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Abstract—We describe a novel architecture for semantic image
retrieval—in particular, retrieval of instances of visual situations.
Visual situations are concepts such as “a boxing match,” “walking
the dog,” “a crowd waiting for a bus,” or “a game of ping-
pong,” whose instantiations in images are linked more by their
common spatial and semantic structure than by low-level visual
similarity. Given a query situation description, our architecture—
called Situate—learns models capturing the visual features of
expected objects as well the expected spatial configuration of
relationships among objects. Given a new image, Situate uses
these models in an attempt to ground (i.e., to create a bounding
box locating) each expected component of the situation in the
image via an active search procedure. Situate uses the resulting
grounding to compute a score indicating the degree to which
the new image is judged to contain an instance of the situation.
Such scores can be used to rank images in a collection as part of
a retrieval system. In the preliminary study described here, we
demonstrate the promise of this system by comparing Situate’s
performance with that of two baseline methods, as well as with a
related semantic image-retrieval system based on “scene graphs.”

I. INTRODUCTION

The ability to automatically retrieve images with specified
semantic properties is a key topic for computer vision. In a
world deluged with image data, automated image retrieval
has become as important as text search, and progress in
this area will have profound impacts in areas as diverse as
medical diagnosis, public health, national security, privacy, and
personal data organization.

Using deep neural networks, automatic detection of individ-
ual objects in images has become remarkably successful [1].
However, in many domains, users need to search for images
with more abstract properties, in which multiple objects with
specified attributes are related in specific ways. Here are
some examples: “a boxing match,” “a person walking a dog,”
“a crowd waiting for a bus,” or “a game of ping-pong.”
Instances of such abstract visual concepts—which we call
visual situations—are linked more by their common spatial
and semantic structure than by low-level visual similarity or
by the specific objects they contain. In general, automatically
recognizing instances of a given visual situation is a difficult
problem, due to substantial variability in visual features and
spatial layout among different instances. Moreover, while
state-of-the-art object detection methods often rely on eval-
uating large numbers of “object proposals” at every location
and scale of the image, the combinatorics of such exhaustive
evaluations become much worse when the multiple objects,
attributes, and possible relationships of a situation need to be

considered. And while successful object detection has relied
on huge amounts of labeled training data [2], there are few
large labeled training sets for visual situations.

In this paper, we describe a novel architecture for retriev-
ing instances of a query visual situation in a collection of
images. Our architecture—called Situate—combines object-
localization models based on visual features with probabilistic
models that represent learned multi-object relationships. Situ-
ate learns these models from labeled training images. It applies
these models to a new image via an active search process
that attempts to ground components of the query situation
in the image—that is, to create bounding boxes that localize
relevant objects and relationships, and that ultimately provide
a situation match score for the situation with respect to the
image. The match scores can be used to rank the images in
the collection with respect to the query: the highest ranking
images can be returned to the user. Figure 1 illustrates Situate’s
training and testing pipeline.

We hypothesize that Situate’s learned object and relationship
models, used in tandem with its active situation-grounding
method, will result in superior image retrieval performance
than methods without these components. In this preliminary
study, we test this hypothesis by comparing Situate’s perfor-
mance on a challenging visual-situation dataset with that of
two baseline methods: a “lesioned” version of Situate that
lacks its relationship models and the feedback they provide
the system, and an adapted version of the widely used Faster-
RCNN object-detection method [1]. We also compare Situate’s
performance with that of a recently proposed semantic image
retrieval system [3].

II. SITUATE’S ARCHITECTURE

Situate’s architecture is inspired by active approaches to
perception, in which the perceiver acquires information dy-
namically, and in which the information acquired continually
feeds back to control the perceptual process. In particular, for
humans, recognizing a visual situation is an active process that
unfolds over time, in which prior knowledge interacts with vi-
sual information as it is perceived, in order to guide subsequent
eye movements and focus of attention. This interaction of top-
down expectations and bottom-up perception enables a human
viewer to very quickly locate relevant aspects of the situation
[4], [5].

Additionally inspired by the Copycat architecture of Hof-
stadter and Mitchell [6], Situate attempts to actively ground
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Fig. 1. (Best viewed in color.) Overview of Situate’s training and testing pipeline, with the example situation “walking the dog.” (a) The user specifies the
object categories relevant to the given situation. This simple example includes three expected objects: Dog-Walker, Leash, and Dog; the double-arrows indicate
unnamed (i.e., to be learned) relationships among these objects. (b) Situate is also given a set of training images, which include only positive examples of
the situation, with relevant objects indicated via human-labeled (black) bounding boxes. From these training examples, Situate learns several types of models.
(c) Situate uses its learned models to score test images as instances of the given situation, by attempting to ground the expected object categories and their
expected spatial configuration in the image (white boxes).

components of a query situation via the actions of agents in
a Workspace. The agents are selected and run over a series
of time steps, and create candidate detections by combining
bottom-up visual information with top-down expectations. The
advantage of this active, temporal approach is that detections
made in previous time steps can influence the focus and actions
of agents at subsequent time steps.

A. Training

In attempting to ground situation components in an image,
Situate’s agents dynamically combine different types of infor-
mation by employing a set of models that capture expected
visual and spatial features of the query situtation. These mod-
els are learned from human-labeled training data, illustrated
in Figure 1(b). The learned models are the following:

Object-Localization Models: For a given situation query,
Situate learns object-localization models for each relevant
object category. The input to each object-localization model
is an object proposal, which specifies an object category C
along with a set of coordinates specifying a bounding box b
in an image. For an object-localization model corresponding
to category C, the model’s output is a prediction of the amount
b overlaps a ground-truth object of category C. Following
standard practice in the object-detection literature, overlap is
measured as the intersection over union (IOU) of the proposed
bounding box with a (human-labeled) ground-truth bounding
box.

We implemented each object-localization model as a linear
combination of features, where the features are obtained
from running a pretrained convolutional network on the input
region. We used the open-source VGG-f network pre-trained
on Imagenet [7] to obtain 4096 features from the fc7 layer,
and used ridge regression [8] to learn the coefficients and bias
of the linear model. We trained the ridge regression model on
features extracted from training-image crops that partially or
completely overlap ground-truth boxes.

Object-Refinement Models: Situate similarly learns
category-specific object-refinement models from the same
training crops used to learn object-localization models. These
refinement models—based on the “bounding-box regression”
approach described in [9]—input an object proposal and output
a new, “refined” object proposal that is predicted to have

higher IOU with a ground-truth bounding box of the given
category. Like the object-localization models described above,
each category-specific object-refinement model is a linear
combination of 4096 features from the pre-trained VGG fc7
layer. As we will describe below, on a new test image the
refinement models will be applied to object proposals whose
predicted overlap score is above a pre-set threshold. We found
these refinement models to be crucial to Situate’s ability to
localize objects.

Relationship Model: For a given situation query, Situate
learns a relationship model that represents the expected spatial
relationships among the relevant objects in that situation.
The relationship model is a multivariate Gaussian distribu-
tion learned from human-labeled bounding boxes in training
images. The variables in the distribution are bounding-box
parameters—center coordinates, area ratio (i.e, area of box
divided by area of image), and aspect ratio—from the relevant
objects in a given situation. For example, for the Walking
the Dog situation shown in Figure 1(a), the variables are the
bounding-box parameters of the Dog-Walker, Dog, and Leash
boxes. As we will describe below, when Situate is run on a
new image, each time it makes a candidate detection of one or
more relevant objects, it conditions the relationship model on
those detections to narrow the expected location, shape, and
size of the related objects.

Priors on Object Size and Shape: Situate also learns a
model capturing prior expectations of each relevant object
category’s size (area ratio) and shape (aspect ratio). These
expectations are learned by fitting the area ratios and aspect
ratios of ground-truth boxes as independent category-specific
log-normal distributions. Log-normals are a better fit for the
distribution of these values than normal distributions because
the former are always positive and give more weight to smaller
values. Note that our system does not learn prior distributions
over bounding-box location, since we do not want the system
to model photographers’ biases to put relevant objects near the
center of the image.

Fine-Tuned Faster-RCNN: Before starting its run on a
test image, Situate runs a fine-tuned version of faster-RCNN
on the test image to create a “prior” set of potential object
proposals (to be described in the next section). Faster-RCNN
[1] is a widely-used deep convolutional network that is trained



to propose bounding boxes and score them with respect to
given object categories; it has been shown to achieve state-
of-the-art performance on object detection. We used an open-
source version of Faster-RCNN [10] that was pre-trained on
the Pascal VOC dataset, and we used Situate’s training set to
fine-tune it for the Dog-Walker, Dog, and Leash categories.

B. Running Situate on a Test Image

After the models described above have been learned from
training data, Situate is ready to run on new (“test”) images.
The input to Situate is an image and the program’s output is
(1) a situation match score that measures Situate’s assessment
of this image as an instance of the given situation, and (2)
a set of “groundings”—detections of situation components in
the Workspace, as illustrated in Figure 1(c).

The detailed process by which Situate runs on a test image
is illustrated in Figure 2, which shows visualizations of eight
time-slices from a run of the program using the Walking the
Dog situation of Figure 1(a).

Figure 2(a): The figure shows Situate’s state before any
agents have run. The Workspace contains the unprocessed
image. The gray squares shown below the Workspace represent
the probability distributions over location for each object
category. The uniform gray indicates that these are initially
uniform distributions. Once an object is detected, these dis-
tributions will be updated to be conditioned on that detection
according to the learned relationship model. As we described
above, the system also maintains probability distributions
(not shown here) for aspect ratio (“shape”) and area ratio
(“size”) of each object category. Initially these shape and size
distributions are set to the learned independent priors for each
category, but once an object is detected these distributions will
also be conditioned on that detection.

As we described above, Situate will attempt to ground each
relevant object (here, Dog-Walker, Dog, and Leash) in the
Workspace via the action of agents. The system maintains an
agent pool—a collection of agents waiting to run—and selects
one of them at random to run at each time step.

In order to balance exploration for new object proposals
with “exploitation” and refinement of known, promising object
proposals, Situate has three types of agents: explorers, refiners,
and RCNN-priors. An explorer agent chooses an object cat-
egory from the list of relevant categories (here, Dog-Walker,
Dog, and Leash), and samples from that category’s current
location, shape, and size distributions to create an object
proposal. A refiner attempts to improve an already-existing
object proposal. An RCNN-prior agent proposes one of the
bounding boxes that were computed prior to Situate’s run by
running our fine-tuned faster-RCNN on the test image. We
found that all three of these types of agents were needed in
order for Situate to work well. The importance of explorer
agents will be seen in Section VI when we compare Situate’s
performance with that of faster-RCNN alone.

The agent pool is initialized with P RCNN-prior agents
for each object category—these represent the P highest-
confidence boxes for each category, as computed and scored

by faster-RCNN—and P ′ explorer agents. In the experiments
described in Section V, we set P = 10 and P ′ = 30—that is,
10 RCNN-priors per category, and 30 explorer agents (each of
which will choose a category at random when it runs). These
values were chosen via experiments on a validation subset of
the training images.

Once an agent runs, it is permanently deleted from the pool.
Every time an explorer agent is run and deleted, a new explorer
agent is added to the pool, in addition to any follow-up refiner
agents that were added by previously run agents.

The challenging aspects of this particular test image are (1)
to identify the correct person as the dog-walker and (2) to
locate the small, hard-to-see leash.

Figure 2(b): At time step 1 an explorer agent is selected
from the pool to run. It chooses the Dog-Walker category,
and samples from the location, size, and shape distributions
of that category to produce a proposal, represented as a
white box in the Workspace labeled “Dog-Walker?” (and a
corresponding blue box in the location distribution). The ex-
plorer agent evaluates this proposal via two measures: internal
and external support. The internal support is the Dog-Walker
object-localization model’s prediction of overlap between this
proposal and a ground-truth dog-walker. The external support
is a function that uses the learned relationship model to
measure how well this proposal fits in with other detections
that have been made (none so far in this example). These
two measures are combined into a total support measure,
which reflects the system’s current judgement of the quality
of this proposal for the given situation. If the internal support
is greater than a pre-defined threshold, the proposal will be
marked for refinement; if the total support is above a second
threshold, the proposal will be accepted as a detection. Since
internal support is very low for this particular Dog-Walker
proposal, it will be discarded without followup. (Due to space
constraints in this paper, the specific forms of the internal,
external, and total support functions, along with values of the
thresholds we used, will be given in an online supplementary
information section when this paper is published.)

Figure 2(c): At time step 3 an RCNN-prior agent is selected
to run. It creates a Dog-Walker proposal (in fact, this is faster-
RCNN’s most confident “Dog-Walker” box for this image).
This proposal’s internal support is high enough for the system
to create a detection (red box in the Workspace; corresponding
red box in the location distribution). A detection is a data
structure in the Workspace indicating that the system is confi-
dent that it has located a particular object. The relationship
model is now conditioned on this detection, yielding new
location distributions for Dog and Leash, shown in the boxes
below the Workspace. (The size and shape distributions for
these categories, not shown here, are also conditioned on the
detection.) Agents will now increasingly focus on searching
for objects in higher-probability areas of these distributions
(shown as white regions in the location distributions). Note
that the Dog-Walker location distribution is still uniform, since
no dogs or leashes have been detected yet. The only problem
is that the program has identified the wrong person as the dog-



Fig. 2. (Best viewed in color.) Visualization of eight time steps in a run of Situate. See text for explanation.

walker. This will be corrected in subsequent time steps using
additional information discovered by the program.

Figure 2(d): At time step 5 an RCNN-prior agent creates a
Dog detection. The location distributions (as well as size and
shape distributions) for each category are now conditioned on
the detections of the other categories. In particular, notice that
the Dog-Walker location distribution has been conditioned on
the Dog detection, and that the current Dog-Walker detection is
offset from the center of that distribution. Similarly, the new
Dog detection is offset from the center of the Dog location
distribution, which is conditioned on the Dog-Walker. In short,
these detections do not support each other strongly. Even
though both Dog-Walker and Dog have been detected, these
(and likewise any detection) are treated as provisional until the
end of the run: agents will continue to search for better-fitting
alternatives.

Figure 2(e): At time step 14, an explorer agent samples
from Leash distributions to produce a proposal (white box).
While the internal strength of this proposal is not high enough
for it to be a detection, a refiner agent is created to improve
it, and is added to the agent pool.

Figure 2(f): The refiner agent runs at time step 16, cre-
ating a leash detection. (False-positive leash detections are
very commonly made, both by faster-RCNN and by Situate.)
The location distributions for each category are updated to
reflect this new detection. While the Dog-Walker and Leash
detections strongly support each other, the Dog detection does
not fit in as well.

Figure 2(g): An explorer agent has proposed an alternative
Dog-Walker, and due to its high internal support as well
as external support from the Dog detection, this new Dog-
Walker has higher total support than the previous Dog-Walker
detection, and has replaced it. The relationship model has been
updated to reflect the new set of detections. This causes the
existing Leash detection to lose much of its external (and thus
total) support; its weakness is illustrated by the dashed line
around it.

Figure 2(h): A stronger Leash detection has replaced the
weaker one, and all three detections now strongly support
one another (each can be seen to be at the center of its
location distribution). This mutual context has helped the
system identify the correct dog-walker as well as to locate
the small, hard-to-see leash. The run ends at this point, since
all three objects have been detected. (If not all objects are
detected before a pre-set maximum number of time steps, the
run stops.)

At the end of a run, the system computes the situation match
score as a function of the total support of each detection. In
the current version of Situate, we define the situation match
score as the geometric mean over the “padded” total support
values of detections in the Workspace, where we “pad” the
total support values by adding 0.01 to each in order to avoid
multiplication by zero. If no detection for a given object is
made by the end of the run, the situation match score is
set to the minimum value of 0.01. We chose this padded
geometric mean function as a simple way of combining total



support scores, but will investigate alternative scoring methods
in future work.

In summary, the following sketches the initialization and
main loop of Situate.

Input: A test image.
Initialization: Initialize location, area-ratio, and aspect-
ratio distributions for each relevant object category. The
initial location distributions are uniform; initial area-ratio
and aspect-ratio distributions are learned from training
data. Initialize agent pool with explorer and RCNN-prior
agents.
Main Loop: Repeat until all relevant objects are detected
or at most for Max-Iterations:

1) Choose agent from agent pool at random.
2) Run agent and delete it from the agent pool (and if

agent is an explorer, replace it in the agent pool).
3) Update relationship model, conditioned on current

detections in the Workspace.
Return: Situation match score S, where

S =

[
n∏

i=1

(total-support(di) + 0.01)

] 1
n

, (1)

where n is the number of detections in the Workspace,
and di is the ith detection.

For the experiments described in this paper, we used Max-
Iterations = 300. That is, at most, 300 agents are run including
explorers, refiners, and RCNN-priors.

In designing Situate’s architecture, we were inspired by
Hofstadter et al.’s idea of modeling perception as a “parallel
terraced scan” [6], in which many possible exploration paths
are pursued in parallel, but not all at the same speed or to the
same depth. Moreover, the exploration is “active” in the sense
that information is used as it is gained to continually modify
the resources given to possible paths. An advantage of such an
approach is balancing the need to explore many possibilities
while still avoiding exhaustive evaluation of possible situation
configurations. Like the codelets in the architecture of [6], our
(serially run) architecture approximates such a parallel search
strategy by interleaving many independent agents. In principle,
many of these explorations could be performed in parallel.
Furthermore, splitting up “explorers” and “refiners” allows the
system to balance time spent on bottom-up exploration with
time on focused follow-ups.

Due to space constraints, we omit some details of Situate
(e.g., the detailed forms of the external and total support
functions, thresholds for detections) and the other methods. We
will provide these details in an online supplementary materials
section, along with our code and all training and test data, upon
publication of this paper.

We hypothesize that the approach we have described above
will have superior performance on grounding elements of
situations, and thus on ranking images, than methods that
do not use this kind of active approach, assuming the same
amount of training data. We also hypothesize that our method

will be able to achieve this performance with significantly
fewer object-proposal evaluations than non-active methods.

III. RELATED WORK

Here we describe some of the recent approaches most
closely related to Situate’s goals and architecture. Closely
related to our work is the approach of Johnson et al. [3] for
semantic image retrieval via “scene graphs.” We describe this
method in Section V and compare its performance to that of
Situate in Section VI.

Another widely studied image-understanding task is that of
“grounding referential expressions” (e.g., [11]–[13]). Given a
phrase such as “the brown dog next to the woman wearing
sunglasses,” the task is to locate the object being referred
to, by grounding each object and relation in the phrase.
Like the scene-graph task described above, research on this
task has focused on specific “free-form” phrases rather than
more abstract situation descriptions. The open-ended nature
of the task makes it very difficult, and accuracies reported on
large datasets have remained low to date. A related task is
that of detecting visual relationships in images (e.g., [14]);
to our knowledge, the literature on this task has focused
almost exclusively on pairwise relationships (e.g. “dog riding
surfboard”), rather than multi-object visual situations.

Our situation-retrieval task shares motivation but contrasts
with the well-known tasks of “event recognition” or ”action
recognition” in still images (e.g., [15]–[17]). These latter tasks
consist of classifying images into one of several event or action
categories, without the requirement of localizing objects or
relationships. A related task, dubbed “Situation Recognition”
in [18], requires a system to, given an image, predict the most
salient verb, along with its subject and object (“semantic roles”
[19]).

Our task also contrasts with recent work on automatic cap-
tion generation for images (e.g., [20]), in which image content
is statistically associated with a language generator. The goal
of caption-generation systems is to generate a description of
any input image. Even the versions with “attention” (e.g.,
[21]), which are able to highlight diffuse areas corresponding
roughly to relevant objects, are not generally able to recognize
and locate all important objects, relationships, and actions, or
more generally to recognize abstract situations.

While the literature cited above does not include active
detection methods such as Situate that involve feedback, there
has been also considerable work on active object detection
(e.g., [22], [23]), often in the context of active perception in
robots [24] and modeling visual attention [25], [26]. More
recently, several groups have framed active object detection
as a Markov decision process and use reinforcement learning
to learn a search policy (e.g., [27]).

This section has given a sampling of recent work most
closely related to Situate. While our work shares motiva-
tion with some of these efforts, the specific problem we
are addressing (visual situation retrieval) and method (active
grounding of situation components) is, to our knowledge,
unique in the literature.



IV. DATASETS

The computer vision community has created several impor-
tant benchmark datasets for object recognition and detection
(e.g., [2], [28]) and for some of the other tasks described in the
previous section that combine vision and language (e.g., [29],
[30]). None of these offers the kind of data that we needed for
our situation-retrieval task—that is, collections of numerous
instances of specific multi-object situations, in which the
objects are localized with ground-truth bounding boxes. (For
example, the ImSitu “Situation Recognition” dataset is orga-
nized around verbs such as carrying, jumping, and attacking,
each with one subject (e.g., “dog jumping”) and some with
one additional object that the subject acts upon (e.g., “man
carrying baby”).

For our preliminary work with Situate, we developed a
new dataset representing the “Walking the Dog” situation. We
chose this situation category because it is reasonably easy to
find sufficient varied instances to train and test our system, and
these instances offer a variety of interesting challenges. This
dataset, the “Portland State Dog-Walking Images,” contains
500 positive instances of the Dog-Walking situation. These
positive instances are photographs taken by members of our
group, and in each we labeled (with bounding boxes) the Dog,
Dog-Walker, and Leash. Each image contains only one of
each target object, but many also contain additional (non-dog-
walking) people, along with cars, buildings, trees, and other
“clutter.” The challenges of this dataset include determining
which person is the dog-walker, as well as locating dogs (often
small, and sometimes partially occluded) and leashes (which
are very often difficult, based on visual features alone, to
distinguish from other line-like structures in an image), and
deciding if the configuration of these three objects fits the
learned dog-walking situation. For the experiments described
below, we split the 500 images into a 400-image training
set and a 100-image test. We also created a negative set of
400 images selected from the Visual Genome dataset [29],
including images in which people interact with dogs in non-
dog-walking situations, along with images with people but no
dogs, dogs but no people, and neither.

V. METHODS

We performed experiments to evaluate Situate’s image re-
trieval and situation grounding abilities. We assess the impor-
tance of Situate’s learned relationship models by comparing
with two baseline methods as well as with the Image Retrieval
using Scene Graphs (IRSG) method of Johnson et al. [3]. In
each method, we performed any necessary training using the
same training set that we used for Situate. All methods are
tested on the “Portland State Dog Walking” test set.

Baseline Methods: The first baseline, which we call the
Uniform method, is identical to Situate except that explorer
agents always sample locations and bounding box parameters
uniformly rather than using a learned relationship model.
When creating an object proposal, an explorer agent chooses a
center location by sampling uniformly across the entire image,
and chooses area and aspect ratios by sampling uniformly over

fixed ranges. The second baseline uses our fine-tuned version
of Faster-RCNN (described in Section II-A above). We ran the
fine-tuned Faster-RCNN network on each test image (positive
and negative), and selected the highest scoring bounding box
(as scored by Faster-RCNN) corresponding to each of the three
relevant object categories. Analogous to Situate, we defined
the Situation Match Score as the padded geometric mean of
the scores assigned to these bounding boxes by Faster-RCNN.
Our goal was to see how well this specially trained Faster-
RCNN model could be used to perform situation retrieval
by simply relying on the top-scoring boxes for each relevant
object, absent of any relationship model or active search.

IRSG Method: We also compare Situate’s performance
that of Johnson et al.’s “Image Retrieval using Scene Graphs”
(IRSG) method [3]. A scene graph is a graphical representation
of objects, attributes, and relationships that encode an image
or image region, or desired image content—e.g., “a tall man
wearing a white baseball cap.” IRSG is similar to Situate in
that it scores an input image as to how well it instantiates
a query description (represented as a scene graph), and uses
these scores to rank images in a collection. Moreover, IRSG
computes its score by attempting to ground components of
the query scene graph in the input image. IRSG first runs the
geodesic object proposal method of [31] to create a set of
non-category-specific object proposal bounding boxes (on the
order of several hundred per image). IRSG then uses R-CNN
[9] to give each bounding box multiple “appearance” scores—
one for each object category in the scene graph. Then, for each
possible pair of bounding boxes, IRSG uses a set of Gaussian
mixture models (GMM), learned from training examples, to
score the pair on each relationship in the scene graph . The
unary object appearance scores and binary relationship scores
are used in a conditional random field model defined over a
factor graph representing the query. As a simple example, for
the query “woman next to man wearing hat,” the system would
give an appearance score to each bounding box for “woman,”
“man,” and “hat,” and then give a relationship score to each
pair of bounding boxes for each of the two relationships
(“man wearing hat” and “woman next to man”), and see which
configuration of object boxes and relationships minimizes the
energy function defined by the conditional random field.

We obtained the source code for IRSG from the authors of
[3] and adapted it in order to compare it with Situate and our
other methods. Instead of geodesic object proposals scored by
R-CNN, we used the top-scoring 300 boxes per category (Dog-
Walker, Dog, Leash) from our fine-tuned version of Faster-
RCNN. Since IRSG is (as currently implemented) limited
to pairwise relationships, we trained GMMs to represent
three spatial relationships: Dog-Walker and Leash; Leash and
Dog; and Dog-Walker and Dog. The conditional random field
formulation and energy minimization was performed using the
same algorithms that were described in [3]. In this way, each
positive and negative test image in our set was scored with
its final energy value, and images were ranked in order of
increasing energy—i.e., the lowest energy image was ranked
the highest. (In the other methods, images were ranked in order



TABLE I
RESULTS FOR SINGLE-IMAGE RECALL@N . BEST RESULTS FOR EACH N ARE IN BOLDFACE.

N 1 2 5 10 20 100
Situate 0.37 (0.09) 0.50 (0.07) 0.56 (0.07) 0.65 (0.04) 0.77 (0.05) 0.93 (0.02)
Uniform 0.29 (0.07)) 0.32 (0.07) 0.44 (0.06) 0.54 (0.04) 0.65 (0.03) 0.79 (0.03)
Faster-RCNN 0.24 0.25 0.28 0.38 0.54 0.91
IRSG 0.24 0.24 0.27 0.37 0.55 0.87

of decreasing score—the highest scoring image was ranked the
highest.)

Evaluation Metric: We ran each method on the 100 pos-
itive test images and the the 400 negative (non-dog-walking)
test images chosen from the Visual Genome dataset. Our
evaluation metric is Single-Image Recall @N (abbreviated
R@N ): the probability that, if a single positive example were
added to the set of negative examples, and the collection was
ranked by situation match score (or energy, for IRSG), the
positive example would be in the N top-ranked images. For
example, given our 100 positive and 400 negative test images,
R@10 = 0.65 means that 65 out of 100 of the positive images
would be in the top 10 ranked images if they were ranked alone
with the 400 negative images.

VI. RESULTS

Table I gives the R@N values resulting from running the
four different methods on the positive and negative test sets.
While Faster-RCNN and our adapted version of IRSG are
deterministic, the Situate and Uniform methods are stochastic.
We performed 10 independent runs of each of these latter
methods; each run consisted of running on all the positive
and negative test images, and then computing R@N . The
values given in Table I for Situate and Uniform are the
averages over these R@N values (with standard deviations in
parentheses). It can be seen that Situate produced the highest
R@N of any method for each value of N ; for low values of
N , which are typically the most important for retrieval tasks,
Situate’s R@N was substantially higher than any of the other
methods. These results support our hypothesis that Situate’s
active grounding method, together with its learned models, will
result in superior image retrieval performance than methods
lacking these components.

VII. DISCUSSION

We investigated the reasons for for Situate’s superior per-
formance by viewing the object detections produced by each
method by the end of a run on each test image. As was
illustrated by the run in Figure 2, Situate was considerably
better at identifying the correct person as Dog-Walker and at
locating hard-to-see leashes than the other methods. Moreover,
Situate was better at locating small or partially occluded
objects than the other methods. Also, in the case of faster-
RCNN, even when it did locate a hard-to-see object, faster-
RCNN often gave it low confidence, making the situation-
match score low. In contrast, due to its external support
measure, Situate was able to assign higher confidence to such

objects and thus score positive situation instances more highly
than faster-RCNN.

All methods were susceptible to false-positive object detec-
tions with high confidence, but again, because of its incor-
poration of external support for object detections, Situate was
less susceptible than RCNN and IRSG to giving high situation
match scores to negative images. In principle IRSG should
have also given higher energy (lower score) to such images
due to its relationship models, but it was not very effective
at doing so. We will investigate the reasons for its failures in
detail in the near future.

While we have reported results on only one particular situ-
ation query (“Dog-Walking”), we believe that the mechanisms
that lead to Situate’s superior retrieval performance are general
and scalable. Demonstrating this scalability and generality is
the most important topic of our near-term future work.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have described a preliminary study of
Situate, a novel approach to semantic image retrieval. The
results of this study have shown the promise of Situate’s active
situation-grounding architecture: our system’s image-retrieval
performance on the “Walking the Dog” situation strongly
surpassed that of two baselines as well as a related image-
retrieval system from the recent literature. We showed how
Situate is able to use information as it is gained in order to
focus its search, and to use the support of context in order
to locate hard-to-detect objects (e.g., barely visible leashes,
small dogs, partially occluded objects). In analyzing these
results, we were able to understand some of the reasons for
Situate’s superior performance, as well as to identify some of
its problems. This analysis underscores the important role of
grounding situation elements as part of scoring an image.

Visual situation recognition and retrieval is a broad and
difficult open problem in computer vision research, and the
results we have presented highlight many avenues of future
research. In the near term we plan to improve our algorithm
in several ways: expanding the kind of object attributes that
can be detected by agents (e.g., orientation and other pose
features); expanding the types of relationships that can be
identified (e.g., recognizing that two objects have the same
orientation). In the work described here we used a multivariate
Gaussian to capture spatial relationships among objects; this
simple probabilistic model is very fast to learn and to sample
from. We plan to experiment with more sophisticated rela-
tionship models while keeping in mind the tradeoff between
sophistication and speed of computation. Most importantly,



we will explore the ability of our algorithms to scale to larger
datasets and to generalize to other situation categories.

In the longer term, we will focus on, among other exten-
sions, being able to speed up our active search method via
parallelization. Finally, one of our original motivations for
this project was to create a system that can recognize visual
analogies. For example, most people would consider images
of a person running, riding a bicycle, sitting in a wheelchair,
etc. while “walking” a dog to still be instances of the abstract
Dog-Walking situation. This kind of recognition requires what
Hofstadter and colleagues have called “conceptual slippage,”
in which the roles defining a situation can be fluidly filled
by concepts semantically related to the prototype. Making
appropriate conceptual slippages is at the heart of analogy-
making, which itself is a core aspect of cognition [6].

The abilities of computer vision remain far from human-
level visual understanding, but we believe that progress on
the problem of situation recognition, particularly incorporating
analogy-making, will play a pivotal role in giving computers
the ability to make sense of what they see.
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