
Generating Near-Optimized Molecular Geometries Across
Reactions using Neural Networks & Back Propagation

Richard L. Phillips
Swarthmore College Adaptive Robotics

Haverford College
rlanasphillips@gmail.com

ABSTRACT
The rate-limiting step of computational chemistry is com-
puter capital. That is, the amount of research a lab can do
is proportional to their computational throughput. Compu-
tational chemistry is generally used in materials research,
where the properties of a new molecule are not known and
not well studied. One important calculation in this sce-
nario is in optimizing the geometry to an energy minima for
a novel molecular structure. This process takes an initial
geometry estimate and iteratively moves around all of the
atoms to achieve a minima. Materials research often involves
studying many similar molecules or reactions. To cut down
on computational costs for materials research calculations,
this paper proposes an implementation of nonlinear mod-
els to generate initial geometry estimates that require fewer
calculations to achieve global energy minima. Specifically,
this paper aims to justify efforts put into training a neural
network to predict the resulting geometries for the products
of an indicated reaction given the reactants. To do this, a
feed-forward neural network is given initial bond length and
angle measurements and is trained, using back propagation,
to give the product’s measurements. The resulting molecules
are then re-constructed from this data. This paper uses a
quinone and quinol set of geometries optimized with Gaus-
sian 09 and the B3LYP/6-311+G(d,p) model chemistry. For
the molecules in this set, a neural network with two hid-
den layers is shown to learn to accurately predict geome-
tries very close to the set of true optimized geometries. A
comparison is made to an industry standard lowest energy
conformer calculator, ChemAxon’s lowestEnergyConformer
plugin. Experiments show that the network can produce
molecules with closer geometries and lower total energies
than the tool with under 80 data points, and this is expected
to decrease calculation times.

General Terms
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putational Chemistry

1. INTRODUCTION
Computational chemistry is a sub-field of chemistry fo-

cused on applying computational methods to chemistry prob-
lems. The rate-limiting factor in computational chemistry
is the computer capital made available to computational
chemists. That is, research is limited by how many cal-
culations can actually be done. Computational chemistry
is an important science to the field of materials research.

Materials research includes everything from drug discovery
to electrolyte research to renewable resource generation and
more. A key tenant of materials research is that, within a
family of molecules, similar molecules have similar proper-
ties. This means that much of materials research is focused
on families of promising molecules with only minor changes
from each other [1]. Frequently high-throughput screening
for desired properties is done on hundreds, or even thou-
sands, of molecules that are iteratively changed with only
slightly different substructures or functional groups [2, 3].

As the interest of materials research is largely focused
on the discovery of novel materials, few, if any, candidate
molecules will have been studied and characterized previ-
ously. Thus, before any other calculation is done, the molec-
ular geometry of every molecule of interest must be opti-
mized. This is almost always done to a global energy minima
as this is how the molecule can be thought of as existing in
nature. This is important, as non-optimized geometries will
yield significantly different results for ab initio calculations
[4].

So, geometry optimization calculations are important to
determining other characteristics. Geometry optimization,
is generally done through an iterative process that scales ex-
ponentially with the number of atoms in a molecule. It is
firmly an NP-hard problem when approached in a general
case [5]. The problem is deceptive to the iterative intra-
molecular force-minimizing strategies used to tackle geome-
try optimization as the number of local force minima scales
exponentially as well [6].

This provides an ideal opportunity to implement a neural
network to help with geometry optimization. Specifically,
this paper advocates for the use of a feed-forward neural
networks trained with back propagation to learn a particu-
lar reaction. That is, given information about a molecular
geometry and training a network on a number of similar
molecules that experience a common reaction, the network
should be able to predict the changes to the molecular ge-
ometry through the reaction. This could be used to produce
higher quality initial guesses to then complete with a tra-
ditional iterative method to find a global energy minima.
The goal in this scenario is to reduce the total number of
iterations needed, thus saving computation time for more
interesting calculations.

This scenario gives the network several advantages over
a traditional iterative process. First, the network can gain
insight on and generalize changes that occur in a specific
reaction. Whereas an iterative process has to start from
scratch with each molecule optimized, a neural network only



gets better at estimating a starting point as the number of
molecules that it can learn from goes up. Second, this strat-
egy avoids the force-dependent optimization of the tradi-
tional methods. This means that it should completely avoid
the deception that exists in terms of the local energy min-
ima produced as more atoms are added to a system. So,
the optimization function will not get stuck in local minima
and this helps to overcome problems of scale. Third, (but
derived from the first two advantages) this method should of-
fer improvements in terms of systems of multiple molecules,
reactions that split or join molecules and other large systems
of interest.

1.1 Previous Works
Several works have previously tried to implement simi-

lar non-linear strategies, although they largely neglected the
scenario that this paper outlines a solution for (that of learn-
ing a reaction).

The work of Lemes, Zacharias, and Dal Pino Jr in their
January 2000 conference paper ”Application of Neural Net-
works: A Molecular Optimization Study” addresses many
of the same problems as this paper seeks to. Namely, their
paper also works to create a neural network with back prop-
agation to create more suitable starting point geometries.
This paper set up a neural network to help narrow down
iteratively generated silicon cluster geometries to the most
suitable candidates, and then the candidate out of those in
the lowest energy configuration is optimized. To do this,
a neural network is constructed with inputs describing the
geometry of a cluster, a hidden layer and two outputs that
represent the estimate for a cluster’s internal energy. This
allowed for a maximum reduction of over 85% fewer geome-
try optimization cycles than their standard method [6]. This
demonstrates the potential of the application of neural net-
works to geometry optimization.

However, the work of Lemes et al. has several key dif-
ferences from the scope of this paper. Whereas the work
of that paper seeks to identify geometries for generally very
regular silicon cluster, this paper will be more interested
in less regular organic molecules and systems. To combat
this additional challenge, instead of forcing the network on
estimating forces for candidate structures, the network is
tasked with generalizing the effects of a specific reaction on
a family of molecules. This added context should allow the
network to make more powerful predictions. Additionally,
their network does not address the problem of local minima
and of the exponential scaling in difficulty of geometry op-
timization. As their network is constructed with just two
outputs that indicate the model’s estimate of the energy of
the geometry of the molecule, it is likely that the network
will either incorrectly identify local minima as the optimal
starting point or that it will simply train inefficiently until
it is able to overcome this problem.

Styrcz, Mrozek, and Mazur [7] present a much more ro-
bust genetic algorithm with parameters controlled by a feed-
forward neural network. Their network has six inputs, for
hidden layers of six neurons each, and six outputs. The
network is fed with current minimum, maximum and av-
erage distances between their genetic algorithm’s chromo-
somes and is expected to output two meta-parameters and
what their genetic algorithm’s parameters should be for the
next generation of their evolutionary process [7]. Their solu-
tion is robust and promising, although it seems that in many

scenarios it may not provide enough benefit to be worth im-
plementing. The major difference in this work is, again, that
this work assumes a known reaction and is simply working
to train a neural network to characterize that.

Finally, there is a similar work by Deaven and Ho [5] that
also uses a genetic algorithm to generate optimized molec-
ular geometries. Their strategy again focuses on iteratively
generating a set of proposed geometries. They ’relax’ these
geometries, that is, optimize them to a nearby local minima.
Then, they take the geometries with the lowest relaxed ener-
gies and use these to generate a new generation of candidate
structures. But as they must still calculate the nearest local
minima of every candidate in every generation, their method
is still computationally intensive and again lacks the advan-
tages focusing on a specific family of molecules and a specific
reaction offers. Additionally, as the discussed algorithm re-
quires calculations for every candidate to be relaxed to a
local minima, it offers little to no improvement for small
molecules (implied to be molecules of around 20 atoms or
less in the paper).

2. EXPERIMENT
This section will outline the data set used, the network

toplogy, and finally the parameters used in the final imple-
mentation.

2.1 Quinone Data Set
The network was trained and tested on a set of 252 quinone/quinol

pairs with the objective of learning the reaction that takes a
quinone and forms a quinol. The specific framework and re-
action is illustrated in Figure 1. This specific framework was
chosen for it’s availability in a high-quality data set as well
as the calculated stability of the outer functional groups.
Computational calculations have shown that, across the re-
action of interest, the functional groups change very little
in terms of geometry [2]. This is good as it allows for all of
the change in geometry across the reaction to be put on the
neural network to predict. (A current weakness of the model
in its current form is that it cannot account for the parts of
a molecule outside of the framework that it is learning.)

The molecules in the data set were optimized with Gaus-
sian 09 revision D.01 and the B3LYP/6-311+G(d,p) model
chemistry. This model chemistry was chosen as it can be
used to produce geometries for quantum calculations that
very accurately predict experimental data [2]. Additionally,
the quinone family of molecules is a current family of in-
terest in terms of developing new renewable energy storage
options.

Unless otherwise stated, all of the experiments in this pa-
per were run using a training set of 180 molecule pairs and
a test set of 72 molecules.

2.2 The Network
For this experiment, the network was a feed-forward neu-

ral network with 23 inputs, two hidden sigmoid layers of 12
nodes each, and 23 outputs. The network was implemented
with a bias of 1. The first 12 inputs represented normalized
bond lengths between every atom of the framework molecule
and the remaining 11 represented the normalized angles be-
tween these bonds. A smaller model of the network can be
seen in Figure 2.

2.2.1 Implementation



Figure 1: The reaction from a quinone (left) to a
quinol (right) for the framework used in the exper-
imental portion of this paper

Figure 2: A smaller version of the network used in
this experiment. The input vector consists of bond
lengths for the bonds between atoms in the frame-
work and the angles between those bonds. This data
was then used to reconstruct the molecules for the
final optimization calculations.

Table 1: Important Parameters
Parameter Value

Inputs 23
Outputs 23

Hidden Layer Type Sigmoid
Hidden Layers 2
Learning Rate 0.02

Momentum 0.90
Bias 1

The network was implemented in the Python library Py-
Brain [8] for ease of use and adaptability. The back propaga-
tion trainer native to PyBrain was used to train the network.
The network was trained with a learning rate of 0.02 and a
momentum parameter of 0.90. The momentum parameter
indicates the ratio of the gradient of the last time step that
is to be used. There was no learning rate decay or weight
decay used. These parameters were determined experimen-
tally. The output bond lengths were used to reconstruct the
highly planar rings of the framework molecule

3. RESULTS
The network demonstrated learning capacity and was, in

fact, able to improve in accuracy over several generations.

3.1 Current Standard Comparison
The current industry standard is to take a program, like

ChemAxon’s lowestEnergyConformer plugin, to generate an
initial geometry to optimize using more computationally in-
tensive methods. ChemAxon generates a conformer based
of off known geometries of the substructures of the molecule
in question and then lightly optimizes those. This is a cheap
calculation that gives a program like Gaussian 09 a starting
point to improve upon. A good standard of success for the
neural network discussed in this paper was to compare the
geometries that it generated to those ChemAxon could. If
it produced geometries that could be optimized with fewer
computations, then it was succesful and is likely worth im-
plementing in current research. However, given limited time
for this paper a more qualitative measurement has to be de-
termined. The force of the generated structure will serve as
a proxy (Lower forces qualitatively indicated less computa-
tional cost to optimize).

To make this comparison, Marvin 15.6.1.0, 2015, ChemAxon
was used to generate geometries for a subset of the test data
set of molecules and that was compared to the neural net-
work’s output with 10, 40, and 80 training data points re-
spectively.

3.2 Recreating Product Geometries
One important note thus-far left un-addressed is how the

output, a vector of 12 bond lengths and 11 bond angles, was
transformed into the Cartesian coordinates for a molecular
geometry. As the framework molecule was highly planar, a
Python script was simply created to adjust the bond lengths
of a ChemAxon estimate so that it matched the output of
the neural network as closely as possible. The bond angles
were not used at this point.

3.3 Sample Size Requirement
Of particular interest is the number of molecules that are

required for the network to be effective. Figure 4 shows
average degrees of error for 5 runs of training sets of each
4, 20, 40, 80, and 120 training data points. There is little
quantitative difference in test data set performance between
80 and 120. There also seems to be a comparable degree of
error for 40 training points, but Figure 5, which has a bet-
ter measurement of model accuracy, refutes this. Figure 5
shows the intra-molecular force of the generated geometries
for three given training data set sizes and ChemAxon. These
geometries were generated by versions of the network each
trained for 8 epochs with their given sample sizes. Note
that, on average for this particular framework, the neural



Figure 3: A graph of the calculated mean square error for the test data set after the given number of
generations trained. Training done on 180 sample training set. It is evident that the model is making
progress on the test data set as with each successive training epoch. Note that the network was not trained
on the test data set. The model generally converges between 6 and 8 epochs, and should probably not be
trained beyond that to avoid issues of overfitting.



network beats out ChemAxon with 80 training samples by
nearly a factor of 2. The neural network finds a lower force
conformer (without doing gradient descent on force) with
80 training samples (p = 0.0088). However, a small sam-
ple size and a very specific reaction limit this paper’s ability
to make assertions about to what degree the network will
reduce computational time or how much lower in force the
generated geometries will be. Figures 6-9 show indicative
examples of generated structures for each of the four meth-
ods. The geometry generated from a 10-item training set is
clearly impossible, and so the force calculations associated
with it could not be completed by Gaussian 09.

3.4 Discussion
There is strong evidence that the model was successful in

its goal. The advantage that a model trained to have context
for a specific reaction is clear, and there does not seem to be
any reason that this would not hold true for other (especially
similar) molecules.

The network itself and the parameters of the back propa-
gation trainer do not seem to be very sensitive at all. The
learning rate can span the range of 0.01 to 0.08 and the
momentum can vary between 0.81 and 0.95 with no sta-
tistically significant difference in test data set performance
after 8 epochs (with a sample size of ten for each bound).
The addition of an additional hidden layer or two, however,
dramatically increases the mean square error of the model’s
predictions when using a smaller sample size. This makes
sense in context, as back propagation will have more diffi-
culty following the error gradient to improve the model for
nodes that are father away from the input.

The method of re-constructing geometries was implemented
given tight time constraints and represented a limitation to
the study. With greater time and resources, a more ro-
bust solution might have been found. As it is, however,
the reconstruction introduces some degree of error to the
internal bond angles as the neural network outputs are not
used. This means that some emphasis needs to be taken
away from the quantitative measures of performance for the
models until further development and testing can be done.

The paper has successfully facilitated the construction of
a program that manages bonds and bond lengths and serves
as a tool kit to quickly gather important information about
molecular geometries. Further, there are few obstacles to
releasing and applying the framework to other families of
molecules as soon as the limitation of the re-construction is
overcome.

4. CONCLUSIONS
Training a neural network to a particular reaction has

shown to be a success for this particular framework. This
a good indicator, but more research needs to be done to
quantify the benefits (savings in computational time) to
determine if this is worth the human time to implement.
Additionally, what size molecules, what reactions and what
molecular sub-structures work best with this method need
to be explored more fully. For instance, increasingly large or
complex molecules might see more worthwhile benefits (but
then the model would be competing with a different host of
optimization strategies). However, the results of this paper
do justify doing additional research. Additionally, it would
be a productive use of resources to get the program con-
structed to facilitate the experiment of this paper into the

hands of scientists that can take advantage of its features.
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Figure 4: A graph of the average mean square errors for the test data set after 6 epochs for networks trained
on the given number of data points. The white circles represent the average maximum error for the same
set of test data set performances.
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Figure 5: A bar graph comparing the energies of the generated geometries for a neural network with 10, 40
and 80 training data points and ChemAxon’s own calculation. Note that lower values are more favorable as
they imply that there is less computational work to be done. Also note that the majority of the 10 training
set molecules were unrunnable, as they had interatomic distances that were too small.



Figure 6: Generated from a 10-item training set

Figure 7: Generated from a 40-item training set

Figure 8: Generated from a 80-item training set

Figure 9: Generated by ChemAxon’s Lowest Energy
Conformer


