architecture that enables a robot to explore its world, to find
and remember interesting states, to associate these states with
grounded goal representations, and to generate action sequences
so that it can re-visit these states of interest. The model is
composed of feed-forward neural networks that learn to make
predictions at two levels through a dual mechanism of motor
babbling for discovering the interesting goal states and instant
replay learning for developing the grounded goal representations.
We compare the performance of the model with grounded goal
representations versus random goal representations, and find that
it is significantly better at re-visiting the goal states when using
grounded goal representations.

I. INTRODUCTION

In order for a developmental robot to be able to move
about in the world in a purposeful, self-motivated manner,
it first needs to learn to understand the moment-to-moment
consequences of its actions. From this reactive foundation it
can then begin to assemble longer-term plans to take it from
its current state to more distant desired states. How could such
plans be represented? How could they arise from experience
and be grounded in the robot’s perceptual framework? To
explore these questions we have designed a developmental
architecture to enable a robot to explore its world, to find and
remember interesting states—those moments when its sensory
state changes dramatically—and to associate goals with these
interesting states so as to be able to achieve them again in the
future.

Ultimately, we want the system to be able to predict
more abstract information about itself, such as its own goals.
However, it is impossible to anticipate as yet unknown goals.
How could the robot know that a goal is just a few steps
away so that it could predict it? To solve this chicken and egg
problem, we let the robot motor babble, wandering around
until it stumbles upon an interesting sensory situation. Once
found, we associate a goal with this sensory state. That is, we
keep a short history of recent past states, and we replay this
history, training the system to predict what it could not have
known: that a goal was right around the corner. The goal is
an internally generated representation, called a protoplan, that
reflects the model’s own understanding of how it arrived at
this interesting sensory state. Through instant replay learning,
the robot can eventually develop representations to anticipate

future goal situations before it has actually encountered them.
Instant replay learning is similar in spirit to experience replay
[1], which was most recently used to great success in deep
reinforcement learning applied to Atari video games [2].

Fig. 1. Hierarchical model. The lower level learns to predict perceptions
(including proprioceptions), and as a side effect creates grounded abstractions
of its current perceptual state. The higher level learns to predict these grounded
abstractions (bottom-up) and can manipulate the lower level by setting its
internal state (top-down) to achieve longer-term behaviors.

To allow the robot to build up an understanding of its
actions in the environment and to develop its own goals, we
use predictions at two levels. Figure 1 provides an overview
of this approach. First, at the lower level, the robot learns to
predict the effects of its own motor actions on its perceptual
state. Next, at the higher level, the robot learns to predict its
own abstracted internal states that were developed at the lower
level. This bottom-up process starts with concrete sensory-
motor experience, and leads to the development of more
abstract representations. Finally, given these abstractions, the
higher-level can control the lower-level in a top-down manner,
by manipulating the lower-level’s internal states to produce
desired behavior.

This paper describes a hierarchical neural network model
that develops its own goals and uses instant replay learning to
build an understanding of how to achieve them.



II. RELATED WORK

Our model is based on several fundamental features.1 First,
the model is trained via prediction, allowing it to bootstrap
its own learning. Second, the model is hierarchical, with both
bottom-up and and top-down interactions. Third, the model
develops its own goal representations. Fourth, the model is
given an attention mechanism allowing it to focus on key
interactions with the environment. Related work associated
with each of these features is discussed below.

Many researchers have noted the central importance of
prediction in cognition. Elizabeth Spelke has described pre-
diction as part of the core knowledge on which cognition
is built [4]. Andy Clark describes prediction as “a form of
self-supervised learning, in which the ’correct’ response is
repeatedly provided, in a kind of ongoing rolling fashion, by
the environment itself [5, p. 18].” Jeffrey Elman has noted
that prediction is a useful task because its solution requires
that the learner be sensitive to the temporal structure of the
environment [6].

The power of hierarchical models is now being more widely
recognized. Andy Clark argues that “prediction-driven learning
operating in hierarchical (multilayer) settings plausibly holds
the key to learning about our kind of world: a world that is
highly structured, displaying regularity and pattern at many
spatial and temporal scales, and populated by a wide variety
of interacting and complexly nested distal causes [5, p. 19].”
Jun Tani also emphasizes that hierarchical systems, with both
top-down and bottom-up processes, are essential, stating that
“it is the interaction of these two processes which is seen as
central to understanding mind [7, p. 7].”

Tani proposed a hierarchical developmental robotics model
based on a new type of recurrent neural network known
as a RNNPB, where PB stands for parametric biases [8].
These biases are provided as additional inputs to the network
and can be used by higher-level layers to exert top-down
pressure, serving the role as goals to invoke certain learned
behaviors. In his initial experiments, these biases were set
by the experimenter, and later tuned by the system. In our
model, the system develops its own grounded goals, based on
experience.

There are many different approaches to modeling attention
in developmental robotics. One possibility is to build into
the model an idea of distinctive states [9], which are unique
landmarks in the world that should be remembered and used
to navigate. Another possibility is that the robot identifies situ-
ations that it cannot currently predict [10]. However, focusing
on prediction error alone may be problematic due to noise.
Another option is to monitor prediction learning progress, and
focus on situations where learning progress is high [11], [12].
In this experiment, we define a concept of interest that is based
on changes in moment-to-moment sensor states; situations
when a robot’s sensor state changes dramatically are worth
remembering.

1For further examination of fundamental features in developmental robotics,
see [3].

III. EXPERIMENTAL METHODS

A. Robot and Environment

For these experiments, we used a simple robot simula-
tor, called Jyro [13]. The Jyro simulator is written in the
Python programming language and is designed to model
actual physical robots, such as the Mobile Robotics Pioneer
robot used here. The robot’s movement is controlled by two
motor commands: translation and rotation. For the experiments
described here, the robot was equipped with a total of 19
sensors: 1 stall sensor, 2 light sensors, and 16 sonar sensors.
The stall sensor is discrete (either 1 when stalled or 0 when
not), while both the light and sonar sensors are continuous
(normalized to be in the range [0, 1]). The robot was trained
in a 4x4 meter walled enclosure with a single light source,
as shown in Figure 2. Although the simulator is based on an
actual robot and sensors, for these experiments we have not
introduced any noise into the robot’s movements or sensor
readings. However, the simulated robot can only sense its
world using local sensor observations and does not have access
to its true global state. This leads to perceptual aliasing—
the situation where many different locations in the world are
indistinguishable from one another based on sensor readings
alone.

Fig. 2. Visualization of the robot and environment from the Jyro simulator.
The light source is shown as a large yellow circle in the bottom center of the
world. The robot is shown in white. The black arrow head in the center of the
robot depicts its current heading. The two light sensors are depicted as small
circles on the front of the robot. The two orange lines emanating from each
light sensors indicate that the robot has a line of sight to the light source.
The 16 sonar sensors are shown as blue lines emanating from the robot. The
purple line indicates the robot’s path over 1000 steps of motor babbling.

B. Neural Network Model

Figure 3 shows a detailed view of the hierarchical neural
network model shown in Figure 1. The Perception Prediction
Network (bottom) is trained to predict the next sensory state
and to reproduce the current motor command when given the
current sensory state and a motor command. As a side-effect
of learning to successfully predict its sensory-motor state,



Fig. 3. Neural network model. Straight, black arrowed lines represent fully-
connected, feed-forward weights between named groups of units. Curved,
blue arrowed lines indicate the ways that the two networks interact with
one another. The size of each group of units was, Senses:19, Motor:2, L1-
Abstraction:25, Protoplan:25, and L2-Abstraction:50. The bottom network has
1,096 parameters and the top network has 5,100 parameters.

the Perception Prediction Network develops abstractions in its
hidden layer (called L1-Abstractions in Figure 3).

The input and hidden layers of this bottom network can be
thought of as an encoder—when given a sensory-motor state,
the encoder produces an encoded abstraction of it. The hidden
and output layers of this bottom network can be thought of as
a decoder—when given an encoded sensory-motor state, the
decoder produces the next anticipated sensors and the current
motor. These L1-Abstractions contain grounded information
based on the robot’s current sensory-motor experience. The
Abstraction Prediction Network (top) is trained to predict these
L1-Abstractions in the context of a particular goal it is trying
to achieve.

This hierarchical model can be trained in either an online
or offline manner. Online learning is a much more difficult
task for the model as the top network must learn the bottom
network’s representations as it is still adapting, creating a
moving target problem. Although online learning is a more
difficult task (and takes much more computational time), it
may have developmental benefits. For example, it may be
beneficial to have the Abstraction Prediction Network affect
the lower-level perceptual predictions.

For the experiments reported here, we start with the simpler
offline learning. Although offline learning prevents the higher-
level network from informing the lower-level network, it
allows a straightforward, efficient two-phase learning process.
It should be noted that our two-phase offline learning process
still contains the essence of online development (explained
below in subsection D).

In phase one, the Perception Prediction Network is trained
until accuracy peaks (500 epochs), then weights of this
network are fixed. In phase two, the Abstraction Prediction

Network is trained until accuracy peaks (200 epochs), and the
weights of this network are also fixed. Testing is done after
both network’s have completed training.

The neural network model is implemented in Keras [14]
on top of TensorFlow [15]. The model uses the mse (mean
squared error) loss function with the adam optimizer. All units
use the tanh activation function.

C. Goal Discovery Through Motor Babbling

The data set for training the network model is generated
through motor babbling. The robot wanders through its en-
vironment randomly exploring its motor space. During motor
babbling, a new random motor action is generated every five
time steps, allowing the robot to repeat the same random action
for a short sequence of time.

As the robot explores the world through motor babbling,
there will be instances when its movement causes a large
change in its moment to moment sensor readings. The model
defines interest as the sum of absolute differences between the
previous sensors and the current sensors. When interest goes
above a given interestThreshold (0.475 in these experiments),
goal discovery is triggered.

We want the model to recognize interesting state changes of
this kind as situations that should be remembered and should
be repeatable in the future. To do this we will designate the
current sensor state at the time of a spike in interest as the
goal’s endState. We also record the recent precursor states
that led up to the discovery of this interesting state. We go
back recallSteps in time (10 in these experiments), saving the
sequence of sensory-motor states the robot experienced to be
able to train it to anticipate each goal.

In order to effectively use these goal endStates, the model
maintains a goal memory. At the beginning of training this
goal memory is initially empty. Whenever the interest level
rises above the interestThreshold, the current state is compared
against all of the previously found goal endStates. If the
Euclidean distance between that current state and any of the
existing goal endStates is below a distanceThreshold (0.19
in these experiments), then it is considered a match for that
previous goal. Otherwise a new goal instance is created, and
the current sensors are saved as the goal endState.

Note that the number of goals discovered during motor
babbling is dependent on the settings of the interestThresh-
old and distanceThreshold. These thresholds must be tuned
appropriately for a particular robot and environment.

Motor babbling was done for 100,000 steps and all appli-
cable sensory-motor data was saved along with information
about each goal that was discovered. Twenty unique motor
babbling runs were conducted to serve as the basis for training
the model.

D. Instant Replay Learning

The point of instant replay learning is to allow the robot
to randomly stumble onto interesting sensory experiences,
and to then rewind a short bit of memory in order to learn
the steps that lead up to that state. In online learning, this



merely requires the model to keep a short, constantly updating
buffer of memory (one for the Perception Prediction Network,
and one for the Abstraction Prediction Network). In offline
learning, the system must keep track of the entire set of these
memory sequences so that it can be efficiently trained.

How should a goal be represented in instant replay learning?
We desire an abstract, yet perceptually grounded way to
trigger the model to execute the sequence of actions that
lead to a particular goal endState. The activations of the
hidden layer of the Perception Prediction Network offer an
ideal representation. Thus immediately after an interesting
situation has occurred, the contents of the hidden layer will
be designated as the goal representation. Meeden called these
representations protoplans and demonstrated in previous work
that they could be used to successfully guide behavior in neural
network learning [16].

Our hypothesis is that discovering goals based on experience
and building goal representations grounded is this experience
will lead to better performance at reproducing the behavior
needed to achieve these goals than a system that uses arbitrary
goal representations. We conducted an experiment to test this
hypothesis. In the next section, we provide a focused set of
results for a typical run of one experiment. Then we provide
evidence based on a series of 20 experiments that support our
hypothesis.

IV. THE ANATOMY OF ONE EXPERIMENT

The model begins each run in motor babbling mode, where
the robot explores its environment and discovers interesting
states. When the interest level rises above the interestThresh-
old, because two successive sensor states differ significantly,
goal discovery is triggered. If the current sensor state is
different enough from all existing goals, then a new goal
will be created. Figure 4, shows all of the goal endStates
found in one experiment. Note that many of the goal endStates
are associated with the stall sensor, which is triggered when
the robot bumps into a wall, and are thus clustered around
the edges of the environment. There is another cluster of
goal endStates around the light source where the robot’s light
sensors pick up larger variations in light readings.

Fig. 4. The endStates (depicted as arrow heads) of all 169 goals found in
one run. The paths the robot took during the 10 actions before reaching each
endState are also shown as black lines attached to each arrow head.

Figure 5 shows how the number of goals discovered during
the experiment grows over time. During the first 20,000 steps,
the rate of goal discovery is quite high. As the robot continues
to explore its environment, there are fewer and fewer new
interesting situations to find, and new goal discovery slows
dramatically. On average, 162.5 goals were found across the
twenty motor babbling runs.

Fig. 5. Goal creation over time.

A. The Anatomy of Two Goals

Let’s consider two specific goals found in the run discussed
above (shown in Figure 6). Because each goal is created based
on a high interest level, we can summarize goals in terms of
which of their sensors experienced the most change. For both
goals 24 and 110, the sonar sensor positioned front and center
on the robot changed the most. Sonar sensors measure distance
to obstacles at a particular angle relative to the robot. For goal
24, this sonar value decreased as it approached the south wall.
For goal 110, this sonar value increased as it backed away
from the north wall.

Fig. 6. Goal 24 is at bottom. The robot was making a series of forward
arcing movements when the goal was discovered. Goal 110 is on the right.
The robot was making a series of straighter backward movements when the
goal was discovered.

B. Generative Behavior

In order to analyze how the model has represented the
motor sequences associated with each goal, we can clamp on a



particular protoplan and produce a sequence of motor actions
and record how the robot behaves as a result. Generating a
motor sequence requires both the lower network and the upper
network to work in tandem. The lower network decodes the
sequence of abstractions produced by the upper network to
determine how the robot should move. The entire process
begins by encoding the robot’s initial sensor state with a no-op
motor command. This serves as the first L1-Abstraction that
is combined with the protoplan to initiate the sequence in the
upper network. In this generative mode, the robot is choosing
actions autonomously based on its learned goals.

Figure 7 demonstrates that when running the model in gen-
erative mode, we can place the robot in a variety of locations,
and by changing only the protoplan input, the model produces
the appropriate behavior associated with each goal. For goal
24, the model generates arcing forward motor sequences that
reduce the front sonar reading. While for goal 110, the model
produces backward motor sequences that increase the front
sonar reading. Additionally, Figure 7 demonstrates that the
model has generalized how to respond appropriately to each
goal in different contexts from which it was trained. Recall
that the model was only trained on the short sequences from
motor babbling where goal’s were initially discovered.

C. Protoplan Relationships

We have looked in detail at two particular goals discovered
during one run of the experiment. Let’s now place these two
goals within the larger context of other goals found throughout
the entire run. Figure 8 depicts a cluster analysis done on the
protoplans of the top 50 most-matched goals. As our analysis
in the previous sections has shown, goals 24 and 110 are quite
different from one another, representing opposite situations
(increasing vs decreasing front sonar values) and opposite
behavior (forward vs backward movement). This is clearly
reflected by their distant relationship in the cluster analysis.
Yet, because all of these protoplans are grounded in the robot’s
sensory-motor experience, they are richly interrelated.

V. OVERALL EXPERIMENTAL RESULTS

Our hypothesis is that grounded goal representations will
outperform arbitrary goal representations in reproducing the
trained goal behavior. To test this hypothesis we compared
the performance of our model with a second instantiation
of the model in which the Perception Prediction Network
remains unchanged, but the Abstraction Prediction Network
is trained with randomly generated goal representations rather
than protoplans. To be clear, in the control experiment, each
goal is assigned an arbitrary, but unique goal representation.
Whenever that goal is being trained, the same arbitrary repre-
sentation is being used. All other aspects of the experiments
remained the same. Twenty different lower-level networks
were trained and paired with 20 different protoplan upper-level
networks and also paired with 20 different control upper-level
networks.

To test the performance of the models, we put them in gen-
erative mode, placing the robot at the location 10 steps prior to

where each goal was originally discovered. We clamped on the
appropriate goal representation—protoplans for the original
model and the arbitrary representation for the control model—
and propagated each model 10 steps forward. We computed
the Euclidean distance between the final sensor state reached
and the goal’s endState. The closer this distance, the better
the model has learned to achieve the desired goal. We found
that in a paired t-test, the sum of distances generated by the
original model were significantly lower than that generated by
the control model (p < 0.01) indicating that the grounded goal
representations were a better foundation for learning.

VI. CONCLUSIONS

In this paper we have shown that a robot with a built-in
concept of interest combined with instant replay can learn to
associate states of interest with protoplans generated internally
by its feed-forward network models. These protoplans can be
used as goals in order to produce multi-step motor sequences
which move the robot into specific sensory situations when
applied in appropriate starting conditions. These grounded
and autonomously created protoplans elicit differing behaviors
in the robot. The protoplans define a continuous space of
representations that can further develop over time.

The model described in this paper captures the essence of a
developmental system exhibiting emergent properties from a
high-level conceptual layer, and a low-level perceptual layer.
Yet, there are many possibilities for further exploration. For
example, although we have focused on predicting the next
steps in sequential movements, the model uses only feed-
forward networks. An obvious enhancement would be to use
recurrent networks.

We also plan to enhance the concept of interest and to
explore other mechanisms for goal discovery. The concept
of interest used in these experiment is simplistic. It is only
triggered by large instantaneous changes in sensors, but not
by more gradual changes over the course of many steps. Also,
measuring interest directly on raw sensor values will likely not
scale up well to more complex sensors such as cameras where
images can have thousands of pixel values. We ultimately want
to test the model on real, physical robots.
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