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Abstract 

The experiments described in this paper aim to create a bipedal walking task whose level of 
deception can be adjusted on a sliding scale. This task is considered deceptive because it uses as 
its objective measure of fitness the x-distance traversed by a simulated robot, measured from a 
point at a specified height on the robot’s body. If this point is set to a substantial height above the 
robot’s feet, simply falling flat, with the measurement point pivoting 90 degrees, increases the 
robot’s objective fitness score substantially even as it fails the task. Falling is thus a local 
optimum. Traditionally, Novelty Search combined with NEAT would be thought to evolve a 
more effective Artificial Neural Network for such an agent than NEAT alone; Novelty Search 
tries to evolve substantially original solutions to a problem independently of the objective fitness 
measure, thus avoiding many of the local optima introduced by the type of deception described 
above. However, I wanted to compare the performance of NEAT alone with a simulated biped’s 
fitness measurement point adjusted to various heights, creating varying levels of deception. The 
same experiment run using Novelty Search functions as a control. The goal is two-fold: to 
determine whether NEAT can produce similar success to Novelty Search on this comparatively 
difficult bipedal walking task; and if this is the case, to determine how NEAT’s performance is 
affected by granular adjustments to the level of deception in its assigned task. Furthermore, I 
hope to demonstrate at which point a task might be considered deceptive enough that Novelty 
Search would offer substantial benefits compared to NEAT alone. Through my experiments, I 
was able to show increasing NEAT performance with decreasing deception by some metrics. 
However, these results were not entirely consistent and may not be entirely conclusive. The use 
of Novelty Search as a control failed to show satisfactory performance on this task. In fact, 
NEAT outperformed Novelty Search by a substantial margin for every experiment. 
Introduction 
 The inspiration for this study comes from Joel Lehman and Kenneth O. Stanley’s 2011 
paper “Abandoning Objectives: Evolution through the Search for Novelty Alone”. The paper 
concerns itself with a general discussion of the Novelty Search algorithm, which avoids falling 
into deceptive local optima by basing its evolutionary mechanism on behavioral novelty rather 
than on objective fitness (3, pg. 1). Several experiments in deceptive environments are discussed 
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in which a combination of Novelty Search and NEAT significantly outperform fitness-based 
NEAT due to the latter’s tendency to become trapped in local optima (3, pg. 2). One of these 
experiments involves a bipedal walking task. In this task, a simulated 3D robot controlled by an 
evolved ANN must walk as far as possible within a given amount of time (3, pg. 24). The agent’s 
only inputs are two sensors indicating a foot in contact with the ground. The robot has two hip 
joints and two knee joints, but no ankle joints, with varying degrees of freedom in each joint. 
Fitness is calculated based on squared distance traversed by the robot based on the location of the 
robot’s center of mass (3, pg. 25). My experimental setup varies in a number of ways, mostly for 
the sake of simplicity, reliability and controllability of the results. For example, my agent’s only 
joints are at the hip. Furthermore, the agent’s legs do not leave the ground, but “contact sensors” 
of the type in the original experiment are provided by measuring the leg angle of the agent 
(described in greater detail in the next section). There is no simulation of gravity per-se in my 
simulator; instead, the agent simply falls if it overextends its legs, so it needs to develop an 
oscillatory behavior if it is to make much progress. All in all, my setup and agent are much 
simpler than the one described in Lehman and Stanley’s experiment. However, my assumption is 
that much of the deception in the bipedal task arises through the choice of measurement point on 
the agent’s body. This is the main variable in my experiments, in contrast to the original.  
 Another practical study for the development of a bipedal robot points out that the 
majority of current bipedal robots operate based on manually determined commands or pre-
defined walking programs that are not particularly adaptive (2, pg. 2). This is very far-removed 
from the nature of Lehman and Stanley’s experiment, and of the experiments I aim to perform. 
This distinction underscores the difficulty of trying to evolve an ANN that can control a bipedal 
agent with no biases, no pre-defined behavior, and only ground sensors on each foot (and, in my 
case, a countdown timer) as inputs to the evolutionary algorithm. 
 An article about a research team trying to model the mechanics of human bipedalism in a 
complex, multi-jointed robot highlights some of the specific difficulties in the bipedal walking 
task. For example, the joints often move at highly variable velocities; this is especially true in the 
example given in the article of knee joint movement in uphill walking or walking up a flight of 
stairs, though it applies more generally as well (1). In contrast, my simulated environment 
ignores much of this complexity, largely out of simple necessity. Another observation is that 
humans naturally tilt forward, potentially coming close to falling, when walking. This is another 
reason why the local optimum of pitching over is so easy to fall into (1). Though my simulator 
does not directly replicate this type of leaning behavior, the necessity of extending a leg, and thus 
moving closer to the dangerous angle at which falling over becomes a possibility, should mirror 
the deception of needing to lean over, risking a fall, in order to move forward. 
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Hypothesis 
 For my experiments, I predict that reducing the amount of deception in the bipedal 
walking task by lowering the point of distance measurement on the agent’s body will result in a 
substantial improvement in the performance of NEAT on this task. I would still not be surprised 
to see Novelty Search outperform NEAT across the board, but I would expect Novelty Search’s 
advantage to become substantial only when the task is made more deceptive by raising the 
measurement point. 

Experimental Setup 
All experiments were run using simulated bipedal agents. For the simulations, I coded a modified 
version of the Python and Zelle Graphics-based robot simulator used for a number of in-class 
Adaptive Robotics labs. The environment is always represented as a rectangular space of 1400 
pixels in width by 400 pixels in height. An agent is represented as a set of five points: a head, a 
waist, a left foot, a right foot, and a point from which the current x position of the robot is 
measured. For my experiments, agents were defined to be 200 pixels in height and were placed 
directly in the center of the environment. The height of measurement point on the robot’s body 
may be defined on a floating point scale from 0.0 (on the ground of the virtual environment) to 
1.0 (at the very top of the agent, i.e. 200 pixels from the ground). Each foot is allowed a range of 
motion from -60 to 60 degrees about the agent’s waist; the rest of the agent’s body does not 
pivot. There are two motor outputs to the agent. The first is a floating point value between -1.0 
and 1.0, where -1.0 - 0.0 inclusive specifies that the left foot should be rotated, and a value of 
0.1-1.0 inclusive specifies a rotation of the right foot. The second is a floating point value 
between -1.0 and 1.0 indicating the degree of rotation about the waist, where value*60 = degrees 
of rotation. When one foot is rotated, the other foot is rotated an equal amount in the opposite 
direction. The agent moves to the left if a left foot rotation and a negative rotation amount are 
specified, and right if a right foot rotation and a positive rotation amount are specified. The 
movement is a translation of the whole agent in the x direction of 15 pixels times the normalized 
rotation amount from -1.0 to 1.0. In order to move both feet back towards the center of the agent, 
the controller must specify either a negative right foot rotation or a positive left foot rotation; this 
is necessary to develop a successful oscillatory walking behavior, as the agent will “fall” and its 
run will terminate if its feet are pivoted at an angle greater to or equal than 58 degrees. The agent 
could be said to move forward with a shuffling, scissor-like movement. When the agent falls, its 
entire body does not pivot, but the fitness measurement point pivots 89 degrees in the direction 
of travel, adding the element of deception to the walking task. A rotation of 89 degrees rather 
than 90 degrees is used so that the measurement point is still visible in the simulator window 
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after an agent has fallen. Also for visualization purposes, lines are drawn between the head an 
waist, waist and left foot, and waist and right foot of the agent, representing a torso and legs. For 
clarity, the left leg is colored green and the right leg is colored red. 
 There are three sensory inputs to both NEAT and Novelty Search: the number of time 
steps remaining, initialized at 1000 in all experiments, and two sensors that read 1.0 if a foot is 
within 5 degrees of its “starting” position in-line with the rest of the agent’s body and 0.0 if it is 
not. This is analogous to the sensors in Lehman and Stanley’s experiments indicating whether or 
not a robot’s foot is in contact with the ground.  
 Objective fitness is specified as a value between 0.0 and 1.0, a proportion of an agent’s 
maximum possible distance away from the center of the world, that is, 700 pixels in either 
direction given a world of width 1400. Given these values, objective fitness as a function of the 
measurement point’s x value is given by the equation:  

 abs(measure point X - 700) / 700. 
Strict upper and lower bounds of +/- 700 are set on the measured distance away from the world 
center to account for cases where the measurement point may pivot outside the bounds of the 
agent’s world. 
 For the Novelty Search experiments, the behavior space of an agent is defined as a series 
of x regions visited by either foot of the agent. Each region is 10 pixels in length, resulting in 140 
total regions with values ranging from 0 for the leftmost region to 140 for the rightmost region. 
Behaviors are thus lists of 140 point of length 1, the list being padded with 0s in place of 
unvisited points. This behavior setup leads to a maximum length of 140*140 (140 points of 
length 1 with a maximum cartesian distance of 140 between any two points).   
 For all experiments, runs of 15 generations were used. For the Novelty Search 
experiments, the primary parameters were k=15 (k-nearest neighbors), a limit of 100, a threshold 
of 0.25, a point length of 1, and a maximum distance of 140*140. For further NEAT and Novelty 
Search parameters, see Appendix 1 at the end of the paper. 
 For NEAT, 7 total experiments of 10 trials each were run with fitness measurement points 
positioned at 0%, 25%, 33%, 50%, 67%, 75%, and 100% of the robot’s height. For Novelty 
Search, the measurement point was set to 50% of the robot’s height to approximate the 
conditions in Lehman and Stanley’s paper. 
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Figure 1 (below): An example of an agent of height 200. The point in the center of the agent’s body is the 
fitness measurement point, at 50% of the agent’s height. The agent begins at its starting position (left), then 
extends its right leg 30 degrees, causing it to move forward slightly (center). It then extends its right leg another 
30 degrees, again causing it to move forward, but because it has overextended, its measure point pivots 89 
degrees and this run ends. The pivoting of the measure point increases the measure point’s x value, making this 
situation a local optimum. To successfully traverse its world, the agent needs an oscillatory, shuffling, “scissor-
like” walking movement



 

Results 
 The results of the experiments for various fitness measurement heights with NEAT as the 
evolutionary algorithm are summarized in Table 1 below: 

In many cases, the average best fitness scores produced over ten runs are higher when the 
measurement point is set lower on the agent’s body, thereby theoretically reducing the amount of 
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Table 1 
NEAT Experiment: Averages over 10 Runs per Measure point

Measure Point 0.0 0.25 0.33 0.5 0.67 0.75 1.0

Best Fitness 0.727 0.716 0.562 0.605 0.601 0.706 0.581

Generations to 
achieve best 
fitness (0-14)

6 5 5 7 5 5 7



deception in the walking task. This might seem to support my hypothesis that NEAT’s 
performance on a bipedal walking task can be improved by lowering the amount of deception in 
the task. However, this is not always the case. Most notably, the average score for runs with the 
point set to 75% of the agent’s height is notably higher than the averages scores for runs with the 
point set from 33-67% of the agent’s height. Furthermore, the average fitness score for runs 
using a height of 0% is very similar to that of runs using a height of 25%, and there is a slight 
increase in the score from 33% to 50%. It is also difficult to notice a consistent trend in the 
number of generations needed to reach maximum best and average fitnesses, although peak 
average fitness scores often increase somewhat with theoretically increased deception, seemingly 
contradicting my hypothesis. Qualitatively, every run of NEAT developed at least some agents 
that were able to discover the necessary oscillatory shuffling behavior to completely traverse half 
of the world, thus achieving perfect fitness scores. 
 The results from the experiments using Novelty Search are summarized in Table 2 below: 

It is difficult to draw firm conclusions from these results. Novelty Search performs quite poorly 
on this bipedal walking task, rarely generating behaviors that cover more than 20% of the 
objective space. Qualitatively, the agents controlled by Novelty Search seem to move only a step 
or two before falling flat, consistently producing excessively large forward leg movements 
without counterbalancing reverse movements; oscillatory behavior is not discovered. 
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Table 2 
Novelty Experiment: Averages over 20 Runs total

Best Objective 
Fitness

0.191

Generations to 
achieve best 
objective 
fitness

5

Best Average 
Fitness 
(novelty)

0.101

Generations to 
achieve best 
average 
novelty

0
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Figure 3: Average and best fitness scores from a fairly representative NEAT run using a measure 
point of 50%. The best score for a particular run will often converge to a particular value very quickly 
and/or suddenly.

Figure 4: The phenotype of the best chromosome from generation 14 of a 
different run of NEAT, again with the measure point at 50%. 



Conclusions/Discussion 

Overall, I was not able to substantiate my hypothesis. While the results for the NEAT 
experiments may demonstrate some support to the prediction that varying the agent’s point of 
fitness measurement will substantially affect NEAT performance, this did not hold true for every 
experiment, nor was there a consistent trend in most of the data points. In fact, NEAT converged 
to a correct solution very quickly in some cases. Perhaps more surprising was the extremely poor 
performance of Novelty Search on the same task. The higher measurement point in itself may 
partially explain the higher scores for some of the experiments run with the point above the 
robot’s center. Although this change increases the deceptiveness of the task, it also leads to a 
larger x-distance increase should the agent fall. However, I think the main takeaway from my 
results is that the task of creating a bipedal walker in the real world, in three dimensions, with 
multiple joints, and with the effects of gravity, friction, and other factors, is far more complex 
that what I am reasonably equipped to recreate at this point. There are likely other sources of 
deception in the task than simply the choice of distance measure. This may explain why 
modifying this parameter did not yield quite the expected performance differences over the 
course of the NEAT experiments. In the case of Novelty Search, the algorithm may not have 
been able to perform to its full potential given what may not have been a highly deceptive task. 
Perhaps this is a demonstration that, for simpler tasks, using behavioral novelty rather than 
objective fitness can be detrimental, though this is only speculation on my part.  
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NEAT Parameters Novelty Search Parameters

[phenotype]
input_nodes         = 3
output_nodes        = 2
max_weight          = 30
min_weight          = -30
feedforward         = 1
nn_activation       = tanh 
hidden_nodes        = 0
weight_stdev        = 0.9

[genetic]
pop_size              = 100
max_fitness_threshold = 1

# Human reasoning
prob_addconn          = 0.1
prob_addnode          = 0.05
prob_mutatebias       = 0.2
bias_mutation_power   = 0.5
prob_mutate_weight    = 0.9
weight_mutation_power = 1.5
prob_togglelink       = 0.01
elitism               = 1

[genotype compatibility]
compatibility_threshold = 3.0
compatibility_change    = 0.0
excess_coeficient       = 1.0
disjoint_coeficient     = 1.0
weight_coeficient       = 0.4

[species]
species_size        = 16
survival_threshold  = 0.2
old_threshold       = 30
youth_threshold     = 10
old_penalty         = 0.2
youth_boost         = 1.2
max_stagnation      = 15

[phenotype]
input_nodes         = 3
output_nodes        = 2
max_weight          = 30
min_weight          = -30
feedforward         = 1
nn_activation       = tanh 
hidden_nodes        = 0
weight_stdev        = 0.9

[genetic]
pop_size              = 10
max_fitness_threshold = 1.1

# Human reasoning
prob_addconn          = 0.1
prob_addnode          = 0.05
prob_mutatebias       = 0.2
bias_mutation_power   = 0.5
prob_mutate_weight    = 0.9
weight_mutation_power = 1.5
prob_togglelink       = 0.01
elitism               = 0

[genotype compatibility]
compatibility_threshold = 3.0
compatibility_change    = 0.0
excess_coeficient       = 1.0
disjoint_coeficient     = 1.0
weight_coeficient       = 0.4

[species]
species_size        = 10
survival_threshold  = 0.2
old_threshold       = 30
youth_threshold     = 10
old_penalty         = 0.2
youth_boost         = 1.2
max_stagnation      = 15
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Appendix 1: Additional Parameters
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