
Evolving Novel Cellular Automaton Seeds Using Computational Pattern
Producing Networks (CPPN) *

Josh Wolper1, George Abraham2

Abstract— The goal of this study is to evolve novel seeds
for Conway’s Game of Life Cellular Automaton with Com-
putational Pattern Producing Networks (CPPNs). We evolved
our CPPNs using both Objective Search (implemented with
NeuroEvolution of Augmenting Topologies) and Novelty Search.
Three variations of Objective Search were explored: rewarding
solution lifetime, rewarding mass and lifetime, and rewarding
lifetime while punishing mass. Objective Search quickly evolved
game of life solutions that converged to trivial combinations
of small-order oscillators and still life solutions. We did not
find interesting symmetries and results until we ran Novelty
Search, which produced complex high period oscillators such
as the Pentadecathlon and Pulsar. Although these tests failed
to produce novel solutions or generative structures, the evo-
lutionary computation produced seeds that had a significantly
higher lifetime than random seeds. Furthermore, the evolved
solutions gave us insight into understanding the propagation
of symmetries throughout the simulation, which demonstrates
the potential for future use of CPPNs in studies of cellular
automata or dynamical systems with inherent symmetries in
the solution space.

I. INTRODUCTION

Recent studies have suggested the importance of cellular
automata in modeling large, or inherently stochastic data
sets [6]. However, depending on the resolution of the cel-
lular automaton being studied, machine learning algorithms
are shown to out-perform traditional computational analysis
methods [1]. Conway’s Game of Life is a zero-player cellular
automaton that has caught the interest of mathematicians,
engineers, and computer scientists for decades. The Game
of Life takes in an input set of dead and alive cells (called
a ”seed”), and performes a series of updates until the
board is completely dead (i.e. empty). Given that a lot of
sample solutions to this automaton tend to be symmetric,
Computational Pattern Producing Networks (CPPNs) show
promise in evolving novel Game of Life solutions due to
the inherent symmetries of the CPPN basis fitness functions
[7]. Although artificial neural networks have been applied to
problems in cellular automaton before [1], this study is the
first to apply CPPNs to a problem of this nature.

Our goal is to use Objective Search and Novelty Search to
evolve novel seeds for the Game of Life cellular automaton.
We hope to find seeds that produce complex, high-period
oscillator solutions, or generative structures. Oscillators are
solutions that, according to the update rules of the Game of

*This work was conducted at Swarthmore College for an Adaptive
Robotics Research Seminar in Fall of 2015.

1 Swarthmore College Engineering Department. Swarthmore, PA 19081,
USA. jwolper1@swarthmore.edu

2 Swarthmore College Engineering Department. Swarthmore, PA 19081,
USA. gabraha1@swarthmore.edu

Life, alternate between a fixed number of frames. Generative
structures produce locomotive blocks that live forever in the
Game of Life simulator. These types of solutions will be
more precisely defined and explored later. We hope that use
of these evolutionary computational methods will produce
new solutions to the Game of Life simulator that give us
insight onto the nature of the system as a whole.

II. BACKGROUND

A. Conway’s Game of Life

Conway’s Game of Life is a cellular automaton developed
by John Conway in 1970 as an attempt to simplify the
ideas presented by mathematician John von Neumann on
a theoretical machine that could produce copies of itself
[3]. This cellular automaton is a zero-player game, one that
requires only a starting board state and a set of rules to play.
The game seeks to model individual cells on a board living or
dying based on a simple set of four rules. Each rule mimics
a different aspect of life and death in a natural population,
such as underpopulation, overpopulation, and reproduction.
The rules are as follows (with examples provided in Fig. 1):

1) Any live cell with fewer than two live neighbors dies.
(Underpopulation)

2) Any live cell with two or three live neighbors lives to
the next generation.

3) Any live cell with more than three live neighbors dies.
(Overpopulation)

4) Any dead cell with exactly three live neighbors be-
comes a live cell. (Reproduction)

(a) Neigh-
bors

(b) Rule 1 (c) Rule 2 (d) Rule 3 (e) Rule 4

Fig. 1: Depiction of how neighbors are defined and repre-
sentative cases for each rule

There is a set of known organisms that can arise in the
Game of Life: static still lifes (Fig. 2, row 1), dynamically
changing but stationary oscillators (Fig. 2, row 2), and
dynamically locomoting spaceships (Fig. 2, row 3). Each of
these three types of organisms lives on forever, assuming
they do not interact with one another. In addition, more
complex organisms have been discovered since the game’s
conception: generative structures such as Gosper’s Glider



(a) loaf t1 (b) loaf t2 (c) loaf t3 (d) loaf t4 (e) loaf t5

(f) toad t1 (g) toad t2 (h) toad t3 (i) toad t4 (j) toad t5

(k) glider t1 (l) glider t2 (m) glider t3 (n) glider t4 (o) glider t5

Fig. 2: Five timesteps for three different organisms: the still
life ”loaf”, the oscillator ”toad”, and the spaceship ”glider”

Gun perpetually create new organisms, gliders, that locomote
across the board and live on forever. The glider gun harkens
back to von Neumann’s original theory of a machine that
could self replicate, showing the Game of Life’s ability
to successfully implement this idea in a markedly simple
fashion.

In this version of the Game of Life, the board is setup
to have a toroidal topology (”wraps around”), meaning
that grid locations at one edge of the board have adjacent
neighbors on the opposite side of the board. This distinction
is made so that a small workspace is isolated for any evolved
organisms and behaviors. In addition, this decision makes
sense computationally as to avoid keeping track of a board
that may extend indefinitely.

B. ANNs and Computational Pattern Producing Networks

Artificial neural networks (ANNs) are collections of di-
rected weighted edges and nodes connected to form various
topologies. Most neural networks are considered feedfor-
ward indicating that their connections are exclusively non-
recurrent (i.e. all connections must be from low tier nodes
to high tier nodes). Each ANN has an activation function
(often the sigmoid function) associated with each node that
is used to process data coming into the node and determine
how much the node should be activated, similar to the way
real neurons are either activated or deactivated. Thus ANNs
are usually broken down into three regions of nodes: input
nodes, hidden nodes, and output nodes. ANNs are typically
used by allowing some type of system to input values into
the ANN and then employ the outputs to do some function.
ANNs can have any number of hidden layers and nodes, with
more hidden layers indicating more complex system that can
develop more sensitive and specialized functionality.

Computational pattern producing networks (CPPNs) are a
subclass of ANNs that differ exclusively in that each node
does not share the same activation function. Instead, in a
CPPN the activation function for each node can be any one

of a preset group of functions (as shown in Fig. 3) such as
the linear function and the Gaussian function [7]. CPPNs
are especially useful when used to process images or grids,
where individual x and y values of each pixel of an image
may be used as input, and an output is then determined by
the CPPN.

Fig. 3: Example CPPN depicting the variety of activation
functions possible in each node [7]

C. NeuroEvolution of Augmenting Topologies

NeuroEvolution of Augmenting Topologies [8], known as
NEAT, is a computational method for evolving populations
of neural networks, based on a given goal fitness function, by
altering network topology. The purpose of NEAT is to evolve
ANNs - or, in our case, CPPNs - to solve tasks involving a
complex sequences of decisions. NEAT works by starting
with the simplest, most minimal network configuration, then
gradually adding complexity by creating new nodes and links
throughout the phases of evolution. NEAT saves genetic
encodings of each member of the ANN population, and on
each time step, may modify an existing connection weight or
add new nodes and connections based on input probability
parameters. NEAT then evaluates the fitness of each ANN
member and with probability proportional to fitness selects
members as parents for the next generation.

NEAT keeps track of the history of each member through-
out successive generations through recording the number of
times a new gene appears in the composition of an individual
genome. This value, called the innovation number, allows
NEAT to perform crossover without expensive topological
calculations. These historical markings also allow NEAT to
divide gene populations into separate species. Individuals are
evolved based on comparison within their respective species,
which allows topological changes throughout generations to
be preserved.

Another useful feature of NEAT is that complexification
happens in a minimal manner (i.e. final solutions are of
minimal complexity). All of these features combine to make
NEAT a reasonably fast, memory efficient algorithm for
evolutionary computation. Previous experiments [2] have
demonstrated the success and versatility of NEAT, specifi-
cally in the context of evolving CPPNs. Therefore, NEAT



is our primary learning algorithm for performing objective
search in this study.

D. Novelty Search using NEAT

Although NEAT has demonstrated a lot of success as
an evolutionary computation algorithm, a major criticism of
NEAT is that it tends to converge to non-optimal solutions
when confronted with deceptive tasks. In a previous study
[5], when a robot was confronted with a deceptive maze
problem that required the robot to initially travel away from
the desired goal state, a computational mechanism known
as Novelty Search outperformed NEAT by evolving a wide
variety of solutions that broke out of a local maximum.
Hence, we would like to use Novelty Search to evolve a
diversity of different cellular automaton seeds, given that
we predict NEAT will evolve mostly previously known
solutions.

Novelty Search works similarly to NEAT, except, instead
of having a fitness function geared towards a specific objec-
tive, the fitness function is geared towards evolving solutions
that are the least similar to other solutions in the population.
In other words, Novelty Search keeps track of the most novel
behaviors in an archive, then performs evolution based on
solutions most different from the archived solutions. Novelty
amongst solutions is determined by a sparseness metric,
which relies on some distance metric between two sets of
solutions. This distance metric can be anything appropriate
for comparing solutions depending on the task involved, but
is often the Euclidean distance metric between points in the
solution space. The sparseness of a solution, x, in the solution
space with k solutions in the archive is given by:

ρ(x) =
1
k

k

∑
i=0

dist(x,µi)

where k is an experimentally determined constant, and µi is
the ith entry of the novelty archive. The candidates with the
highest sparseness are added into the archive, and prioritized
in the evolutionary process in the same way as high fitness
individuals in NEAT. Thus the hope is that Novelty Search
will find more interesting new solutions to the Game of Life
cellular automaton.

III. EXPERIMENTAL SETUP

A. CPPN Setup

Since the starting seed patterns for the Game of Life are
inherently an image or a grid, CPPNs are the perfect choice
to try to develop seed patterns using different evolutionary
algorithms. In order to allow for diverse behaviors 100
CPPNs are in the initial population and evolve over the
course of 10 generations for 500 simulation steps each
(See Appendix C for general experiment parameters and
Appendix D for MultiNEAT evolution parameter details.)
Since we are processing an image grid space by space, we
first assign each grid space a coordinate pair value (Fig. 4).
The center space is defined as (0,0), and each grid space
is then assigned a coordinate pair with both x and y in
the range [-1,1]. Thus the first three CPPN inputs are x

coordinate, y coordinate, and bias. However, a fourth input
was chosen to give the CPPN another metric to process. This
fourth parameter was selected to be the Euclidean distance
from the given grid space to a defined (0,0) position on the
grid. The decision to include this input was informed by
prior work done on CPPN-NEAT [2] in which it was shown
that adding distance as a parameter to the evolving CPPNs
introduced organic symmetries and repetitions to the evolved
solutions— two features that are desirable when producing
seed patterns for the Game of Life.

Fig. 4: Example Game of Life seed illustrating the underlying
coordinate system as well as the inputs and outputs to the
CPPN

The output received from the CPPN is a float in the range
[0,1], and this was simply filtered into either alive or dead
using the rule that if the output was less than 0.5, the cell
was dead, otherwise the cell would be alive. In this way the
CPPN could process each grid space and determine whether
or not the given cell is dead or alive, producing a full Game
of Life seed pattern.

B. Fitness Function Definitions

In order to formulate fitness functions that evaluate under-
lying characteristics of the seeds evolved by the CPPNs some
important variables must be calculated during simulation.
Two of these variables are related to different lifetimes of the
solution throughout simulation time and are directly linked
to the way that the simulation was written. During simulation
three different boards are available in memory at any given
time step: the board before the current time step (prevBoard),
the currently displayed board (currentBoard), and the next
board to be displayed (updateBoard) (Fig. 5). Two impor-
tant variables are calculated by taking advantage of this
system: li f etimeUntilStillLi f e and li f etimeUntilOscillator.
The first of these variables simply counts the number of
simulation steps that occur before a purely still life solution
is reached, or more simply whenever it is found that current-
Board = updateBoard. Alternatively, li f etimeUntilOscillator
counts the number of simulation steps until a pure period
two oscillator solution is found by counting until prevBoard
= updateBoard. This indicates that the solution is either
all period two oscillators or a combination of period two
oscillators and still lifes. Finally, the third important variable



is simply endMass or the total number of living cells at the
end of the simulation runtime.

Fig. 5: Graphic illustrating the boards saved in memory
during simulation

These three variables are normalized by two main vari-
ables that are native to our Game of Life class: maxLi f etime
and granularity where the first is simply the maximum num-
ber of simulation steps and the latter is the height (in number
of cells) of the board. These five values together make up
all three fitness functions defined for all experiments. If we
define Lm to be our maximum lifetime, LO to be our lifetime
until an oscillator is evolved, LS as our lifetime until still-
life, g as the number of rows and columns in our board, and
M as the mass of our board at the final time step, then our
three defined fitness functions are as follows:

1)

f1 =
LS

Lm

2)

f2 =
LS

2∗Lm
+

M
2∗g2

3)

f3 =
LO

Lm
− M

2∗g2

The first function rewards solutions that live on past still
life solutions, this includes any solution with an oscillator
or glider. The second function rewards a solution both for
not converging to a simple still life solution but also for
having a high mass at the end of the simulation, this ideally
rewards larger oscillators and spaceships. Finally, the third
function rewards solutions that live on past a simple period
two oscillator configuration while also punishing solutions
that have high mass at the end of the simulation. Fig. 6
shows some examples of board states and the fitnesses they
would receive from each fitness function.

C. Novelty Search Setup

In order to encourage diverse solutions Novelty Search
is also explored as an alternative to objective search. In
this setup this simply indicates evolving the CPPNs using a
sparseness metric instead of a fitness metric. This sparseness
seeks to measure how different one solution is from the
solutions most similar to it. In this setup, sparseness is
calculated using a system of ”behaviors” that are compared
to one another. Each seed has a behavior associated with it
and is simply a tuple with a length equal to the number of
grid spaces in our seed patterns. Each element of the behavior
tuple is either (0,0) indicating that the given grid space has

a dead cell, or it has the coordinate pair associated with the
grid space to indicate a living cell. We then compare the k
nearest neighbors by finding the Euclidean distance between
each pair of behavior elements for each pairing with the
nearby neighbors.

It is important to note that the behavior tuples are formed
from the initial seed pattern generated by the CPPN, rather
than the final state of the game board after the game has been
played. This decision was made to avoid a subtle pitfall of
our experimental setup. More specifically, a solution that has
identical end behavior to another solution may receive a high
sparseness metric if it is ever so slightly out of phase from the
other solution. Thus any number of identical end solutions
would all have a high sparseness metric given that they are
all out of phase from one another when the simulation ends.
More simply, an assumption of our setup is that we cannot
distinguish between identical or even similar solutions at the
end of the simulation because solutions may evolve at any
point in the simulations, and often do evolve out of phase
from one another.

When the CPPNs are evolved using Novelty Search and
the sparseness metric, the most objectively fit chromosome
is saved in each generation. This allows not only the most
novel, but also the most fit end behaviors to emerge from
this search. As such, a fitness function is still necessary for
Novelty Search. See Appendix E for more details on the
Novelty Search parameter setups.

(a) Fitness Function 1 (b) Fitness Function 2

(c) Fitness Function 3

Fig. 6: Example game boards and associated fitnesses for
each fitness function. Note the fitnesses are broken down
into their terms for clarity.

For details on the code used to implement these experi-
ments see Appendix A.

IV. RESULTS

A. Fitness Functions

Before exploring the notable differences between evolving
the CPPNs using objective search and evolving them using
Novelty Search, it is important to discuss the common
solutions found by each of our fitness function, and discuss
why one function in particular was chosen to focus on.



Despite our expectation, many of our fitness functions led
to extremely similar end behavior. Our first fitness function
rewarded the seed pattern’s lifetime until a still life solution,
thus we expected it to leave behind seed patterns that would
converge to pure still life solutions. This expectation was
correct, however this fitness function tended to produce sim-
ilar and somewhat trivial end behavior in every generation:
simple patterns of small still lifes and occasionally between
one and four oscillators of period two called ”blinkers” (Fig.
7a).

Our second fitness function both rewarded lifetime until
a pure still life solution as well as the total mass of end
behavior solution. We expected this would produce more
connected end behavior, as opposed to the discrete organisms
formed from rewarding still lifetime alone. Unfortunately,
this fitness function scarcely ever produced anything save
for high period oscillators we deemed ”wave oscillators” as
they have bands that move up and down the board in wave
like patterns (Fig. 7b). We marked this as a trivial solution
despite its high period since it is only possible due to the
toroidal nature of the board and would not exist otherwise.

Finally, our third fitness function gives some desired
results by specifically rewarding seeds that live longer before
converging to a period two oscillator solution and punishing
high end state mass. The reward seeks to avoid the solutions
common in our first fitness function such as the still life and
blinker combinations, while the punishment seeks to eschew
the wave oscillator solution so prevalent in our second fitness
function as this solution had consistently high end state
masses. Instead of converging to our previous, more trivial
solutions, this fitness function predominantly evolves gliders
(Fig. 7c).

The end behaviors from the third fitness function were
considered to be the closest to a desired solution as these
gliders are inherently formed out of a dynamic mass of
cells as the game progresses which is a feature of Gosper’s
glider gun. Thus, all attention was focused on experimenting
with fitness function three as it showed the most promise in
finding generative structures.

(a) Still lifes, Blinker (b) Wave Oscillator (c) Glider

Fig. 7: Examples of solutions generated by fitness functions
1, 2, and 3 respectively

B. Objective Search vs. Novelty Search

In order to explore the different effects of evolving the
CPPNs using objective search versus with Novelty Search
10 trials of 10 generations of 100 CPPNs were run, five
trials for objective search and five for Novelty Search. The

fitness function used for both objective and Novelty Search
was the fitness function rewarding lifetime until a period two
oscillator solution as well as punishing high end state mass.

When evolving the CPPNs using objective search, it was
found that every trial performed almost identically to each
other. An immediate, high fitness solution was found within
one to two generations, and then propagated throughout the
following generations. Thus, when evolving the CPPNs using
objective fitness it was found that only two types of behaviors
emerged, and they are markedly similar to one another: a solo
glider solution, and a glider with still life solution (Fig. 9a).
However, it is important to note that the glider with still life
solution is less fit than the solo glider solution (higher mass)
and therefore is ”bred” out of the population as quickly as
possible. As such, 47 out of 50 total generations converged
to a lone glider as their end behavior.

Conversely, when evolving the CPPNs using Novelty
Search and the sparseness metric, five different types of
end behaviors emerged, three of them unseen by objective
search. In addition to the glider and glider with still life
end behaviors, Novelty Search also evolved two unique high
period oscillators: one of period three named the ”pulsar”
(Fig. 8a, and see Appendix G for individual stills) and one
of period 15 named the ”pentadecathlon” (Fig. 8b, and see
Appendix H for individual stills). Finally, the final new
behavior was simply non-convergence- essentially indicating
that the behavior needed a longer maximum lifetime to
fully converge. Overall, Novelty Search produced much more
diverse behaviors as well as evolving some highly complex
oscillators that no previous trial could produce. In fact, a
complex oscillator was evolved as the highest fitness solution
in 10 out of 50 total generations using Novelty Search (Fig.
9b).

(a) Pulsar, period 3 (b) Pentadecathlon, period 15

Fig. 8: Complex, high period oscillators moved to the center
of the board for ease of viewing (these complex oscillators
often formed around the edges of the board, making them
difficult to view in their original form)

C. Random Encoding vs. Generative Encoding

Given that most of our trials in experiments above seemed
to converge to optimal solutions within the first generation,
this begs the question of whether or not our Evolutionary
Computation methods can produce better results than random



(a) Objective NEAT Behavior (b) Novelty NEAT Behavior

Fig. 9: Comparison of the frequency of different types of
end behavior for ObjectiveNEAT and NoveltyNEAT

seeds. Therefore, we ran a test that compared the lifetimes
of 100 randomly generated seed patterns to lifetime data
obtained from the entire population of the 10th generation
of our most successful evolutionary experiment (using the
third objective fitness function with Novelty Search). Fig.
10 displays the data obtained after 100 runs of both exper-
iments in histograms. The random data appears to be more
uniformly spread with a slight skew right, while the Novelty
Search data seems to take on an inherently beta distribution
shape. Although both methods appear to produce oscillator
solutions, it is important to note that most of the oscilla-
tors produced in the random seeds were trivial, low-period
solutions while Novelty Search evolved complex oscillators
such as the Pulsar (see Appendix G) and Pentadecathlon (see
Appendix H).

Nevertheless, attempts were made to normalize both data
sets and compare them using a standard t-test. However, as
seen in Fig. 11, even after an inverse cumulative normal
distribution transformation was applied to both data sets, the
Novelty Search data still preserved its strong beta shape,
making a t-test inappropriate to apply. Therefore, to compare
the two data sets, we applied the Kruskal-Walis H-test [4].
This test applies because our two data sets are independent,
and they have the same sample size. Given our two data
sets (g = 2) with 100 observations (N = 100), we see that
our Kruskal-Wallis test rejects the null hypothesis that our
random data and Novelty Search data come from the same
underlying distribution with p= 2.927×10−6 (see Appendix
F for more detail regarding the computation of our Kruskal-
Wallis test statistic).

(a) Random Data (b) Novelty Search Data

Fig. 10: These histograms display the lifetime until oscillator
data for 100 random seeds and 100 seeds evolved for 10
generations with Novelty Search.

See Appendix B for links to videos showcasing results

Fig. 11: These histograms display the inverse normal cdf
applied to the lifetime until oscillator data for 100 random
seeds and 100 seeds evolved for 10 generations with Novelty
Search. This attempt to normalize our data did not work for
the Novelty Search data (even after normalization, it has an
inherent beta shape).

such as typical runs for each fitness function and a visual-
ization of both the pulsar and the pentadecathlon.

V. DISCUSSION

Although generative structures were never found in these
experiments quite a bit was concretely found about evolving
cellular automaton seeds using CPPNs. First, CPPNs are
extremely proficient at developing solutions that follow a
fitness function correctly, so well that the fitness often jumps
to the max fitness within only a few generations. As such,
we may say that given the correct fitness function, most
desired behaviors may be isolated using CPPN evolution.
For example, it was simple to isolate the glider end behavior
from the wave oscillator behavior by simply punishing higher
end state masses.

Second, and perhaps more notably, high period oscillators
arise from evolving the CPPNs using Novelty Search. Since
these solutions are so inherently symmetrical it seems to
indicate that Novelty Search opens the doors to CPPNs
producing symmetrical and repeating patterns. Symmetry
and repetition seemed oddly absent in most trials during
simulation despite CPPN’s reputation for evolving those
exact traits, especially when processing images. Perhaps the
addition of novelty allowed these symmetrical solutions to
dominate some generations by sheer uniqueness, as they
would not perform particularly well in fitness function 3,
especially compared to a lone glider which clearly has a
much lower end mass.

A. Significance of Results

Although we did not evolve new oscillators or generative
structures, our results demonstrate the ability of evolutionary
computational methods to adapt and produce optimal results.
Objective search evolved mostly trivial (but high-lifetime)
solutions while Novelty Search produced a wide variety of
solutions with different axes of symmetry. Our results con-
firm that CPPNs with Novelty Search may be used to solve
problems with inherent symmetries, which is an important
feature of many different cellular automata. In general, our
CPPN evolution trials helped us gain insight onto the nature



of the Game of Life solutions, which, in some sense, is
equally as valuable as more solutions. Newer applications
of cellular automata include using them to analyze patterns
in large data sets such as land usage [1]. As a computational
method that is inherently designed to understand symmetry,
CPPNs pose a lot of potential in furthering our understanding
of cellular automata.

More generally, despite that Genetic Algorithms and Arti-
ficial Neural Networks have been used in research involving
dynamical systems (cellular automata are a subset of discrete
dynamical systems), there has not been much research in-
volving CPPNs with cellular automata or dynamical systems.
Depending on the symmetries of the solution space, CPPNs
may be useful in evolving solutions to dynamical systems
with complex notions of frequency and oscillation, as demon-
strated in the ability to evolve high-order oscillators here.
Again, despite that we were not able to find new analytic
solutions to our specific system, CPPNs may be useful in
solving other systems, or at least, helping systems researchers
gain intuition on a complex system.

B. Criticism of Approach

That being said, although our evolutionary computational
methods appeared to give us significantly better results than
pure random seeds, the results of our study still beg the
question of whether or not evolutionary computation is even
appropriate to apply to this Game of Life scenario. Our
results do not appear to be ”intelligent” in any way; in fact,
most of our fitness functions were edited to converge to
specific results we wanted to see. The computer did not act
intelligently to find new solutions in any way, and despite our
results being interesting, they do not show evidence that these
computational methods function as a more general purpose
artificial intelligence.

As for our approach, there was one assumption made
in our setup that could potentially have led to issues- this
is our toroidal topology. This topology was chosen for
reasons of minimizing computational intensity and confusion
regarding edge neighbors. But generative structures produce
new organisms indefinitely, and as such, the mass of the
system is always increasing. As such, a toroidal topology
in which newly formed organisms naturally wrap around
the board might cause problems because these organisms
may then destroy the very structures that brought them
into existence. Thus, it is highly possible that the toroidal
topology was the main reason generative structures were not
evolved by either objective search or by Novelty Search.

C. Future Study

Given these criticisms of our study, there are a lot of
changes we can make in future experiments. One of the
major disappointments in this project was that we did not
evolve generative structures in any of our trials. This hap-
pened, partially, due to the toroidal topology of our game of
life implementation; the well-known glider gun generative
structure, for example, does not work on a toroidal game
board because the gliders generated travel back around and

cancel the blocks forming the generative structure. If we
had tried implementing an unbounded board (isomorphic to
Z×Z), then we may have evolved generative solutions. Our
main concern regarding implementation of our unbounded
board, however, was the amount of memory such an im-
plementation would take up. Once the game proceeds to
off the edge of the board, we must make subsequent game
updates based off of cellular data off of our main game
board. An implementation idea for this is to apply our entire
game of life simulation to a board of size Tmax×Tmax, and
only considering the middle portion of the board (the normal
granularity) in update decisions, lifetime data, and simulation
videos. This, however, would potentially harm the runtime
of our program.

Aside from generative structures, another goal of our
project was to evolve more complex oscillator solutions.
While we had instances of Pulsars and the Pentadecatholon,
we did not find any novel oscillators. Most oscillator solu-
tions evolved were combinations of blinkers - a very trivial
oscillator of period 2 (Fig. 12). If we concatenate 2 blinkers,
we see that we can form a toad, an oscillator with the same
period, but more complex behavior as a whole. Furthermore,
we can also compose the pulsar (a period 3 oscillator) out
of concatenations of blinkers too, by this same logic. Hence,
we propose that another interesting experiment may involve
setting up 2 layers of CPPNs: one which evolves some sort of
basis configuration of blocks (for example, the blinker), and
one which composes a board based off of concatenations
of this basis block. As opposed to composing a board by
individual blocks, this second CPPN will evolve to find
complex concatenations of given basis blocks, and this may
cause more complex oscillators to evolve.

Fig. 12: This shows how the toad (left) and pulsar (right) can
be made up of a combination of blinker oscillator structures
(top), and how the overlap in blocks between a base oscillator
can produce a more complex, higher-period oscillator, and an
oscillator of the same period. This is the motivation for the
experiment outlined in Fig. 13.

As a final extension to this study, it would be compelling
to explore the effects of board resolution or more specifically
the board granularity value on solutions that are evolved. For
example, if the board were extended to a 100 by 100 grid,



Fig. 13: This shows a proposed experimental setup with 2
CPPNs used to evolve a game board composed of basis
blocks (basis shown here is the blinker oscillator). This setup
may allow us to find more complex, high-period oscillators.

this may potentially eschew the complications that arise from
the toroidal topology. Even further, this may allow for higher
mass, higher period oscillators that may not be well defined
or known yet.

VI. CONCLUSION

In this work we explore evolving cellular automaton seeds
using CPPNs, expanding on extensive work done on finding
organic symmetries and repetitions using CPPNs for image
grid processing by Cheney, MacCurdy, and Clune et. al [2].
In addition this explores an extension to Conway’s classic
Game of Life to see whether well known structures such as
Gosper’s glider gun may be evolved using an evolutionary
algorithm such as NEAT. Although generative structures such
as the glider gun were never found in this study, unique high
mass high period oscillators were in fact evolved, and this
is impressive in the sense that this stems from a machine
learning extension of a game that already attempts to model
organic phenomena. In fact, this result succinctly comes
full circle on John von Neumann’s original dream of a self
replicating machine- NoveltyNEAT has evolved CPPNs that
can organically produce long living organic solutions to the
Game of Life. With more time and further study, there is no
telling where deeper exploration of combining evolutionary
algorithms with cellular automata will lead.

VII. ACKNOWLEDGMENTS

Thanks to Kenneth O. Stanley for fielding our inquiries
about the usage of MultiNEAT and directing us to Peter
Chervenski for further help on the library. Thanks to Peter
Chervenski for supplying us with MultiNEAT starter code.
Thanks also to Lisa Meeden for advising us throughout the
stages of this work and providing us with the framework
necessary to make it possible.

REFERENCES

[1] Omar Charif, Reine-Maria Basse, Hichem Omrani, and Philippe Trig-
ano, Cellular automata model based on machine learning methods for
simulating land use change, Winter Simulation Conference (Oliver Rose
and Adelinde M. Uhrmacher, eds.), WSC, 2012, pp. 163:1–163:12.

[2] Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson, Un-
shackling evolution: Evolving soft robots with multiple materials and a
powerful generative encoding, SIGEVOlution 7 (2014), no. 1, 11–23.

[3] Martin Gardner, Mathematical games: The fantastic combinations of
john conway’s new solitaire game ”life”, Scientific American (1970),
no. 223, 120–123.

[4] WH Kruskal and WA Wallis, Use of ranks in one-criterion variance
analysis, Journal of the American Statistical Association (1952), 583–
621.

[5] Joel Lehman and Kenneth O. Stanley, Abandoning objectives: Evolution
through the search for novelty alone, Evol. Comput. 19 (2011), no. 2,
189–223.

[6] Sushil J. Louis and Gary L. Raines, Genetic algorithm calibration of
probabilistic cellular automata for modeling mining permit activity,
ICTAI, IEEE Computer Society, 2003, pp. 515–519.

[7] Kenneth O. Stanley, Compositional pattern producing networks: A
novel abstraction of development, Genetic Programming and Evolvable
Machines 8 (2007), no. 2, 131–162.

[8] Kenneth O. Stanley and Risto Miikkulainen, Competitive coevolution
through evolutionary complexification, Journal of Artificial Intelligence
Research 21 (2004), 63–100.

VIII. APPENDIX

A. Outline of Code Utilized and Implemented

To implement the desired experimental setup a few pieces
of previously written software were utilized. For the CPPN-
NEAT implementation Peter Chervenski’s MultiNEAT li-
brary was used, as well as starter code kindly provided by
Chervenski himself. For all visualizations of the simulations
Josh Wolper and Amelia Erskine’s Pthreaded Game of Life
simulator written in C was utilized to quickly run simulations
and read in text files describing seed patterns. All other code
was original, including an implementation of the Game of
Life written in Python so that the simulations could be run
without a text file input during evolution as well as so that
various new variables may be calculated at simulation run
time.

B. Video Links

Video Link

Fitness Function 1 Example https://goo.gl/2Ouzw2
Fitness Function 2 Example https://goo.gl/YDAiGl
Fitness Function 3 Example https://goo.gl/ipta7L
Actual Pulsar Run https://goo.gl/P3ooPH
Actual Pentadecathlon Run https://goo.gl/KtkxXM
Normalized Pulsar https://goo.gl/5HW3hU
Normalized Pentadecathlon Run https://goo.gl/uPJZM9

TABLE I: Video Links

C. General Parameters

Parameter Value

granularity 20
maxLifetime 100
livingThreshold 0.5
genNum 10

TABLE II: General Parameters



D. MultiNEAT Parameters

Parameter Value

pop size 100
mutate activation prob 0.0
activation mutation max power 0.5
min activation 0.05
max activation 6.0
mutate neuron activation type prob 0.03
act. function signed sigmoid prob 1.0
act. function unsigned sigmoid prob 1.0
act. function tanh prob 1.0
act. function tanh cubic prob 1.0
act. function signed step prob 1.0
act. function unsigned step prob 1.0
act. function signed gaussian prob 1.0
act. function unsigned gaussian prob 1.0
act. function absolute value prob 1.0
act. function signed sine prob 1.0
act. function unsigned sine prob 1.0
act. function linear prob 1.0

TABLE III: MultiNEAT Parameters

E. Novelty Parameters

Parameter Value

k 5
limit 30
threshold 0.2
pointLength 2
behaviorLength granularity2

maxDistance 2∗
√

2∗behaviorLength

TABLE IV: Novelty Parameters

F. Kruskal-Wallis Test Computations

Given g groups of data (2, in our case) and N observations
in each group (100), we can compute the H statistic by:

H = (N−1)
∑

g
i=1 ni(r̄i− r̄)2

∑
g
i=1 ∑

ni
j=1(ri j− r̄)2

where ni is the number of observations in group i, ri j is the
rank of observation j in group i, r̄i is the average rank of all
observations in group i, and r̄ = 1

2 (N +1).
We input our data sets into MATLAB and used the

kruskalwallis command, which gave us our result based on
computation of the test statistic above. See the figure below
for the exact MATLAB output of our system.

G. Pulsar Stills

(a) t1 (b) t2 (c) t3

Fig. 15: All 3 states of the period 3 oscillator, the pulsar

Fig. 14: This shows the numerical output of our Kruskal-
Wallis test performed on our random seed and Novelty
Search data in MATLAB.

H. Pentadecathlon Stills

(a) t1 (b) t2 (c) t3 (d) t4

(e) t5 (f) t6 (g) t7 (h) t8

(i) t9 (j) t10 (k) t11 (l) t12

(m) t13 (n) t14 (o) t15 (p) t16

Fig. 16: All 15 states of the period 15 oscillator, the pen-
tadecathlon


