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Abstract

By beginning with simple reactive behaviors and gradually building up to more
memory-dependent behaviors, it may be possible for connectionist systems to eventually
achieve the level of planning. This paper focuses on an intermediate step in this incremen-
tal process, where the appropriate means of providing guidance to adapting controllers is
explored. A local and a global method of reinforcement learning are contrasted—a special
form of back-propagation and an evolutionary algorithm. These methods are applied to
a neural network controller for a simple robot. A number of experiments are described
where the presence of explicit goals and the immediacy of reinforcement are varied. These
experiments reveal how various types of guidance can affect the final control behavior.
The results show that the respective advantages and disadvantages of these two adap-
tation methods are complementary, suggesting that some hybrid of the two may be the
most effective method. Concluding remarks discuss the next incremental steps towards
more complex control behaviors.

*Appeared in IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, June
1996, Volume 26, Number 3, pages 474-485



I. INTRODUCTION

Neural networks offer one of the most promising means for investigating robot control because
connectionist methodology allows the task demands rather than the designer’s biases to be
the primary force in shaping the system’s development. By actively limiting the effect of our
presuppositions on the implementation, we may be able to discover radically different forms
of control.

At the initial design phase, connectionist methodology provides useful constraints by en-
couraging bottom-up construction. Input can come directly from the sensors and output
can feed directly into the actuators creating a close coupling of perception and action. This
immediate interplay between sensing and acting is crucial to producing the real-time reac-
tive behavior necessary in robotics. Because adaptation is fundamental to the connectionist
paradigm, the designer need not determine what form the internal knowledge will take or
what specific function it will serve. Instead, based on the training task, the system will con-
struct its own internal representations built directly from the sensor readings to achieve the
desired behavior. However, the designer still has an important role to play in this develop-
ment process which includes determining: the network topology, the network parameters, the
adaptation scheme, the input and output representations, the robot’s physical characteristics,
and the robot’s environment.

After this development process has been set in motion and the system has reached an
adequate level of performance at the task, its method can be dissected and a high-level
understanding of its control principles can be described. As Clark has noted, connectionism
“inverts the official classical ordering, in which a high-level understanding comes first and
closely guides the search for algorithms” [9]. Through adaptation, the system’s solution to
the task emerges as it discovers the key features of the problem space rather than simply
being the product of the designer’s understanding of the domain.

By employing this basic technique of constructing a neural network controller, adapting it
for an agent and an environment, and then analyzing the emergent behavior, a number of re-
searchers have found quite interesting control mechanisms within their systems [3, 14, 22, 28].
However, there are limitations to what a fundamentally reactive system can accomplish.
Many tasks we would like a robot to perform require some kind of planning. If the con-
nectionist approach cannot go beyond the level of reactive behavior to planned behavior its
usefulness in robotics will probably be restricted to the front-end processing of perceptual
information. This paper will argue that an incremental approach, beginning with simple re-
active behavior and gradually building up to more memory-dependent behavior, is a possible
avenue for connectionist systems to eventually achieve the level of planning.

In recent years there have been a number of different proposals for incrementally con-
structing intelligent agents [6, 7, 30, 31, 33]. This paper will focus on the suggestions made
by Waltz in [31] because they address high-level distinctions that can be implemented in
neural networks. He offers eight guiding principles to building an intelligent architecture;
the first five of these principles lead up to planning, and the final three go beyond it. This
research adopts the five principles relevant to planning, with slight modifications to better
fit them into a connectionist framework.

1. Use associative memory as the overall mechanism.
state — action



2. Populate the associative memory system with sequenced rote experiences.
3. Include mechanisms to automatically generalize across rote memories.

4. Include innate drive and evaluation systems to provide the robot with guidance for its
actions.
state + goal — action + evaluation

5. Include control structures to allow planning.
state + goal + plan — action + evaluation

These principles provide a foundation for an intelligent robot controller, but key issues
remain unresolved. With respect to the first, second, and third principles, what sort of
associative memory should be employed to ensure recognition of sequences and ease of gener-
alization? With respect to the fourth principle, how should goals be specified to produce the
appropriate type of motivation and what kind of evaluation should be given to best direct
the adaptation? Finally, with respect to the fifth principle, what will constitute a plan and
how will plans develop?

This paper will address all of these questions to some extent but will focus on the questions
raised by the fourth principle. In terms of the first three principles, it has already been
well demonstrated that connectionist networks are fundamentally associative engines that
naturally perform generalizations [24, 9]. However it is not yet clear, in terms of the fourth
principle, what are the best ways to incorporate goals or to provide adaptation evaluation for
robotics domains. Since this approach is incremental, the planning issues of the fifth principle
cannot be addressed until these previous problems of the fourth principle are explored.

In this paper, a local and a global reinforcement method of adaptation for neural network
controllers are contrasted—a special form of back-propagation and an evolutionary algorithm.
These methods are applied to a simple robot, called carbot. A number of experiments are
described where the presence of explicit goals and the immediacy of reinforcement are varied.
These experiments are meant to shed light on the questions, raised by the fourth principle, of
the most effective means for providing goals and evaluation to an adapting robot controller.

The paper is organized as follows. In Section II, the robot, the task, and the control
network are described. In addition, the advantages and disadvantages of real-world versus
simulation training are discussed. In Section III, a brief background is given for both the
local and global adaptation methods as well as an explanation of the specific implementation
details used here. In Section IV, the experiments and results are described. Finally in Section
V, there is a discussion of the results with respect to the overarching aim of incrementally
moving towards connectionist planning.

II. THE ROBOT

Carbot is a modified toy car (approximately 15 cm wide, 23 cm long, and 10 cm high) con-
trolled by a programmable mini-board (designed at MIT [23]). During operation, carbot was
tethered to a PC and was controlled by a remote connectionist network that communicated
with the mini-board through the serial port. Carbot was inexpensive to build, primarily
because it makes use of primitive sensors—no lasers or video. Instead it has just two types
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Figure 1: Positioning of sensors, motors, and control board on carbot. Note the 30 degree
angle of the light sensors.

of sensors: digital touch sensors on the front and back bumpers, and analog light sensors on
stalks near the back which are directed 30 degrees to each side of carbot. For movement it
has two servo-motors; one controls forward and backward motion and the other steering. See
Figure 1 for a schematic drawing of carbot that shows the position of the sensors and motors.

A.  The Environment and Task

The environment is a rectangular box (approximately 1.2 m by 0.6 m) with a light in one
corner. Carbot’s task within this sparse environment is multi-dimensional: it must learn low-
level reactive responses as well as goal-guided behavior. At the reactive level, carbot receives
negative reinforcement any time it contacts one of the walls or is not moving. Conceptu-
ally this could be considered rudimentary navigation—carbot must learn to continually keep
moving while avoiding the boundaries of its environment. See [26] for a detailed description
of factors that affect a network’s performance when learning this type of simple reactive task.

At the goal level, carbot must either seek or avoid the light depending on the current goal.
A positive value for the goal indicates that carbot should seek out the light until a maximum
light reading is obtained. Once this is accomplished, the goal automatically switches to a
negative value, indicating that carbot should avoid the light until a minimum light reading is
obtained. Successful avoidance switches the goal back to seek-mode again. The goal varies in
this periodic manner throughout the task, seeking is immediately followed by avoiding and
so on. Carbot receives negative reinforcement any time it does not follow the light gradient
correctly for the given goal. Otherwise it receives positive reinforcement.

At first glance this task seems quite simple; however there are a number of aspects of
carbot’s physical characteristics that make the task problematic. First, carbot, as its name
suggests, is built like a car and its turning radius is larger than the smallest dimension of
the environment. Second, carbot cannot control its speed, but must always keep moving.
Each action is executed for one second, and on average straight motion propels carbot 17.8
centimeters (almost 30% of the smallest environment dimension) and turning motion results
in a linear change in position of 11.4 centimeters (almost 20% of the smalled environment
dimension) as well as a 24 degree change in heading. Third, carbot’s touch sensors provide



Table 1: Example sequences
A1234512345...
B|1234513524 ..
Cl1231241255...

no advance warning of upcoming obstacles, as sonar sensors would. Finally, because of the
position of the light sensors, carbot strongly senses light in only a 60 degree range centered
on its front end. In summary, carbot’s maneuverability is limited to a few gross actions and
its perceptual abilities are quite primitive, making this seemingly simple task much more
difficult.

B.  The Control Network

One of the most basic connectionist architectures is a feedforward network where an input
layer of units feeds into a hidden layer which then feeds into an output layer. By interpreting
the inputs as perceptions and the outputs as actions a typical feedforward network can learn
to react appropriately for a given robotics task. One difficulty with the standard feedforward
architecture is that when time is an important aspect of the problem to be modeled, it is not
clear how to represent time in an efficient and useful manner. Certainly, for the ultimate goal
of planning, timing information is crucial since plans involve temporal sequences of actions.

For example, suppose we wanted a neural network to learn one of the three sequences
shown in Table 1. If the network were presented with only one element at a time, then to
learn such a sequence it must master the transitions between the elements. These transitions
may depend on one or more elements that appeared an arbitrary number of steps back in
time. The difficulty of a sequence to be learned can be measured by the complexity of its
transitions. Sequence A is the easiest to learn because each transition depends only on the
current element—2 is always followed by 3. No memory is necessary and a feedforward
network could master this sequence. However, sequence B is harder to learn because each
transition depends on the the previous and current element—2 is followed by 3 or 4. To
accomplish this transition, memory of the previous element is necessary and a feedforward
network could not master this sequence. Finally, sequence C is the most difficult to learn
because of the repeating sub-sequence 1 2. Now the transition from 2 may be either 3, 4,
or 5 depending on the previous two elements. By relaxing the feedforward restriction and
allowing feedback connections, a network can learn to be sensitive to these kinds of temporal
changes in the input.

Recurrent networks, which allow lateral and backward connections between units, offer
a way to implicitly represent time by the effect it has on processing. One form of simple
recurrent network (these are termed simple because the location of recurrent connections is
restricted to a single layer) was developed by Elman [12]. In this architecture (shown in
Figure 2), each unit in the hidden layer is connected to all the other hidden units including
itself. With this type of recurrence, the network can develop a short-term memory of its
own encodings of the past input states and can therefore learn to respond appropriately to
sequences such as B and C in Table 1.

This control network gathers input data from the sensors and determines how to set the



Motor settings

OO[OO

00000

N
9000100

Touch Light Goal
Sensors

Figure 2: The control network. The arrows indicate which layers are fully connected. The
hidden layer is fully connected to itself.

motors for the next time step. There are three sets of input units; two sets are for sensors,
and one is for goals. The first set of units in the input layer represent the state of the digital
touch sensors—three in front and one in back. Two of the front sensors are out to either side
so that carbot can sense side collisions when moving forward. When the digital sensors are
triggered by contact with an obstacle they take on the value 1, otherwise they are 0. The
next set of two units represent the state of the analog light sensors, whose values can range
from 0.0 to 1.0 (due to ambient light, their values rarely fall below 0.25). The final set of one
unit encodes the network’s goals. Currently only two goals are used: +1 for seeking the light
and -1 for avoiding the light.

The four output units of the network determine how to set the motors for the next time
step. Carbot is propelled by two motors each requiring two units to specify its state. The
first output unit represents the spin direction of the rear motor which determines direction
of motion—forward or backward. The second unit designates the state of the motor as on
or off. The third unit represents the spin direction of the front motor which determines the
direction of turning—right or left. The fourth unit designates the state of the front motor as
on or off. Note that in order to turn, carbot must have both motors running; the back motor
provides movement while the front motor steers. In order to go straight, carbot must have
only the back motor on.

C. Real-World versus Simulation Training

Since carbot has to physically move in the world, it takes a long time to train and test a
particular controller network. Each real-world action is executed for one second, so 5,000
actions require approximately 1.5 hours to be completed. To alleviate this time limitation, a
software simulation was implemented.

Although simulators are usually not very much like reality, when the simulator is based
on an actual robot, the simulator’s behavior can be programmed to closely correspond with
the real-world behavior. Harvey, Husbands, and Cliff [20] suggest some ways to ensure that



a simulator stays in close step with reality:

1. Simulations of the inputs to sensors and the outputs to actuators should be based on
carefully collected empirical data.

2. Noise must be taken into account at all levels.
3. A range of unstructured, dynamic environments should be used to ensure robustness.
4. The simulation should be calibrated by testing adapted architectures in the real robot.

In constructing carbot’s simulator, all of these suggestions were followed. As per the first
suggestion, carbot’s sensor readings, average turning radius and distance traveled for each
action in the real world were empirically determined and used as the basis for the simulator.
With respect to the second suggestion, small amounts of random noise were added to carbot’s
integer heading (-4 to +4), real position (-2.0 to +2.0), and real light sensor readings (0 to
0.11) after each action taken within the simulator. For the third suggestion of exploring
a range of environments, although only enclosed, rectangular spaces were used, a number
of different dimensions were tried. The chosen dimensions proved to be hard to maneuver
within, but solutions were still readily found.

For the final suggestion, a number of experiments were done to verify that the sorts of
controllers that worked well in the simulator would also work well in the real robot. Controller
networks trained in the simulator were transplanted to the actual robot and tested without
further training. The behaviors produced by the same network on the simulator and on the
robot were compared in terms of percent time punished. These transplant tests provided
a very encouraging result: the robot’s performance was always superior to the simulator’s
performance. This result is probably due to the additional noise provided in the simulator.
The actual robot’s movements are only occasionally noisy while the simulator’s movements
are systematically noisy and this added noise enhances learning by exposing the controller to
a wider range of environmental conditions'.

Thus the simulated robot’s behavior was determined to be close enough to the actual
behavior of carbot to warrant use of the simulator for training the robot controllers. The
simulator is used to test hypotheses and to develop useful architectures that are then applied
back to the real robot. This saves a significant amount of time since 5,000 simulated actions
can be executed in less than a minute (a speedup factor of about 90). Another benefit of
using the simulator is that the behavior tests can be more precisely monitored and compared.

III. REINFORCEMENT LEARNING METHODS

Robotics problems are typically defined in terms of abstract goals (i.e. remain viable for
as long as possible) rather than specific perception to action pairs, so explicit, moment-to-
moment guidance is not usually available. Reinforcement procedures are well suited for this
type of learning because they only require scalar values to encode the relative desirability

! As another example of this phenomenon, Pomerleau found that in training a neural network to drive a
large vehicle, it was beneficial to train the network not only on good data provided by a human driver, but
also on shifted versions of this data which forced the controller to learn how to recover from errors [29].



of particular states. The magnitude of this value can be used to reflect the degree of the
state’s goodness. Typically, positive values are thought of as rewards and negative values as
punishment. For example, suppose that carbot has just bumped into a wall triggering its
front sensors. Any action that moves it away from the wall and clears its sensors should be
rewarded, while any action that persists in bumping into the wall should be punished. There
is not necessarily one right or wrong action for a given situation, and even if there were, it
may not be known a priori. Reinforcement procedures allow the learning to be guided at the
abstract, goal level.

In this paper, two very different kinds of reinforcement procedures have been used to
adapt the weights of the control networks—one is a local method while the other is a global
method. The local method is a special back-propagation algorithm that updates the weights
immediately upon receiving reinforcement. The global method is an evolutionary algorithm
which tests out a collection of networks in the environment for an extended period of time.
From this test it obtains a global fitness measure that is then used to bias the subsequent
adaptation.

A. Local Method: Back-Propagation

In half of the experiments, the control networks were trained with a modified version of
the complementary reinforcement back-propagation (CRBP) learning algorithm [1]. Back-
propagation learning requires precise error measures for each output produced by a network
so that gradient descent on the error can be performed. CRBP provides these exact error
measures from the abstract reward and punishment signals as follows.

The output is determined by a two-step process. First, a forward propagation of the
input values produces a real-valued vector on the output layer called the search wvector S.
Each real value of the search vector is interpreted as the probability that the associated
random bit takes on the value 1. Then from these probabilities a binary output vector O is
stochastically produced (this non-determinism provides some exploration for the learning). If
O is rewarded (i.e. the reinforcement value is positive), then learning should push the network
towards this vector, so the error measure (O — S) is back-propagated. If O is punished (i.e.
the reinforcement value is negative), then learning should push the network away from this
vector, but the appropriate direction is not clear. CRBP chooses to push the network directly
toward the complement of O, using the error measure ((1 — O) — S5).

Using this algorithm, rewarded outputs will be more likely to occur again and punished
outputs will tend to produce the complement output vector in similar situations. Let’s
consider the effect of using the complement as the target for punished actions in the carbot
domain. The four output bits can be summarized as follows: forward/backward, motion
motor on/off, right/left, turning motor on/off. For most of these bits, taking the complement
of a punished action makes intuitive sense: the direction of motion will be switched (left
versus right or forward versus backward) and the type of motion will be switched (linear
versus curved). However, for the second bit, which determines whether carbot is moving,
the complement is not a good choice. Recall that one aspect of the reinforcement task is
that carbot must keep moving at all times. For this to occur this particular output bit must
always be on. So whenever carbot is moving and receives punishment, taking the complement
will result in a non-moving target. This is an unfortunate effect, but the controller networks



quickly learn to overcome this aspect of the target by developing a high positive bias value
for this output node.

Another feature of CRBP is that there are different learning rates for reward and punish-
ment. When the network is rewarded, we can be confident that we have good information to
learn from because the current state led to positive reinforcement. Therefore, we should use
a high learning rate. In contrast, when the network is punished, we know that the current
state is not desirable, but we can only arbitrarily pick the complement state as our target.
There is no guarantee that the complement is a good choice, so our learning rate should be
lower.

Implementation Details

Adaptation begins by initializing all the weights in a control network to random values
between —1.0 and +1.0. Unlike the evolutionary algorithm to be described next, CRBP
adapts a single control network throughout one long, connected series of actions. So starting
from a random situation, carbot’s future situations are determined by the actions produced
by the constantly changing control network. With CRBP all types of punishment are treated
equally. Regardless of whether the punishment came from not moving, bumping into a wall,
or not following the light gradient correctly, the reinforcement value is -1 and the consequences
are the same: the complement of the punished action is back-propagated. Similarly all types
of reward, keeping moving, following the light gradient correctly, and achieving a light goal,
are treated equally—each receives +1 as the reinforcement value?.

The following set of steps are considered one cycle of processing and were iterated until
a learning criterion was achieved or until a maximum of 750,000 cycles was completed (a
cycle equates with performing one robot action). The learning criterion was met whenever
the percent of actions punished for 5,000 consecutive cycles was less than or equal to 35%.

1. Get input from the sensors

Forward propagate input to produce real-valued S
Stochastically determine binary-valued O from S
Execute action O on carbot

Determine reinforcement

S ok W

Determine error

if rewarded then £ =0 — §

if punished then £ = ((1 — O) — S)
if no reinforcement then &£ =0

7. If E # 0 then back-propagate E
reward learning rate = 0.3
punish learning rate = 0.1

It would be possible to differentiate between types of punishment or types of reward by varying the
learning rate by type. For example, following the light gradient correctly could result in a 0.3 learning rate,
while actually achieving the final light goal could result in a 1.0 learning rate. This type of variation has been
tried, but the results were not significantly different than those obtained using the standard (and simpler)
method.



In CRBP, the results of the reinforcement are immediately used to update the network
weights, thus changing the controller after every action.

B. Global Method: Genetic Algorithm

Genetic algorithms (GAs) were originally used for function optimization. However with the
arrival of classifier systems, which use GAs for rule discovery, they became linked with a
reinforcement procedure [21, 5, 17, 11, 10]. But as will be seen below, a GA was, in a sense,
already a reinforcement procedure prior to the advent of classifier systems because it operates
on information about the relative performance of potential solutions [32]. Goldberg provides
a thorough introduction to both the optimization and reinforcement applications of GAs [16].

Genetic algorithms are based on the theory of natural selection in evolution. GAs work
on a population of individuals, where each individual represents a possible solution to the
given problem. After the initial population is randomly generated, the algorithm evolves the
population through the use of three operators: selection, crossover, and mutation. Selection
determines which individuals from the current generation to copy to the next generation based
on each individual’s fitness, where fitness is some measure of the goodness of an individual
that the GA is trying to maximize. A certain portion of the individuals chosen by selection will
be mated through crossover. Crossover creates a new offspring by combining complementary
portions of the genetic strings of two parents. Finally, through mutation some portion of the
chosen individuals will have random pieces of their genetic material altered.

The selection process ensures that individuals with above average fitness are more likely
to be chosen for inclusion in the next generation than individuals with below average fitness.
Therefore “genetic algorithms are capable of performing a global search of a space because
they can rely on hyperplane sampling to guide the search instead of searching along the
gradient of a function” as back-propagation does [32].

Combining Genetic Algorithms and Neural Networks

There are many interesting possibilities for applying genetic algorithms to neural net-
works. GAs have been used to find good initial network weights, to tune network learning
parameters, to determine network structure, to evolve network learning algorithms, and to
learn network weights [4, 18, 20, 8, 32]. It is the last option—learning weights—that will be
used here: for the carbot problem, the network architecture is fixed (as shown in Figure 2)
and the GA works to adapt an appropriate set of weights.

Applying genetic algorithms to networks has not been as straightforward as other types
of GA applications. Traditionally individuals in GA populations have been represented as bit
strings. Weights in connectionist networks are real-valued, and converting them into a binary
encoding would entail arbitrarily discretizing them to a particular precision. So for many GA
applications to networks, individuals are represented as real-coded vectors of weights (for
example see [15, 32]), and this was done for the carbot domain as well.

Another tradition in GAs is that the crossover operator is used much more frequently than
the mutation operator. In the carbot domain, crossover would create a new set of weights by
taking some weights from one successful network and the rest from another successful network.
However, these two networks could be using very different strategies for solving the problem.
Creating an offspring by recombining portions of their weights may result in an extremely
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poor alternative solution. In fact even if the two networks are employing the same strategy,
it is probably instantiated in the weights in very different ways. So again, recombination may
be quite unsuccessful. Networks tend to solve problems in a distributed, holistic fashion and
thus may not even have useful building blocks to contribute to a recombined solution.

In initial experiments with the GA, crossover was used in adapting network controllers
for carbot, but this operator did not improve and often hurt performance. As a first attempt,
standard crossover was applied, where one random point on the genetic string was picked
and a swap was done. In a second attempt, all the incoming weights to a unit and its
bias were treated as a building block and located together on the genetic string. Crossover
was restricted to occurring between such blocks. Even with this more sophisticated form
of crossover, performance suffered. Therefore due to the problematic nature of crossover
for network representations, this form of recombination was not used in the experiments
described here (although crossover has been used in other GA applications to networks—for
a good discussion of this topic see [4]).

Instead, new individuals were created solely by mutation. Harvey notes that there has
been “surprising success (in some circumstances) of what has come to be called naive evo-
lution; i.e. mutation only, contrary to normal GA folklore which emphasizes the significance
of crossover” [19]. Further, he found that the optimal mutation rates were between one and
two mutations per individual and this was nearly invariant over the length of the individual’s
representation. In some instances, even a much more brute-force form of mutation has been
successful for GA applications to networks. Rather than just altering a small number of the
weights, every weight on the entire string is modified by a random amount [15] from a range
as large as -10 to +10 [32]. This form of mutation essentially creates a new random point
located within a specific radius from the parent.

Although using real-encoded strings and depending on mutation for the creation of new
genetic material are not standard GA choices, some research has shown that they are crucial
to obtaining positive results for evolving neural networks [27, 32].

Implementation Details

Each individual in the GA’s population is a possible control network for carbot. Therefore
the fitness function should measure the effectiveness of a network for controlling carbot in
its task of doing rudimentary navigation and periodically seeking and avoiding the light.
The fitness was determined as follows. A random situation was selected for carbot, where a
situation consisted of an initial goal (either seek or avoid), an (x,y) position in the simulator,
and a heading. The particular network then controlled carbot for 20 actions starting from that
point. Each action received either a reward or punishment and the sum of this reinforcement
over all 20 actions was calculated. Five more random situations were chosen and the same
process was done again. The fitness was the sum of the reinforcement received over all six
random starts>.

Allocating only 120 actions to evaluate each control network results in a fairly noisy
measure. Yet, according to Fitzpatrick and Grefenstette, it is better to obtain quick, rough
estimates and to allow the GA to consider many candidate solutions than it is to attempt to
obtain highly accurate evaluations with a smaller population size [13]. Baluja found evidence

30ther fitness options were also explored, such as averaging the results of the random starts or using the
minimum of the random starts. Neither of these options improved performance.
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to support Fitpatrick’s and Grefenstette’s claim [2].
Unlike the case for CRBP, in the GA, each type of reinforcement was given a different
reinforcement value:

e Accomplished a light goal: +50

e Not moving: —4

Any touch sensor triggered: —2

Not following light gradient correctly for goal: —1

Following light gradient correctly for goal: +5

Note that each action received only one of these possible values and the evaluation of an
action was checked in the order given above. So if a goal was accomplished by an action that
also caused carbot to hit a wall, the reinforcement for that action would be +50 and not —2
or the combination of the two, +48.

Based on these reinforcement values we can determine the range of possible fitness values.
Recall that the sum of the reinforcement received over six sequences of 20 actions is used to
determine a network’s fitness. To calculate the minimum fitness value, assume that every
action results in the minimum reinforcement value (-4 for not moving).

min(fitness) = actions x —4 = 120 x —4 = —480
To calculate the maximum fitness value, we need to know the optimal strategy for seeking
and avoiding the light given this particular domain and carbot’s capabilities. However, it is
not clear what the optimal strategy would be. In practice, carbot’s most successful strategies
have required at least five actions. Let’s assume the optimal strategy can accomplish a goal
every five actions and is never punished. So a fifth of the actions will receive the accomplished
goal reinforcement of +50 while the remaining actions will receive a reward of +5 for correctly
following the light gradient.

maz(fitness) = (0.2actions x 50) + (0.8actions x 5) = (24 x 50) + (96 x 5) = +1680

In the experiments described below, the genetic algorithm adapted a population of 50
networks. Each network was initialized with random weights between —1.0 and +1.0 and
then its fitness was measured as just described. Typically this initial population had an
average fitness of approximately —200 where the worst individual had a fitness of about
—450 and the best had a fitness of about +200. After training, these measures improved to
approximately +600 for the average fitness, +200 for the worst individual, and +1150 for the
best individual.

Processing in GAs is measured in terms of generations. A generation is completed when a
new population has been created through selection and mutation within the old population.
The carbot experiments used a technique called tournament selection to choose the parents
for the next generation. Two individuals were randomly chosen from the population and
competed in a tournament. The one with the higher fitness was declared the winner. By
forcing both robots to attempt the same tasks, the evaluation of the robots is reduced to the
simple question: which performed the best across these tasks [19]7

Each GA run consisted of at most 2500 generations. After each generation, the current
best individual was determined. If the best individual had improved since the previous
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generation, then it was tested for 5,000 actions to determine if it had achieved the same
learning criterion used for CRBP: a percent punishment less than or equal to 35%. If so,
then the adaptation process was ended.

Iterating the following set of steps 50 times (the population size) constituted a generation.
At the end of this process the current best individual (in terms of fitness) was returned as
the solution.

1. Use tournament selection to determine a parent

2. Replace the loser by a mutation of the winner
Create mutation by updating all the weights in the winner
by random values between —1 and +1

3. Determine the fitness of the new individual

Individuals in the GA for this carbot domain had length 89—the networks each had 80
weights and 9 biases. Referring back to Figure 2, note that the layers are fully connected.
There are 7 x 5 = 35 weights from the input to hidden layer, 5 x 5 = 25 weights from the
hidden to hidden layer, and 5 x 4 = 20 weights from the hidden to output layer. Only units
in the hidden and output layers have biases: 5 +4 = 9.

C. Comparison of Methods

GAs tend to be a very robust method because they operate on a population of possible
solutions rather than just a single solution as is done in CRBP. Using CRBP, there is much
more potential for getting stuck in local minima. For example, if CRBP begins with a poor
set of initial weights it may never be able to converge on a solution. Whereas a GA, given
enough processing time, can more reliably find at least a reasonable solution.

In terms of carbot actions executed, however, this processing price can be steep. For the
GA, the total number of actions performed in a single run is:

actions = popsize X generations X starts x steps = 1.5 X 107
where the population size is 50, the maximum number of generations is 2500, the number
of random starts is 6, and the number of steps per start is 20. In contrast, the CRBP runs
performed at most 7.5 x 10° actions (20 times fewer actions).

Perhaps the most significant difference between these two methods is in the immediacy of
the reinforcement used. CRBP was designed to learn from direct reinforcement—an action
is executed and an evaluation of its goodness is immediately expected. GAs learn from
indirect reinforcement—a sequence of actions is executed and some overall measure of fitness
is returned upon completion. Thus GAs are an inherently delayed reinforcement procedure.
The experiments in section IV, subsection E will examine this difference in the adaptation
methods and test whether CRBP can learn from delayed reinforcement.

IV. EXPERIMENTS

For each type of experiment described below, ten trials were done with CRBP and ten trials
were done with the GA. However, if a particular controller network did not converge to a
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Table 2: Experimental setup
Information used

Variation | Explicit goal | Light gradient
control yes yes
nogoal no yes
delay yes no

reasonable level of performance within the limit of 750,000 cycles for CRBP or the limit of
2,500 generations for the GA, it was excluded from subsequent analysis. All the experiments
were done with the simulator and three types of experiments were conducted.

In the first set, called the controls, the adaptation methods had access to the most
information—both goals and reinforcement about the light gradient were provided. On the
input layer an explicit goal was given: the sign of this value determined which mode the
controller should be in (either seek or avoid). This goal is explicit in the sense that it is un-
ambiguous, however the controller must learn what this goal means and how to act based on
its value. The light gradient reinforcement was given through the reinforcement procedure.
When in seek-mode, a controller was rewarded if the sum of carbot’s light sensor readings
increased relative to the previous time step; in avoid-mode, a controller was rewarded if the
sum of the readings decreased relative to the previous time step; otherwise it was punished.

In the second set of experiments, called the nogoals, the goal unit remained in the input
layer but its value was always zero. Even though an explicit goal was not provided the robot
still had to periodically seek and avoid the light just as before. The difference in this case,
is that the control network only gets implicit information about the current goal through
reinforcement about the light gradient. For instance when carbot should be seeking the
light, the control network will be punished for choosing actions that do not increase its light
readings. By varying the presence of an explicit goal we can investigate whether having goals
as input enhances the adaptation method’s ability to learn a given task (as we would expect).

In the final set of experiments, called the delays, the goal unit’s activation was returned
and the light gradient reinforcement was removed. Under this variation, both the GA and
CRBP still received reinforcement about contacting walls and not moving, but only received
information about the light upon achieving the current goal. By varying the immediacy of
the light reinforcement we can investigate whether the adaptation method can adequately
learn a task from delayed reinforcement. Table 2 summarizes the experimental setup.

A.  FEvaluating Behavior

Two methods were used to evaluate and compare each network’s performance after adaptation
was completed. The overall goal of a reinforcement learner is to maximize reward and to
minimize punishment. So one way to evaluate a controller is to examine how well its action
decisions minimize the punishment received over an extended period of behavior. In addition,
it is important that a controller’s behavior be robust. So another means of evaluation is to
measure how well a controller reacts to a wide variety of situations.

In the first method, carbot was positioned in the center of the environment, with a
heading of 180 degrees, and with an initial goal of seeking the light. Each trained network
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Figure 3: Summary of mean performance across the experimental variations for the two
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different methods of evaluation.

then controlled carbot for 300 consecutive actions starting from this point. The goals changed
periodically just as during the adaptation phase. The percent of these actions that led to
punishment was compared. Clearly, a low value for this testing measure indicates that a

controller is successful at minimizing punishment.

In the second method, 100 random situations were selected for generalization testing. A

CONTROL

NOGOAL

DELAY

situation consisted of a goal, an (z,y) position, and a heading. There are 9 x 10 possible

situations if the environment is discretized into 50 by 25 positional units and the heading into
one-degree units (2 goals, 50 x positions, 25 y positions, and 360 headings). Thirty of these
100 random situations proved to be too simple—either no actions were needed or a single
action was required to achieve the particular goal. These simple situations were removed, and
the remaining 70 random situations served as the generalization test base. Every controller
network was started at each of these situations and the number of steps needed to achieve
the given goal was calculated. If a controller was unable to reach the goal within 50 steps, it
received a score of 51 for that particular situation. The average number of steps taken over
all 70 situations was compared. A low value for this measure indicates that a controller’s

behavior is quite robust.

In comparing the experimental results, classical analysis of variance testing was used.
Several types of comparisons were done: across an adaptation type (e.g. GA control versus

GA nogoal)) and between adaptation types for a particular variation (e.g. CRBP control
versus GA control).

Figure 3 summarizes the quantitative differences in behavior that resulted as the exper-
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Figure 4: Semi-circle strategy: Executes a backward-left series for avoiding the light and

a forward-left series for seeking the light. This strategy was found by 56% of the CRBP
controls, 12.5% of the GA controls, and 12.5% of the GA delays.

imental conditions were varied. Both methods of evaluation produced very similar results.
Prior to learning, the behavior was almost completely ineffective receiving punishment over
90% of the time and rarely achieving a goal within the 50 step limit. In the control condition,
both CRBP and the GA were quite successful, with CRBP outperforming the GA in min-
imizing punishment. In the nogoal condition, the performance of both CRBP and the GA
suffered relative to the control condition, but the GA was slightly less affected. Finally in the
delay condition, the GA was drastically more effective than CRBP and almost equaled its
performance in the control condition. These quantitative results will be discussed more fully
in the following subsections. In addition, the interesting qualitative differences in behavior
will be described.

B. Baselines

As a baseline for measuring the effects of the adaptation methods, the performance of the
networks prior to any learning was examined. Ten networks with the architecture shown in
Figure 2 were initialized with random weights and both evaluation methods were executed.
When provided with an explicit goal (the control setup), on average these networks received
a punishment score of 93.22% and a generalization score of 43.11 steps. When the goal unit’s
activation was removed (the nogoal setup), the averages were similar with a punishment
score of 92.46% and a generalization score of 42.50 steps. Note that the baseline behavior
for the delay experiments is the same as that for the control experiments because the change
between these two setups occurs in the how the learning is executed and not in the input
values provided. These values are depicted in the “NO LEARNING” curves of Figure 3.

C. Controls

For CRBP countrollers trained under the control conditions, nine of the ten networks reached
the learning criterion. The remaining network was not included in the analysis. The majority
of the viable controllers (five of nine) developed a semi-circle strategy to solve the task.
Figure 4 shows one example of this strategy. The environment is depicted from a birdseye
view where the light is positioned at the lower-left corner. Carbot’s path is shown as a curve
with the starting and ending locations indicated. Carbot’s position and heading over time
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Figure 5: One-point turn strategy: Executes a backward-left series followed by a forward-
right series to avoid the light. Executes a backward-right series followed by a forward series
to seek the light. This strategy was found by 44% of the CRBP controls.

along this path are given by an arrowhead. The arrowhead marks the location of the center of
the robot and does not reflect its true size (which is larger). Next to each arrowhead is a short-
hand description of the action taken to reach that position (where FL means forward-left, BL
means backward-left). As can be seen in Figure 4, the semi-circle strategy effectively follows
the light gradient. When avoiding the light, successive backward-left actions gradually adjust
carbot’s heading away from the light. Similarly when seeking the light, successive forward-left
actions have the opposite effect.

This semi-circle strategy is successful even though carbot’s position at the completion
of the avoid phase is still relatively near the light. Because the reinforcement task requires
carbot to achieve certain minimum and maximum light readings, heading becomes more
relevant than position in solving the task. Suppose that instead of using a backward-left
semi-circle for avoiding the light, carbot backed straight away from the light. This would
result in positioning carbot in the top, right corner of the environment. Although this position
is as far from the light as is possible, carbot’s heading would remain towards the light, causing
the light readings to be well above the minimum required for achieving the avoid goal. In
addition, since the two opposing goals of seek and avoid are always presented periodically,
the two strategies must work well in succession (as the two semi-circles do).

Rather than employing alternating semi-circles, the other four CRBP networks trained
under the control conditions developed a one-point turn strategy, an example of which is
shown in Figure 5. Like the semi-circle strategy, the one-point turn strategy effectively
follows the light gradient and employs a distinct set of actions for each goal (backward-left
and forward-right for avoiding; backward-right and forward for seeking). The qualitative
behavior of the GA controllers trained under the control conditions was quite different from
that of the CRBP controllers. In GA-trained controllers, the light gradient was not as
faithfully followed and typically the same set of actions was used to achieve both goals (i.e.
more global solutions).

Only six of the ten GA runs trained under the control conditions reached the learning
criterion. Two of the remaining four runs were quite close to achieving it and were thus
included in the analysis; the other two were excluded. Of the eight viable controllers produced,
half developed a two-point turn strategy as shown in Figure 6. Here we see that the GA has
discovered a single set of actions that is able to accomplish both goals, rather than a unique
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Figure 6: Two-point turn strategy: Executes a short forward-right series, then a longer
backward-left series, and finally ends with another short forward-right series for both goals.
This strategy was found by 50% of the GA controls, 20% of the GA nogoals, and 37.5% of
the GA delays.

respounse to each goal. The switch in turning directions for this strategy was usually triggered
by a wall, since the environment is so small, but in some cases the switch occurred without
this environmental cue, as is seen at the start of the seek phase in Figure 6. Notice in
the initial steps of this strategy the light gradient is actually ignored—to seek the light the
controllers begin by moving carbot further away from the light, decreasing the light sensor
readings—but once the backward-left portion of the strategy is entered, the sum of light
readings steadily increases as carbot’s heading gradually turns more towards the light.

Three of the remaining eight GA-trained controllers developed a many-pointed turn pat-
tern of behavior shown in Figure 7. This strategy allows the robot to remain in the vicinity
of the light while its heading is systematically adjusted in the appropriate direction. Like the
two-point turn behavior, this star pattern uses one set of actions to accomplish both goals.
Only the last GA-trained network developed a strategy tuned to each goal: the semi-circle
behavior discussed previously.

Because the GA-trained controllers typically employed a single strategy regardless of the
goal, they were less successful at following the light gradient correctly and received signifi-
cantly more punishment during testing than CRBP-trained controllers (33.29% versus 24.18%
[p < .05]). However, the GA-trained controllers performed as well as the CRBP-trained con-
trollers in the generalization testing (13.61 steps versus 13.35 steps). Thus the simpler global
strategies developed by the GA were as robust as the more finely tuned local strategies de-
veloped by CRBP. From these results we should expect that the GA’s performance in the
next set of experiments, where the goal is removed, will not diminish as much as CRBP’s
performance.

D. Nogoals

For this set of experiments, the explicit goal was removed. Since the controller has no indica-
tion of which of the two phases (either seek or avoid) it should be in at any particular time,
the optimal strategy must be able to achieve both goals by systematically moving towards
and then away from the light. During learning the networks are provided with reinforcement
about their actions relative to the unknown goal, but during testing this reinforcement is no
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Figure 7: Many-point turn strategy: Executes alternating backward-right and forward-left
actions for both goals. The resulting pattern sometimes looks like a star. This strategy was
found by 37.5% of the GA controls and 60% of the GA nogoals.

longer present. Why should we expect that controllers without goals could even succeed at
the light task during testing? The recurrent memory allows the network to maintain infor-
mation about which phase of the task it is in, enabling it to complete an entire seek or avoid
phase before switching to the next phase and thus succeed at this hard task.

Under the nogoal condition, only one of the ten CRBP-trained networks was able to reach
the learning criterion. However all the of the other nine networks converged to reasonable
levels of performance, so all ten networks were included in the analysis. For the majority
of these controllers, there were no clearly evident strategies being used. During testing the
CRBP-trained nogoal controllers were punished 49.04% of the time and on average required
26.95 steps to reach the goals. Both performance measures have doubled with respect to the
CRBP control condition, and this difference is statistically significant [p < .01]. The local
learning method seems to need the explicit goals to develop distinct patterns of behavior.

Perhaps the most telling evidence that the CRBP-trained networks benefit from explicit
goals is that in three of the ten CRBP nogoal controllers, the learning actually produced
hidden units that served a goal-like function. These three networks performed better than
the remaining seven, receiving less punishment (45.85% versus 52.23%) and requiring many
fewer steps on average to achieve goals (20.21 versus 29.84). Figure 8 shows the activation of
one such goal-like hidden unit during the course of 300 actions along with the sum of carbot’s
light readings. The sum of the light readings can range from 0 to 2 while the activation of
the hidden unit can only range from 0 to 1. To achieve the seek goal the sum of the light
readings must exceed 1.7, and to achieve the avoid goal the sum must fall below 0.6. The
hidden unit activation remains at the maximum level of 1 most of the time, and then just as
a seek goal is being achieved the level drops dramatically for a few steps. This goal-like unit
is not perfect though; it is falsely triggered several times (around cycle 175 and 225).

In the control experiments, the goal unit’s activation in the input layer automatically
switched sign to mark the achievement of a goal. In these nogoal experiments, this external
cue was removed, and in response, some of the CRBP-trained nogoal networks developed
their own internal cue for marking the achievement of seek goals.

Somewhat surprisingly, the GA’s performance was also quite affected by the removal of
the explicit goals. None of the ten runs reached the learning criterion, but all exhibited
clear strategies. Six of the ten GA-trained nogoal controllers developed the many point turn
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Figure 8: Development of a goal-like hidden unit when no explicit goal was present. An S
indicates when a seek goal was accomplished and an A indicates when an avoid goal was
accomplished.

strategy again. Another two developed the two-point turn strategy again. The final two
discovered a slight modification to the many-point turn behavior, shown in Figure 9. Here
the avoid pattern is exactly the same as before, but the seek pattern has an additional feature.
First a number of alternating turns are used to orient the robot towards the light. Then a
partial semi-circle is used to approach the light. In terms of the performance measures, the
GA nogoal networks were significantly worse than the GA control networks getting punished
45.52% of the time and needing 24.71 steps on average to achieve the goals [p < .01].

In comparing the performance of the GA to CRBP in the nogoal condition, there are
no significant quantitative differences between the two. However, the examination of the
qualitative behavior reveals that without explicit goals CRBP’s behavior patterns became
much more random while the GA’s behavior remained fairly stable. Indeed, the GA was
even able to discover a new strategy that combined aspects of two previously successful
strategies.

E. Delays

One small change in the CRBP learning procedure was made for this set of experiments
where reinforcement about the light was delayed. Because reward was obtained much less
frequently (less than 1% of the time even after 750,000 cycles of training), the reward learning
rate was increased from 0.3 to 1.0. Despite this change, when the immediate reinforcement
about the light gradient was removed, none of the ten CRBP-trained networks reached the
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Figure 9: Many-point turn plus semi-circle strategy: Executes alternating backward-right and
forward-left actions for both goals, but for seeking the light an additional series of forward-left

actions are used to approach the light. This strategy was found by 20% of the GA nogoals
and 50% of the GA delays.

learning criterion. They were punished 66.71% of the time and needed 33.27 steps on average
to achieve the goals. Both of these performance levels are significantly worse than CRBP
control and nogoal cases [p < .01].

The GA fared much better than CRBP in the delay condition. Two of the ten GA-
trained delay networks reached the learning criterion and six others nearly achieved it (the
remaining two were excluded from the analysis). Four of the eight viable networks developed
the many-point turn plus semi-circle strategy. Three others settled on the two-point turn
strategy. The last used the semi-circle strategy. Once again we see that the GA’s qualitative
behavior remained quite stable despite large variations in the adaptation conditions. These
GA-trained delay networks were only punished 36.71% of the time and needed only 14.29
steps on average to reach the goals. These performance marks are significantly better than
the GA nogoal performance [p < .01] and equivalent to the GA control performance. In
addition, these marks are significantly better than CRBP’s delay marks [p < .01].

V. DISCUSSION

Figure 3 summarized the mean punishment and generalization scores for all the experimen-
tal variations. The statistical analyses revealed several significant quantitative differences
between the two learning methods. First, CRBP out-performed the GA in the control con-
dition in terms of punishment received. Second the GA out-performed CRBP in the delay
condition in terms of both punishment received and average number of steps to the goals.
Perhaps even more interesting were the qualitative differences in the behaviors produced by
the two methods. Being a local method, CRBP is much more sensitive to the moment-to-
moment changes in the environment and can thus use the explicit goals to develop unique
strategies tuned to each goal. In fact when no explicit goal is present, CRBP-trained networks
will sometimes create their own goal-like units in the hidden layer. However this sensitivity to
the environment can also be limiting. We saw that in each successive experimental variation,
CRBP’s performance significantly degraded to the point that it could not succeed with only
delayed reinforcement about the light.

In comparison, the GA, as a global method, tends to develop a single overall strategy
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that is applicable to both goals. More importantly, the GA’s ability to find good strategies
was quite robust across the experimental variations. But this insensitivity to conditions also
has a minor cost: the GA was less attentive to the reinforcement schedule and so received
more punishment.

The respective strengths and weaknesses of these two adaptation methods are clearly
complementary, suggesting that some hybrid of the two could be the most effective method.
Because the GA globally samples the entire space of alternative solutions while CRBP locally
searches the immediate neighborhood of a particular solution, the most straight-forward form
of hybrid would be to allow the GA to find a good starting point in the weight space and
then use CRBP to do the fine-tuning. Belew, McInerney, and Schraudolph did a number of
experiments to test the feasibility of using a GA as a source of initial weights for gradient
descent learning and found that this technique is effective [4].

To return to the incremental program described in the introduction, combining global
and local adaptation methods such as the GA and CRBP is a promising answer to the
questions raised about how to properly guide the adaptation process of a network controller.
As in nature, the global, evolutionary method can determine a good gross solution which the
local learning method can then appropriately adjust to the current environmental conditions.
But, there is a caveat: the computational complexity of these hybrids can be extremely high.
However, if such hybrid models can produce controllers that are both robust across large
environmental changes and yet sensitive to subtle features, then the additional computational
effort may be well worth it.

Armed with these insights about how to approach the fourth principle, we can now spec-
ulate about the next incremental step towards planning described in the fifth principle. Con-
sider again the basic control architecture shown in Figure 2. As a side effect of learning how
to react to the environment and the goals, this network may build up a consolidated record
of its past states in the hidden layer. There is no guarantee that this will be the case, but
the capacity to do so is available in the recurrent connections. Thus immediately after a goal
is achieved, the contents of the hidden layer could conceivably reflect a generalized history of
the environmental situations encountered while achieving the goal. Initial analyses of these
hidden layer representations show that for the most successful controllers, this kind of his-
tory is indeed retained. These observations lead to the following hypothesis: Given a robot
controller based on this type of recurrent network, if it is provided with explicit, abstract
goals as input and is adapted with a combined global/local reinforcement method, then upon
goal achievement, the hidden layer will contain information that can be used to plan for that
goal.

This hypothesis has begun to be tested in subsequent work [25]. The hidden layer repre-
sentations at the time of goal achievement were termed protoplans. To investigate whether
protoplans could actually help to guide behavior, a transfer of learning experiment was done.
The protoplans learned in one controller network were used to guide a second network as it
learned the same light seeking and avoiding task from scratch®. In this way the strategies
discovered in one controller could bias the strategies developed in a new controller so that
another agent, rather than a human designer, could direct the learning process.

This transfer of learning experiment was conducted as follows. First, a control network

4One difference was that the robot’s touch sensors were replaced with sonar sensors allowing the system
to anticipate obstacles. This change led to a much more varied repertoire of behaviors.
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was trained with reinforcement learning until it was highly successful at the light task, receiv-
ing punishment only 11% of the time. After training, this successful network was tested for
1,000 actions. Each time it accomplished a goal, the hidden layer activations (constituting the
protoplan) were saved. In addition, the five input states that preceded the goal achievement
were saved. These preceding input states provide the cues as to when a particular protoplan
is appropriate (when in situation X1, X2, X3, X4, or X5, do protoplan Y'). Next an asso-
ciative memory was constructed that mapped these preceding input states to the ultimate
protoplan (X1 — Y, X2 - Y, ..., X5 — Y). Finally a new controller was trained from
scratch without access to goals but with access to this protoplan memory. Using its current
input state X', this new control network was able to retrieve an appropriate protoplan Y’
out of the associative memory built from the original network’s solution.

The results of this experiment show that controllers trained with protoplans as inputs,
instead of goals, converged more quickly on good solutions than the original controllers with
goals. Protoplans were able to guide the robot’s behavior by marking the important moments
in the interaction with the environment when a switch in behavior should occur. This kind
of timing information was indirect—no specific action was indicated—but knowing when to
change from a particular strategy to a new one can be very useful information.

In future work, rather than transferring the information contained in a protoplan between
controllers, the protoplan should affect the system in which it was created. Specifically,
a controller should be able to save and generalize over its own protoplans. In this way,
the protoplan memory could be updated on every time step to reflect the system’s ever
changing summary of the current situation. In addition, this summary could be used to
help determine the next action. Ultimately protoplans could serve as communication links
between separate modules of a much larger network controller. By being grounded in the
environment, protoplans can provide information about the dynamics of the world to higher
order modules not directly connected to perception. Furthermore, these higher order modules
could create higher order protoplans leading to more complex levels of behavior. Through
a series of such incremental steps connectionist controllers may eventually be able reach the
level of planning.
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