
Crawling Before Walking: Improving Walking Soft Robot Evolution

Julian Segert

Abstract

Walking is a classic task for both evolving and engineered robots. The task is complex
yet easy to score and holds much biological and practical relevance. Here, we look specifically
at evolving voxel-based soft robots and how current evolutionary algorithms can be improved
to better emulate biological systems and develop more sophisticated locomotor behavior. We
assess and attempt to remedy the shortcomings of previous studies on evolving soft robots using
compositional pattern-producing networks (CPPNs). We found that CPPNs are not necessary
for the emergence of bilateral symmetry, although the relatively more complex CPPN networks
performed better than traditional NEAT. We also propose and outline implementation of a
biologically-inspired soft robot using a system of coevolving central pattern generators (CPGs).

1 Introduction

1.1 Background

The field of robotics has reached a dramatic turning point. It has become difficult for human engi-
neers to program robots with starkly different topologies and sensors from themselves. Moreover,
while robot controllers are adept at mathematical computations, it has proven very difficult to
imbue them with many of the functions that come naturally to humans and other animals, such as
vision or fluid and efficient movement. Instead, many computer scientists in the field have appealed
to the forces of evolution with artificial genetic encodings of robot controllers and morphologies.
Using evolutionary algorithms, random mutations are introduced into the robots in study, allowing
for novel solutions engineers would have a hard time imagining. The best performing individuals
can then be selected, and their genotypes recombined with other champions to introduce more
genetic diversity. This process continues to run, optimizing solutions over many generations.

One of the most popular and effective evolutionary algorithms is known as NeuroEvolution of
Augmenting Topologies (NEAT) [5]. As the name suggests, this algorithm is specifically for evolving
artificial neural networks. One of the key strengths of NEAT is that it complexifies automatically,
that is to say, neural networks start out simple, but new edges and hidden nodes are added as
needed to increase the computational capacity of the network. NEAT is also effective because it
allows and actively encourages speciation of “chromosomes,” the encoding mechanism for its neural
networks. This allows diverse solutions to emerge in each run without a slight edge early on causing
one genotype to dominate.

One variant of the basic NEAT algorithm is the so-called compositional pattern-producing
network (CPPN) [6]. This variant is designed to model biological development and induce complex
patterned structures. It is typically implemented using a modified NEAT algorithm to allow for
the same sophisticated evolutionary protocols, thus creating CPPN-NEAT.

1



CPPN-NEAT is a staple platform for evolving biologically-inspired walking robots. This al-
gorithm was used in a previous study by Cheney et al. [3] that evolved walking behavior in the
voxel-based softbots which form the basis of this study. An evolving CPPN-NEAT neural network
is used to determine the morphology of these softbots, with each block being either empty, phase1
muscle, phase2 muscle, hard passive, or soft passive type. The muscle blocks expand and contract
in relation to the temperature in the environment, and the two types are in opposite phase to each
other (i.e. one expands while the other contracts). Softbots were evaluated based on the Euclidean
distance of the center of mass over a fixed time interval when run in the soft body physics simulator
voxelyze. Using this protocol, Cheney et al. successfully evolved robots that could traverse flat
terrain. They further demonstrated the robustness of this evolutionary protocol by evolving these
softbots under constraints, penalizing them for the number of total or actuated voxels. The robots
managed to adapt to these constraints with only marginal drops in overall speed.

1.2 Limitations of Previous Research

While these results are interesting, previous studies lack much in the way of practical and biological
consideration. First is the issue of what we will call “ghost” controllers. We use this phrase to
describe robots whose central controller is not rooted in the same physical space as the robot itself.
Take, for example, the iconic work by Karl Sims [4] which coevolved the morphology of locomoting
robots along with controllers. Controllers are implemented as neural networks nested within each
piece of the robots that can control the action of associated joints. This implementation ignores
the physical presence of controllers within the robot and instead actuates them from disembodied
ghosts.

The softbots created by Cheney et al. fall victim to the ghost controller issue. These robots in
fact lack controllers entirely, but one can think of the rhythmic activation of muscles as a simple
and abstracted form of controller. Ghost controllers are suboptimal because they trivialize the idea
of embodied intelligence which states that intelligence emerges as result of the complex interactions
between a central controller, a physical body, and the environment. With the controller abstracted
into a different physical plane as the body and the environment, the emergence of embodied in-
telligence is jeopardized. Moreover, this a poor approximation of biological systems, as neural
controllers are inextricably linked to the physical body and evolve under the same mechanisms.
Lastly, ghost controllers are impractical if one intends to port robots evolved in simulation into
physical ones. In practice, robots need onboard processors, at the very least to execute remote
commands and control their associated motors.

Another problem with previous research is the reliance on CPPN-NEAT to induce symmetric
solutions, and the lack of recognition for selection’s role in the emergence of bilateral symmetry.
Here, we explore the differences between NEAT and CPPN-NEAT evolved walking softbots in
both performance and symmetry. We also propose a model for evolving softbots with decentralized
controller blocks, inspired by the central pattern generators used in vertebrate locomotion.

Auerbach and Bongard [1] used a similar CPPN-NEAT implementation to evolve bilaterally
symmetric and intricately patterned robots for a movement task. The task was slightly different,
because it focused on the morphological changes necessary to navigate surfaces with reduced friction
(“ice”). This study showed that CPPNs generated more complex shapes to deal with the more
complex task of traversing slippery terrain. However, it did not establish that CPPNs produce
bilaterally symmetric objects on their own, since the objects generated were reflected over their
short axis to ensure bilateral symmetry. Because Stanley’s original CPPN paper [6] involved a

2



human experimenter selecting pictures, to the best of our knowledge, the evidence that CPPNs are
more prone to establishing bilateral symmetry than are other algorithms is severely lacking.

The experiments described in this paper follow closely from the experiments described in the
Cheney et al. paper [3], and much of the data are from modified versions of their provided source
code.

2 Experiment 1: Traditional NEAT Control

2.1 Motivation and Procedure

In addition to the direct-encoded genetic algorithm control Cheney et al. used, we run the same
evolutionary algorithm, except with what we will refer to as a “traditional” NEAT-evolved mor-
phology. To clarify, the Cheney et al. used CPPN-NEAT evolved neural networks to determine
morphology. The networks took the x, y, and z coordinates of each voxel, as well as the distance to
the center. The CPPN networks used hidden nodes with one of several types of activation function.
The network outputted values between 0 and 1 for each material type. The material that received
the highest output for the given coordinate was placed into that position in the final phenotype.
The solutions that evolved from this protocol tended towards bilateral symmetry with coordinated
regions of the same material types. This result was compared to a run of a direct-encoded GA
evaluated using the same criteria. Perhaps not surprisingly, the direct-encoded control performed
poorly, and the evolved morphologies were largely uncoordinated. However, this does not establish
that CPPNs are necessary for the emergence of patterned, symmetric structures. A more mean-
ingful comparison is to traditional NEAT, which we define in this situation as a NEAT instance
which takes only the x, y, z coordinates of each voxel and only uses nodes with sigmoid activation
functions. This is a better control because it better isolates the difference between NEAT and
CPPN-NEAT, whereas the direct-encoded GA control was confounded by the vast difference in
evolutionary protocols and algorithmic complexity.

For our control runs, we ran 500 generations of the softbots experiment from a modified version
of the available source code in the orignal experiment [3]. These results were compared to analagous
runs of 500 generations of the unmodified CPPN-NEAT experiment. Experiments were also run
with penalties as in the original paper. Details on experimental parameters can be found in the
appendix. Unconstrained trials were performed in duplicate, averages are shown. We did not
replicate the direct-encoded GA runs, but the results from Cheney et al. definitively demonstrated
that this approach substantially underperforms both NEAT and CPPN-NEAT.

2.2 Results

Run without constraints, traditional NEAT slightly outperformed CPPN-NEAT in both average
and generation champion (genChamp) fitness (fig. 1). Peak fitnesses were nearly identical (69.43cm
for NEAT versus 69.04 for CPPN-NEAT), but NEAT was dramatically faster to optimize. More-
over, the CPPN champion was more of an outlier than the respective NEAT champion, which is
apparent by the more dramatic difference best and average fitness for CPPN compared to NEAT
runs.

When run with a penalty for the total number of voxels, CPPN-NEAT and NEAT were not
substantially different (fig. 1). For both, the averages showed a characteristic bimodal pattern,
with NEAT peaking slighly earlier but reaching similar maxima. In terms of genChamp fitness,

3



Figure 1: Average and best fitness scores for CPPN-NEAT and NEAT evolved voxel softbots. Left
side is average fitness, right is the fitness of the genChamp for each generation.

CPPN-NEAT narrowly edged out traditional NEAT. CPPN-NEAT’s relative fitness was more dra-
matic when solutions for the number of actuated voxels. Here, the CPPN genChamp consistently
outperformed NEAT, and NEAT’s average fitness did not increase appreciably over the entire 500
generations, while CPPN’s average increased steadily before leveling at a fitness over 70cm.

Phenotypically, CPPN-NEAT evolved along similar lines. In all variations, the highest-performing
CPPN-NEAT solutions took the form of an approximate sphere divided into two sections, the larger
of which is a solid mass of contracting muscle, and the smaller is hard passive type at the back
of the robot (fig. 2). Traditional NEAT solutions were more diverse; some strongly resembled the
characteristic sphere softbot from CPPN-NEAT, although the form was often slightly less symmet-
ric or the edges of material types were less well defined. Another common solution among NEAT
networks was a staircase-like shape with a section of muscle on the bottom and section of soft
passive material on top (fig. 3).

As far as complexity, CPPN-NEAT consistently produced more complex solutions than did

4



Figure 2: Characteristic phenotypes for CPPN-NEAT evolved softbots. Red is phase1 muscle, blue
is hard passive.

Figure 3: Characteristic phenotypes for traditional NEAT evolved softbots. Red is phase1 muscle,
light green is phase2 muscle, blue is hard passive, and dark green is soft passive.

standard NEAT in all three conditions (fig. 4). The two networks were configured with the same
probabilities of adding nodes, although CPPN-NEAT does have an additional input node. For
CPPN-NEAT, the most complex networks arose from the voxel cost constraint, followed by the
unconstrained condition and actuated voxel cost constraint. Traditional NEAT developed the most
complex networks when unconstrained, followed by voxel cost constraint and then actuated voxel
cost constraint, although this condition had a rapid spike in complexity near the end of the run
(fig. 4).

3 Experiment 2: Coevolving Softbots with Controllers

3.1 Motivation

In the animal kingdom, motor control is shockingly decentralized. The brain is typically responsible
only for high-level commands that specify a type of movement, but encodes nothing about the
mechanism by which to execute these commands. More localized structures are necessary for this.

5



Figure 4: Complexity of evolved networks, defined as the number of nodes in the genChamp for
each generation. NEAT actuate cost trace extends above the top of the axis to 500.

For vertebrates, these structures are the central pattern generators (CPGs), which coordinate the
rhythmic contractions of muscles needed for locomotion. A network of decentralized controllers
turns out to be an extremely efficient control scheme. Vertebrates have evolved central pattern
generators, and cephalopods evolved the similar local pattern generators independently. Neurons
are energetically expensive, so there is selective pressure against having more complex nervous
systems than are necessary. By extension, we can conjecture that decentralized motor control
mechanisms are efficient because they have been favored by evolution.

Biological CPGs achieve rhythmic output by systems of mutually inhibitory neurons that fatigue
so that the two are activated in an alternating manner [2]. In order to emulate this in a NEAT
evolved neural networks, NEAT would be parameterized so that it is not strictly feed-forward, and
rhythmic output would hopefully evolve on its own.

Adding CPG blocks to the morphology of the robot also helps to address the ghost controller
problem. The controllers exist alongside the rest of the body in physical space. Moreover, the de-
centralized architecture of this approach also allows muscle blocks to integrate inputs from multiple
sources, making the entire body part of the computational process, a prime example of embodied
intelligence that would not be possible with a disembodied ghost controller.

3.2 The CPG Model Applied to Voxel Softbots

To see this hypothetical CPG model in action, several attempts were made to design an evolutionary
algorithm along these lines. The framework was based around the Cheney et al. [3] protocol, but
with some important differences. Because of time and computational constraints, most of the
following protocol is hypothetical.

The morphology of the softbots is still determined by a CPPN-NEAT network in much the same
way as before. However, in this iteration, voxels are either empty, muscle, or CPG. Muscles do
not contract in response to temperature change, but instead in response to activation signals from
neighboring CPGs. When a CPG voxel is instantiated, it goes through an initializtion step in which

6



it is linked to nearby CPGs and muscles. Ideally, each CPG could link to a variable number of other
voxels, with the probability of linking to any particular voxel inversely proportional to Euclidean
distance. However, this is very difficult to implement, and CPGs currently link to a fixed number
of other voxels, 3 CPGs and 6 muscles. Linking to other CPGs allows control networks to form,
similar to what is seen in biological control networks. Each CPG has nested within it an evolving
NEAT neural network, which takes as input the signals from associated CPGs and outputs signals
to its associated CPGs and muscles.

Muscles then integrate the activation signals from multiple CPGs. CPG outputs are scaled from
-1 to 1, allowing for excitatory or inhibitory signals. Muscle blocks have linear activation functions,
mimicking biological muscle bundles which contract roughly linearly with neural activation. The
one aspect of this model that is glaringly out of line with analogous biological systems is the way
in which muscle blocks can expand and contract, whereas biological muscles can only contract.
One can, however, abstract this as saying every region of muscle voxels is analagous to a pair of
opposing muscles which are usually found in close proximity in biological systems.

What evolves in this experiment is a meta-genotype consisting of the morphology-determining
CPPN-NEAT network as well as the associated NEAT networks within each CPG. Because of
the use of nested neural networks and the complexity of the task these robots must learn, the
computational time of running this experiment would be staggering. Because the algorithm was
never completed, and insufficient time and computational resources were afforded, there are no
data to report for this experiment, although this remains an open field of investigation.

4 Discussion

4.1 NEAT Control Trials

We have seen that, without additional constraints, traditional NEAT can in fact outperform CPPN-
NEAT at a walking task. This is a slightly surprising result since one would expect an algorithm
designed to mimic the patterning of biological organisms to perform better at a walking, a task
mastered by many animals but still challenging for robots. To that effect, NEAT softbots showed
a surprising degree of bilateral symmetry, but this may be because of selective pressure from the
fitness function. Fitness in this experiment was measured by the Euclidean distance from the center
of mass at the beginning of the simulation to the end, and not by the total distance traveled by the
softbot. One can see that a robot that moves in a snaking or curved path will get a lower fitness
score than one that moves the same total distance but in a straight line. One can also see that
bilateral symmetry would lead to a robot most likely to locomote in a straight line. Therefore, this
task may not be an effective test for the ability of CPPNs to induce bilateral symmetry because
it is an implicit part of the fitness function. An interesting comparison would be to run the same
experiment but evaluation the robots based on total distance. This could be computed easily by
summing the Euclidean distances traveled between each timestep.

It is interesting that CPPN-NEAT consistently generated more complex networks than tradi-
tional NEAT, although this could be partially explained by the additional input. It’s also likely
that a network with a wide range of possible activation functions is more difficult to optimize, so
more nodes are required. It’s strange that the CPPN networks in the voxel cost condition were
comparatively simpler since one would imagine optimizing under harsher constraints would lead
to more complex solutions. Either this is not a sound conclusion, or it is more difficult for CPPN

7



networks to optimize under a total voxel constraint. It’s also strange that network complexity
varied as much as it did considering how similar the final phenotypes turned out to be, but this
could again be an artifact from having so few total lineages in the limited number of experimental
runs. Auerbach [1] showed that robot topologies complexified in response to a more complex en-
vironment, but that may have been specific to that particular environment and does not apply to
more complex tasks in general.

It was also unexpected that traditional NEAT developed more varied solutions than did CPPN.
One would expect that the more complex networks would create more complex and varied robots,
but NEAT robots were much more diverse. Maybe it was the case that CPPN was just faster to find
the optimal solution to this task, while NEAT explored many dead-end paths. As seen in figure 3,
NEAT demonstrated convergent evolution that was not seen in CPPN. Robots often evolved into
similar morphologies from different lineages, as evidenced by the use of the two muscle types to
fulfill the same role.

Computational constraints proved to be a problem. In a preliminary run, CPPN-NEAT out-
performed NEAT on average which opposes the finding presented here in which this run was aggre-
gating with a duplicate run. This highlights the importance of replication, and, ideally, we would
have performed several more runs of each condition had we not been limited by time. Auerbach
[1] mentioned that their evolutionary algorithm ran on a 7.1 teraflop supercomputing cluster, and
that the process would have been infeasibly slow on a standard computer. The limiting factor is
evaluation time in the voxelyze soft body physics simulator. Because of this, the added complexity
of nested neural networks in CPG blocks may not have had a huge effect on computational time,
although that does involve modifying the physics simulator which would presumably introduce a
marginal runtime hit.

4.2 Implications and Future Directions

While the preceding experiments did not manage to alleviate the endemic ghost controller issue,
they did provide valuable insights into the role of CPPNs in bilateral symmetry and patterning.
CPPN softbots were not appreciably more complex than were NEAT softbots. If anything, they
were simpler and solutions were certainly less diverse. It’s hard to make claims about bilateral
symmetry because all softbots were relatively simple shapes, so a high degree of symmetry should
not be surprising.

The next steps would be to run more trials to reduce noise and establish statistical significance.
It would also be worthwhile to run the experiment using a fitness function for total distance traveled
and observe the effect on bilateral symmetry. To better investigate this, it would be useful to develop
a quantifiable measure of bilateral symmetry. This would be relatively simple to do by running a
χ2 test between the sides of the line of symmetry on the abundance of voxel types, but the test
should also account for simplicity of the overall structures, which would influence the likelihood of
strong symmetry.

Ideally also, more of the control mechanisms would also be left to evolution instead of being
hard-coded into the simulator. Adding central pattern generators is a good start towards a more in-
telligent softbot, and onto that could be added sensory structures and a central controller. Softbots
that evolve to walk only on flat ground show little in the way of adaptation or intelligence because
the environment and task are the same every time. It would be more interesting and meaningful
if the environment contained obstacles that were randomized in every iteration and the robots
learned to sense and respond to these using tactile sensory voxels and a network of control voxels.

8



Moreover, an objective-driven central controller would fulfill all the components of an embodied
intelligence.

Acknowledgements

I would like to thank Professor Lisa Meeden for her instruction and support, Jeff Knerr for his
technical assistance, and Nick Cheney for his valuable advice and source code.

References

[1] Joshua E. Auerbach and Josh C. Bongard. On the relationship between environment and
morphological complexity in evolved robots. GECCO, 2012.

[2] Auke Jan Ijspeert. Central pattern generators for locomotion control in animals and robots: A
review. Neural Networks, 21:642–653, 2008.

[3] Jeff Clune Nick Cheney, Robert MacCurdy and Hod Lipson. Unshackling evolution: Evolving
soft robots with multiple materials and a powerful generative encoding. GECCO, 2013.

[4] Karl Sims. Evolving virtual creatures. ACM, 1994.

[5] Kenneth Stanley. Competitive coevolution through evolutionary complexification. Journal of
Artificial Intelligence Research, 21, 2004.

[6] Kenneth Stanley. Compositional pattern producing networks: A novel abstraction of develop-
ment. Genet Program Evolvable Mach, 8:131–162, 2007.

9



Appendix: NEAT Parameters

Parameter Setting

Population size 30
Max generations 500
Tournament size 2
Random seed -1
Species size target 1.0
Survival threshold 1.0
Compatability threshold 60.0
Compatibility modifier 30
Disjoint coefficient 2.0
Excess coefficient 20
Weight difference coefficient 1.0
Age significance 1.0
Adult link age 1.0
Dropoff age 15000
Mutate add node probability 0.1
Mutate add link probability 0.1
Mutate demolish link probability 0.03
Mutate link weights probability 0.95
Mutate link probability 0.8
Mutation power 0.2
Link gene minimum wight for phenotype 0.0
Mutate only probability 0.25
Smallest species size with elitism 1.0
Force copy generation champion 1.0
Allow recurrent connections 0.0
Add bias to hidden nodes 0.0
Signed activation 1.0
Bounding box x, y and z 10
Actuations per second 20
Num actuation cycles 50
Min percent voxels filled 0.05

Table 1: CPPN-NEAT Parameters used in experiments. NEAT parameters were the same except
it only used sigmoid activation functions and did not incorporate the distance from center input.

10


