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I. INTRODUCTIONNeural networks o�er one of the most promising means for investigating robot control becauseconnectionist methodology allows the task demands rather than the designer's biases to bethe primary force in shaping the system's development. By actively limiting the e�ect of ourpresuppositions on the implementation, we may be able to discover radically di�erent formsof control.At the initial design phase, connectionist methodology provides useful constraints by en-couraging bottom-up construction. Input can come directly from the sensors and outputcan feed directly into the actuators creating a close coupling of perception and action. Thisimmediate interplay between sensing and acting is crucial to producing the real-time reac-tive behavior necessary in robotics. Because adaptation is fundamental to the connectionistparadigm, the designer need not determine what form the internal knowledge will take orwhat speci�c function it will serve. Instead, based on the training task, the system will con-struct its own internal representations built directly from the sensor readings to achieve thedesired behavior. However, the designer still has an important role to play in this develop-ment process which includes determining: the network topology, the network parameters, theadaptation scheme, the input and output representations, the robot's physical characteristics,and the robot's environment.After this development process has been set in motion and the system has reached anadequate level of performance at the task, its method can be dissected and a high-levelunderstanding of its control principles can be described. As Clark has noted, connectionism\inverts the o�cial classical ordering, in which a high-level understanding comes �rst andclosely guides the search for algorithms" [9]. Through adaptation, the system's solution tothe task emerges as it discovers the key features of the problem space rather than simplybeing the product of the designer's understanding of the domain.By employing this basic technique of constructing a neural network controller, adapting itfor an agent and an environment, and then analyzing the emergent behavior, a number of re-searchers have found quite interesting control mechanisms within their systems [3, 14, 22, 28].However, there are limitations to what a fundamentally reactive system can accomplish.Many tasks we would like a robot to perform require some kind of planning. If the con-nectionist approach cannot go beyond the level of reactive behavior to planned behavior itsusefulness in robotics will probably be restricted to the front-end processing of perceptualinformation. This paper will argue that an incremental approach, beginning with simple re-active behavior and gradually building up to more memory-dependent behavior, is a possibleavenue for connectionist systems to eventually achieve the level of planning.In recent years there have been a number of di�erent proposals for incrementally con-structing intelligent agents [6, 7, 30, 31, 33]. This paper will focus on the suggestions madeby Waltz in [31] because they address high-level distinctions that can be implemented inneural networks. He o�ers eight guiding principles to building an intelligent architecture;the �rst �ve of these principles lead up to planning, and the �nal three go beyond it. Thisresearch adopts the �ve principles relevant to planning, with slight modi�cations to better�t them into a connectionist framework.1. Use associative memory as the overall mechanism.state! action 2



2. Populate the associative memory system with sequenced rote experiences.3. Include mechanisms to automatically generalize across rote memories.4. Include innate drive and evaluation systems to provide the robot with guidance for itsactions.state+ goal ! action+ evaluation5. Include control structures to allow planning.state+ goal + plan! action+ evaluationThese principles provide a foundation for an intelligent robot controller, but key issuesremain unresolved. With respect to the �rst, second, and third principles, what sort ofassociative memory should be employed to ensure recognition of sequences and ease of gener-alization? With respect to the fourth principle, how should goals be speci�ed to produce theappropriate type of motivation and what kind of evaluation should be given to best directthe adaptation? Finally, with respect to the �fth principle, what will constitute a plan andhow will plans develop?This paper will address all of these questions to some extent but will focus on the questionsraised by the fourth principle. In terms of the �rst three principles, it has already beenwell demonstrated that connectionist networks are fundamentally associative engines thatnaturally perform generalizations [24, 9]. However it is not yet clear, in terms of the fourthprinciple, what are the best ways to incorporate goals or to provide adaptation evaluation forrobotics domains. Since this approach is incremental, the planning issues of the �fth principlecannot be addressed until these previous problems of the fourth principle are explored.In this paper, a local and a global reinforcement method of adaptation for neural networkcontrollers are contrasted|a special form of back-propagation and an evolutionary algorithm.These methods are applied to a simple robot, called carbot. A number of experiments aredescribed where the presence of explicit goals and the immediacy of reinforcement are varied.These experiments are meant to shed light on the questions, raised by the fourth principle, ofthe most e�ective means for providing goals and evaluation to an adapting robot controller.The paper is organized as follows. In Section II, the robot, the task, and the controlnetwork are described. In addition, the advantages and disadvantages of real-world versussimulation training are discussed. In Section III, a brief background is given for both thelocal and global adaptation methods as well as an explanation of the speci�c implementationdetails used here. In Section IV, the experiments and results are described. Finally in SectionV, there is a discussion of the results with respect to the overarching aim of incrementallymoving towards connectionist planning.II. THE ROBOTCarbot is a modi�ed toy car (approximately 15 cm wide, 23 cm long, and 10 cm high) con-trolled by a programmable mini-board (designed at MIT [23]). During operation, carbot wastethered to a PC and was controlled by a remote connectionist network that communicatedwith the mini-board through the serial port. Carbot was inexpensive to build, primarilybecause it makes use of primitive sensors|no lasers or video. Instead it has just two types3
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sensorFigure 1: Positioning of sensors, motors, and control board on carbot. Note the 30 degreeangle of the light sensors.of sensors: digital touch sensors on the front and back bumpers, and analog light sensors onstalks near the back which are directed 30 degrees to each side of carbot. For movement ithas two servo-motors; one controls forward and backward motion and the other steering. SeeFigure 1 for a schematic drawing of carbot that shows the position of the sensors and motors.A. The Environment and TaskThe environment is a rectangular box (approximately 1.2 m by 0.6 m) with a light in onecorner. Carbot's task within this sparse environment is multi-dimensional: it must learn low-level reactive responses as well as goal-guided behavior. At the reactive level, carbot receivesnegative reinforcement any time it contacts one of the walls or is not moving. Conceptu-ally this could be considered rudimentary navigation|carbot must learn to continually keepmoving while avoiding the boundaries of its environment. See [26] for a detailed descriptionof factors that a�ect a network's performance when learning this type of simple reactive task.At the goal level, carbot must either seek or avoid the light depending on the current goal.A positive value for the goal indicates that carbot should seek out the light until a maximumlight reading is obtained. Once this is accomplished, the goal automatically switches to anegative value, indicating that carbot should avoid the light until a minimum light reading isobtained. Successful avoidance switches the goal back to seek-mode again. The goal varies inthis periodic manner throughout the task, seeking is immediately followed by avoiding andso on. Carbot receives negative reinforcement any time it does not follow the light gradientcorrectly for the given goal. Otherwise it receives positive reinforcement.At �rst glance this task seems quite simple; however there are a number of aspects ofcarbot's physical characteristics that make the task problematic. First, carbot, as its namesuggests, is built like a car and its turning radius is larger than the smallest dimension ofthe environment. Second, carbot cannot control its speed, but must always keep moving.Each action is executed for one second, and on average straight motion propels carbot 17.8centimeters (almost 30% of the smallest environment dimension) and turning motion resultsin a linear change in position of 11.4 centimeters (almost 20% of the smalled environmentdimension) as well as a 24 degree change in heading. Third, carbot's touch sensors provide4



Table 1: Example sequencesA 1 2 3 4 5 1 2 3 4 5 ...B 1 2 3 4 5 1 3 5 2 4 ...C 1 2 3 1 2 4 1 2 5 5 ...no advance warning of upcoming obstacles, as sonar sensors would. Finally, because of theposition of the light sensors, carbot strongly senses light in only a 60 degree range centeredon its front end. In summary, carbot's maneuverability is limited to a few gross actions andits perceptual abilities are quite primitive, making this seemingly simple task much moredi�cult.B. The Control NetworkOne of the most basic connectionist architectures is a feedforward network where an inputlayer of units feeds into a hidden layer which then feeds into an output layer. By interpretingthe inputs as perceptions and the outputs as actions a typical feedforward network can learnto react appropriately for a given robotics task. One di�culty with the standard feedforwardarchitecture is that when time is an important aspect of the problem to be modeled, it is notclear how to represent time in an e�cient and useful manner. Certainly, for the ultimate goalof planning, timing information is crucial since plans involve temporal sequences of actions.For example, suppose we wanted a neural network to learn one of the three sequencesshown in Table 1. If the network were presented with only one element at a time, then tolearn such a sequence it must master the transitions between the elements. These transitionsmay depend on one or more elements that appeared an arbitrary number of steps back intime. The di�culty of a sequence to be learned can be measured by the complexity of itstransitions. Sequence A is the easiest to learn because each transition depends only on thecurrent element|2 is always followed by 3. No memory is necessary and a feedforwardnetwork could master this sequence. However, sequence B is harder to learn because eachtransition depends on the the previous and current element|2 is followed by 3 or 4. Toaccomplish this transition, memory of the previous element is necessary and a feedforwardnetwork could not master this sequence. Finally, sequence C is the most di�cult to learnbecause of the repeating sub-sequence 1 2. Now the transition from 2 may be either 3, 4,or 5 depending on the previous two elements. By relaxing the feedforward restriction andallowing feedback connections, a network can learn to be sensitive to these kinds of temporalchanges in the input.Recurrent networks, which allow lateral and backward connections between units, o�era way to implicitly represent time by the e�ect it has on processing. One form of simplerecurrent network (these are termed simple because the location of recurrent connections isrestricted to a single layer) was developed by Elman [12]. In this architecture (shown inFigure 2), each unit in the hidden layer is connected to all the other hidden units includingitself. With this type of recurrence, the network can develop a short-term memory of itsown encodings of the past input states and can therefore learn to respond appropriately tosequences such as B and C in Table 1.This control network gathers input data from the sensors and determines how to set the5
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Touch Light Goal
SensorsFigure 2: The control network. The arrows indicate which layers are fully connected. Thehidden layer is fully connected to itself.motors for the next time step. There are three sets of input units; two sets are for sensors,and one is for goals. The �rst set of units in the input layer represent the state of the digitaltouch sensors|three in front and one in back. Two of the front sensors are out to either sideso that carbot can sense side collisions when moving forward. When the digital sensors aretriggered by contact with an obstacle they take on the value 1, otherwise they are 0. Thenext set of two units represent the state of the analog light sensors, whose values can rangefrom 0.0 to 1.0 (due to ambient light, their values rarely fall below 0.25). The �nal set of oneunit encodes the network's goals. Currently only two goals are used: +1 for seeking the lightand -1 for avoiding the light.The four output units of the network determine how to set the motors for the next timestep. Carbot is propelled by two motors each requiring two units to specify its state. The�rst output unit represents the spin direction of the rear motor which determines directionof motion|forward or backward. The second unit designates the state of the motor as onor o�. The third unit represents the spin direction of the front motor which determines thedirection of turning|right or left. The fourth unit designates the state of the front motor ason or o�. Note that in order to turn, carbot must have both motors running; the back motorprovides movement while the front motor steers. In order to go straight, carbot must haveonly the back motor on.C. Real-World versus Simulation TrainingSince carbot has to physically move in the world, it takes a long time to train and test aparticular controller network. Each real-world action is executed for one second, so 5,000actions require approximately 1.5 hours to be completed. To alleviate this time limitation, asoftware simulation was implemented.Although simulators are usually not very much like reality, when the simulator is basedon an actual robot, the simulator's behavior can be programmed to closely correspond withthe real-world behavior. Harvey, Husbands, and Cli� [20] suggest some ways to ensure that6



a simulator stays in close step with reality:1. Simulations of the inputs to sensors and the outputs to actuators should be based oncarefully collected empirical data.2. Noise must be taken into account at all levels.3. A range of unstructured, dynamic environments should be used to ensure robustness.4. The simulation should be calibrated by testing adapted architectures in the real robot.In constructing carbot's simulator, all of these suggestions were followed. As per the �rstsuggestion, carbot's sensor readings, average turning radius and distance traveled for eachaction in the real world were empirically determined and used as the basis for the simulator.With respect to the second suggestion, small amounts of random noise were added to carbot'sinteger heading (-4 to +4), real position (-2.0 to +2.0), and real light sensor readings (0 to0.11) after each action taken within the simulator. For the third suggestion of exploringa range of environments, although only enclosed, rectangular spaces were used, a numberof di�erent dimensions were tried. The chosen dimensions proved to be hard to maneuverwithin, but solutions were still readily found.For the �nal suggestion, a number of experiments were done to verify that the sorts ofcontrollers that worked well in the simulator would also work well in the real robot. Controllernetworks trained in the simulator were transplanted to the actual robot and tested withoutfurther training. The behaviors produced by the same network on the simulator and on therobot were compared in terms of percent time punished. These transplant tests provideda very encouraging result: the robot's performance was always superior to the simulator'sperformance. This result is probably due to the additional noise provided in the simulator.The actual robot's movements are only occasionally noisy while the simulator's movementsare systematically noisy and this added noise enhances learning by exposing the controller toa wider range of environmental conditions1.Thus the simulated robot's behavior was determined to be close enough to the actualbehavior of carbot to warrant use of the simulator for training the robot controllers. Thesimulator is used to test hypotheses and to develop useful architectures that are then appliedback to the real robot. This saves a signi�cant amount of time since 5,000 simulated actionscan be executed in less than a minute (a speedup factor of about 90). Another bene�t ofusing the simulator is that the behavior tests can be more precisely monitored and compared.III. REINFORCEMENT LEARNING METHODSRobotics problems are typically de�ned in terms of abstract goals (i.e. remain viable foras long as possible) rather than speci�c perception to action pairs, so explicit, moment-to-moment guidance is not usually available. Reinforcement procedures are well suited for thistype of learning because they only require scalar values to encode the relative desirability1As another example of this phenomenon, Pomerleau found that in training a neural network to drive alarge vehicle, it was bene�cial to train the network not only on good data provided by a human driver, butalso on shifted versions of this data which forced the controller to learn how to recover from errors [29].7



of particular states. The magnitude of this value can be used to re
ect the degree of thestate's goodness. Typically, positive values are thought of as rewards and negative values aspunishment. For example, suppose that carbot has just bumped into a wall triggering itsfront sensors. Any action that moves it away from the wall and clears its sensors should berewarded, while any action that persists in bumping into the wall should be punished. Thereis not necessarily one right or wrong action for a given situation, and even if there were, itmay not be known a priori. Reinforcement procedures allow the learning to be guided at theabstract, goal level.In this paper, two very di�erent kinds of reinforcement procedures have been used toadapt the weights of the control networks|one is a local method while the other is a globalmethod. The local method is a special back-propagation algorithm that updates the weightsimmediately upon receiving reinforcement. The global method is an evolutionary algorithmwhich tests out a collection of networks in the environment for an extended period of time.From this test it obtains a global �tness measure that is then used to bias the subsequentadaptation.A. Local Method: Back-PropagationIn half of the experiments, the control networks were trained with a modi�ed version ofthe complementary reinforcement back-propagation (CRBP) learning algorithm [1]. Back-propagation learning requires precise error measures for each output produced by a networkso that gradient descent on the error can be performed. CRBP provides these exact errormeasures from the abstract reward and punishment signals as follows.The output is determined by a two-step process. First, a forward propagation of theinput values produces a real-valued vector on the output layer called the search vector S.Each real value of the search vector is interpreted as the probability that the associatedrandom bit takes on the value 1. Then from these probabilities a binary output vector O isstochastically produced (this non-determinism provides some exploration for the learning). IfO is rewarded (i.e. the reinforcement value is positive), then learning should push the networktowards this vector, so the error measure (O � S) is back-propagated. If O is punished (i.e.the reinforcement value is negative), then learning should push the network away from thisvector, but the appropriate direction is not clear. CRBP chooses to push the network directlytoward the complement of O, using the error measure ((1�O)� S).Using this algorithm, rewarded outputs will be more likely to occur again and punishedoutputs will tend to produce the complement output vector in similar situations. Let'sconsider the e�ect of using the complement as the target for punished actions in the carbotdomain. The four output bits can be summarized as follows: forward/backward, motionmotor on/o�, right/left, turning motor on/o�. For most of these bits, taking the complementof a punished action makes intuitive sense: the direction of motion will be switched (leftversus right or forward versus backward) and the type of motion will be switched (linearversus curved). However, for the second bit, which determines whether carbot is moving,the complement is not a good choice. Recall that one aspect of the reinforcement task isthat carbot must keep moving at all times. For this to occur this particular output bit mustalways be on. So whenever carbot is moving and receives punishment, taking the complementwill result in a non-moving target. This is an unfortunate e�ect, but the controller networks8



quickly learn to overcome this aspect of the target by developing a high positive bias valuefor this output node.Another feature of CRBP is that there are di�erent learning rates for reward and punish-ment. When the network is rewarded, we can be con�dent that we have good information tolearn from because the current state led to positive reinforcement. Therefore, we should usea high learning rate. In contrast, when the network is punished, we know that the currentstate is not desirable, but we can only arbitrarily pick the complement state as our target.There is no guarantee that the complement is a good choice, so our learning rate should belower.Implementation DetailsAdaptation begins by initializing all the weights in a control network to random valuesbetween �1:0 and +1:0. Unlike the evolutionary algorithm to be described next, CRBPadapts a single control network throughout one long, connected series of actions. So startingfrom a random situation, carbot's future situations are determined by the actions producedby the constantly changing control network. With CRBP all types of punishment are treatedequally. Regardless of whether the punishment came from not moving, bumping into a wall,or not following the light gradient correctly, the reinforcement value is -1 and the consequencesare the same: the complement of the punished action is back-propagated. Similarly all typesof reward, keeping moving, following the light gradient correctly, and achieving a light goal,are treated equally|each receives +1 as the reinforcement value2.The following set of steps are considered one cycle of processing and were iterated untila learning criterion was achieved or until a maximum of 750; 000 cycles was completed (acycle equates with performing one robot action). The learning criterion was met wheneverthe percent of actions punished for 5; 000 consecutive cycles was less than or equal to 35%.1. Get input from the sensors2. Forward propagate input to produce real-valued S3. Stochastically determine binary-valued O from S4. Execute action O on carbot5. Determine reinforcement6. Determine errorif rewarded then E = O � Sif punished then E = ((1�O)� S)if no reinforcement then E = 07. If E 6= 0 then back-propagate Ereward learning rate = 0.3punish learning rate = 0.12It would be possible to di�erentiate between types of punishment or types of reward by varying thelearning rate by type. For example, following the light gradient correctly could result in a 0.3 learning rate,while actually achieving the �nal light goal could result in a 1.0 learning rate. This type of variation has beentried, but the results were not signi�cantly di�erent than those obtained using the standard (and simpler)method. 9



In CRBP, the results of the reinforcement are immediately used to update the networkweights, thus changing the controller after every action.B. Global Method: Genetic AlgorithmGenetic algorithms (GAs) were originally used for function optimization. However with thearrival of classi�er systems, which use GAs for rule discovery, they became linked with areinforcement procedure [21, 5, 17, 11, 10]. But as will be seen below, a GA was, in a sense,already a reinforcement procedure prior to the advent of classi�er systems because it operateson information about the relative performance of potential solutions [32]. Goldberg providesa thorough introduction to both the optimization and reinforcement applications of GAs [16].Genetic algorithms are based on the theory of natural selection in evolution. GAs workon a population of individuals, where each individual represents a possible solution to thegiven problem. After the initial population is randomly generated, the algorithm evolves thepopulation through the use of three operators: selection, crossover, and mutation. Selectiondetermines which individuals from the current generation to copy to the next generation basedon each individual's �tness, where �tness is some measure of the goodness of an individualthat the GA is trying to maximize. A certain portion of the individuals chosen by selection willbe mated through crossover. Crossover creates a new o�spring by combining complementaryportions of the genetic strings of two parents. Finally, through mutation some portion of thechosen individuals will have random pieces of their genetic material altered.The selection process ensures that individuals with above average �tness are more likelyto be chosen for inclusion in the next generation than individuals with below average �tness.Therefore \genetic algorithms are capable of performing a global search of a space becausethey can rely on hyperplane sampling to guide the search instead of searching along thegradient of a function" as back-propagation does [32].Combining Genetic Algorithms and Neural NetworksThere are many interesting possibilities for applying genetic algorithms to neural net-works. GAs have been used to �nd good initial network weights, to tune network learningparameters, to determine network structure, to evolve network learning algorithms, and tolearn network weights [4, 18, 20, 8, 32]. It is the last option|learning weights|that will beused here: for the carbot problem, the network architecture is �xed (as shown in Figure 2)and the GA works to adapt an appropriate set of weights.Applying genetic algorithms to networks has not been as straightforward as other typesof GA applications. Traditionally individuals in GA populations have been represented as bitstrings. Weights in connectionist networks are real-valued, and converting them into a binaryencoding would entail arbitrarily discretizing them to a particular precision. So for many GAapplications to networks, individuals are represented as real-coded vectors of weights (forexample see [15, 32]), and this was done for the carbot domain as well.Another tradition in GAs is that the crossover operator is used much more frequently thanthe mutation operator. In the carbot domain, crossover would create a new set of weights bytaking some weights from one successful network and the rest from another successful network.However, these two networks could be using very di�erent strategies for solving the problem.Creating an o�spring by recombining portions of their weights may result in an extremely10



poor alternative solution. In fact even if the two networks are employing the same strategy,it is probably instantiated in the weights in very di�erent ways. So again, recombination maybe quite unsuccessful. Networks tend to solve problems in a distributed, holistic fashion andthus may not even have useful building blocks to contribute to a recombined solution.In initial experiments with the GA, crossover was used in adapting network controllersfor carbot, but this operator did not improve and often hurt performance. As a �rst attempt,standard crossover was applied, where one random point on the genetic string was pickedand a swap was done. In a second attempt, all the incoming weights to a unit and itsbias were treated as a building block and located together on the genetic string. Crossoverwas restricted to occurring between such blocks. Even with this more sophisticated formof crossover, performance su�ered. Therefore due to the problematic nature of crossoverfor network representations, this form of recombination was not used in the experimentsdescribed here (although crossover has been used in other GA applications to networks|fora good discussion of this topic see [4]).Instead, new individuals were created solely by mutation. Harvey notes that there hasbeen \surprising success (in some circumstances) of what has come to be called naive evo-lution; i.e. mutation only, contrary to normal GA folklore which emphasizes the signi�canceof crossover" [19]. Further, he found that the optimal mutation rates were between one andtwo mutations per individual and this was nearly invariant over the length of the individual'srepresentation. In some instances, even a much more brute-force form of mutation has beensuccessful for GA applications to networks. Rather than just altering a small number of theweights, every weight on the entire string is modi�ed by a random amount [15] from a rangeas large as -10 to +10 [32]. This form of mutation essentially creates a new random pointlocated within a speci�c radius from the parent.Although using real-encoded strings and depending on mutation for the creation of newgenetic material are not standard GA choices, some research has shown that they are crucialto obtaining positive results for evolving neural networks [27, 32].Implementation DetailsEach individual in the GA's population is a possible control network for carbot. Thereforethe �tness function should measure the e�ectiveness of a network for controlling carbot inits task of doing rudimentary navigation and periodically seeking and avoiding the light.The �tness was determined as follows. A random situation was selected for carbot, where asituation consisted of an initial goal (either seek or avoid), an (x; y) position in the simulator,and a heading. The particular network then controlled carbot for 20 actions starting from thatpoint. Each action received either a reward or punishment and the sum of this reinforcementover all 20 actions was calculated. Five more random situations were chosen and the sameprocess was done again. The �tness was the sum of the reinforcement received over all sixrandom starts3.Allocating only 120 actions to evaluate each control network results in a fairly noisymeasure. Yet, according to Fitzpatrick and Grefenstette, it is better to obtain quick, roughestimates and to allow the GA to consider many candidate solutions than it is to attempt toobtain highly accurate evaluations with a smaller population size [13]. Baluja found evidence3Other �tness options were also explored, such as averaging the results of the random starts or using theminimum of the random starts. Neither of these options improved performance.11



to support Fitpatrick's and Grefenstette's claim [2].Unlike the case for CRBP, in the GA, each type of reinforcement was given a di�erentreinforcement value:� Accomplished a light goal: +50� Not moving: �4� Any touch sensor triggered: �2� Not following light gradient correctly for goal: �1� Following light gradient correctly for goal: +5Note that each action received only one of these possible values and the evaluation of anaction was checked in the order given above. So if a goal was accomplished by an action thatalso caused carbot to hit a wall, the reinforcement for that action would be +50 and not �2or the combination of the two, +48.Based on these reinforcement values we can determine the range of possible �tness values.Recall that the sum of the reinforcement received over six sequences of 20 actions is used todetermine a network's �tness. To calculate the minimum �tness value, assume that everyaction results in the minimum reinforcement value (-4 for not moving).min(fitness) = actions��4 = 120 ��4 = �480To calculate the maximum �tness value, we need to know the optimal strategy for seekingand avoiding the light given this particular domain and carbot's capabilities. However, it isnot clear what the optimal strategy would be. In practice, carbot's most successful strategieshave required at least �ve actions. Let's assume the optimal strategy can accomplish a goalevery �ve actions and is never punished. So a �fth of the actions will receive the accomplishedgoal reinforcement of +50 while the remaining actions will receive a reward of +5 for correctlyfollowing the light gradient.max(fitness) = (0:2actions� 50) + (0:8actions� 5) = (24 � 50) + (96� 5) = +1680In the experiments described below, the genetic algorithm adapted a population of 50networks. Each network was initialized with random weights between �1:0 and +1:0 andthen its �tness was measured as just described. Typically this initial population had anaverage �tness of approximately �200 where the worst individual had a �tness of about�450 and the best had a �tness of about +200. After training, these measures improved toapproximately +600 for the average �tness, +200 for the worst individual, and +1150 for thebest individual.Processing in GAs is measured in terms of generations. A generation is completed when anew population has been created through selection and mutation within the old population.The carbot experiments used a technique called tournament selection to choose the parentsfor the next generation. Two individuals were randomly chosen from the population andcompeted in a tournament. The one with the higher �tness was declared the winner. Byforcing both robots to attempt the same tasks, the evaluation of the robots is reduced to thesimple question: which performed the best across these tasks [19]?Each GA run consisted of at most 2500 generations. After each generation, the currentbest individual was determined. If the best individual had improved since the previous12



generation, then it was tested for 5; 000 actions to determine if it had achieved the samelearning criterion used for CRBP: a percent punishment less than or equal to 35%. If so,then the adaptation process was ended.Iterating the following set of steps 50 times (the population size) constituted a generation.At the end of this process the current best individual (in terms of �tness) was returned asthe solution.1. Use tournament selection to determine a parent2. Replace the loser by a mutation of the winnerCreate mutation by updating all the weights in the winnerby random values between �1 and +13. Determine the �tness of the new individualIndividuals in the GA for this carbot domain had length 89|the networks each had 80weights and 9 biases. Referring back to Figure 2, note that the layers are fully connected.There are 7 � 5 = 35 weights from the input to hidden layer, 5 � 5 = 25 weights from thehidden to hidden layer, and 5� 4 = 20 weights from the hidden to output layer. Only unitsin the hidden and output layers have biases: 5 + 4 = 9.C. Comparison of MethodsGAs tend to be a very robust method because they operate on a population of possiblesolutions rather than just a single solution as is done in CRBP. Using CRBP, there is muchmore potential for getting stuck in local minima. For example, if CRBP begins with a poorset of initial weights it may never be able to converge on a solution. Whereas a GA, givenenough processing time, can more reliably �nd at least a reasonable solution.In terms of carbot actions executed, however, this processing price can be steep. For theGA, the total number of actions performed in a single run is:actions = popsize� generations� starts� steps = 1:5� 107where the population size is 50, the maximum number of generations is 2500, the numberof random starts is 6, and the number of steps per start is 20. In contrast, the CRBP runsperformed at most 7:5� 105 actions (20 times fewer actions).Perhaps the most signi�cant di�erence between these two methods is in the immediacy ofthe reinforcement used. CRBP was designed to learn from direct reinforcement|an actionis executed and an evaluation of its goodness is immediately expected. GAs learn fromindirect reinforcement|a sequence of actions is executed and some overall measure of �tnessis returned upon completion. Thus GAs are an inherently delayed reinforcement procedure.The experiments in section IV, subsection E will examine this di�erence in the adaptationmethods and test whether CRBP can learn from delayed reinforcement.IV. EXPERIMENTSFor each type of experiment described below, ten trials were done with CRBP and ten trialswere done with the GA. However, if a particular controller network did not converge to a13



Table 2: Experimental setupInformation usedVariation Explicit goal Light gradientcontrol yes yesnogoal no yesdelay yes noreasonable level of performance within the limit of 750; 000 cycles for CRBP or the limit of2; 500 generations for the GA, it was excluded from subsequent analysis. All the experimentswere done with the simulator and three types of experiments were conducted.In the �rst set, called the controls, the adaptation methods had access to the mostinformation|both goals and reinforcement about the light gradient were provided. On theinput layer an explicit goal was given: the sign of this value determined which mode thecontroller should be in (either seek or avoid). This goal is explicit in the sense that it is un-ambiguous, however the controller must learn what this goal means and how to act based onits value. The light gradient reinforcement was given through the reinforcement procedure.When in seek-mode, a controller was rewarded if the sum of carbot's light sensor readingsincreased relative to the previous time step; in avoid-mode, a controller was rewarded if thesum of the readings decreased relative to the previous time step; otherwise it was punished.In the second set of experiments, called the nogoals, the goal unit remained in the inputlayer but its value was always zero. Even though an explicit goal was not provided the robotstill had to periodically seek and avoid the light just as before. The di�erence in this case,is that the control network only gets implicit information about the current goal throughreinforcement about the light gradient. For instance when carbot should be seeking thelight, the control network will be punished for choosing actions that do not increase its lightreadings. By varying the presence of an explicit goal we can investigate whether having goalsas input enhances the adaptation method's ability to learn a given task (as we would expect).In the �nal set of experiments, called the delays, the goal unit's activation was returnedand the light gradient reinforcement was removed. Under this variation, both the GA andCRBP still received reinforcement about contacting walls and not moving, but only receivedinformation about the light upon achieving the current goal. By varying the immediacy ofthe light reinforcement we can investigate whether the adaptation method can adequatelylearn a task from delayed reinforcement. Table 2 summarizes the experimental setup.A. Evaluating BehaviorTwo methods were used to evaluate and compare each network's performance after adaptationwas completed. The overall goal of a reinforcement learner is to maximize reward and tominimize punishment. So one way to evaluate a controller is to examine how well its actiondecisions minimize the punishment received over an extended period of behavior. In addition,it is important that a controller's behavior be robust. So another means of evaluation is tomeasure how well a controller reacts to a wide variety of situations.In the �rst method, carbot was positioned in the center of the environment, with aheading of 180 degrees, and with an initial goal of seeking the light. Each trained network14
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Figure 3: Summary of mean performance across the experimental variations for the twodi�erent methods of evaluation.then controlled carbot for 300 consecutive actions starting from this point. The goals changedperiodically just as during the adaptation phase. The percent of these actions that led topunishment was compared. Clearly, a low value for this testing measure indicates that acontroller is successful at minimizing punishment.In the second method, 100 random situations were selected for generalization testing. Asituation consisted of a goal, an (x; y) position, and a heading. There are 9 � 105 possiblesituations if the environment is discretized into 50 by 25 positional units and the heading intoone-degree units (2 goals, 50 x positions, 25 y positions, and 360 headings). Thirty of these100 random situations proved to be too simple|either no actions were needed or a singleaction was required to achieve the particular goal. These simple situations were removed, andthe remaining 70 random situations served as the generalization test base. Every controllernetwork was started at each of these situations and the number of steps needed to achievethe given goal was calculated. If a controller was unable to reach the goal within 50 steps, itreceived a score of 51 for that particular situation. The average number of steps taken overall 70 situations was compared. A low value for this measure indicates that a controller'sbehavior is quite robust.In comparing the experimental results, classical analysis of variance testing was used.Several types of comparisons were done: across an adaptation type (e.g. GA control versusGA nogoal)) and between adaptation types for a particular variation (e.g. CRBP controlversus GA control).Figure 3 summarizes the quantitative di�erences in behavior that resulted as the exper-15
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ect its true size (which is larger). Next to each arrowhead is a short-hand description of the action taken to reach that position (where FL means forward-left, BLmeans backward-left). As can be seen in Figure 4, the semi-circle strategy e�ectively followsthe light gradient. When avoiding the light, successive backward-left actions gradually adjustcarbot's heading away from the light. Similarly when seeking the light, successive forward-leftactions have the opposite e�ect.This semi-circle strategy is successful even though carbot's position at the completionof the avoid phase is still relatively near the light. Because the reinforcement task requirescarbot to achieve certain minimum and maximum light readings, heading becomes morerelevant than position in solving the task. Suppose that instead of using a backward-leftsemi-circle for avoiding the light, carbot backed straight away from the light. This wouldresult in positioning carbot in the top, right corner of the environment. Although this positionis as far from the light as is possible, carbot's heading would remain towards the light, causingthe light readings to be well above the minimum required for achieving the avoid goal. Inaddition, since the two opposing goals of seek and avoid are always presented periodically,the two strategies must work well in succession (as the two semi-circles do).Rather than employing alternating semi-circles, the other four CRBP networks trainedunder the control conditions developed a one-point turn strategy, an example of which isshown in Figure 5. Like the semi-circle strategy, the one-point turn strategy e�ectivelyfollows the light gradient and employs a distinct set of actions for each goal (backward-leftand forward-right for avoiding; backward-right and forward for seeking). The qualitativebehavior of the GA controllers trained under the control conditions was quite di�erent fromthat of the CRBP controllers. In GA-trained controllers, the light gradient was not asfaithfully followed and typically the same set of actions was used to achieve both goals (i.e.more global solutions).Only six of the ten GA runs trained under the control conditions reached the learningcriterion. Two of the remaining four runs were quite close to achieving it and were thusincluded in the analysis; the other two were excluded. Of the eight viable controllers produced,half developed a two-point turn strategy as shown in Figure 6. Here we see that the GA hasdiscovered a single set of actions that is able to accomplish both goals, rather than a unique17
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Figure 6: Two-point turn strategy: Executes a short forward-right series, then a longerbackward-left series, and �nally ends with another short forward-right series for both goals.This strategy was found by 50% of the GA controls, 20% of the GA nogoals, and 37.5% ofthe GA delays.response to each goal. The switch in turning directions for this strategy was usually triggeredby a wall, since the environment is so small, but in some cases the switch occurred withoutthis environmental cue, as is seen at the start of the seek phase in Figure 6. Notice inthe initial steps of this strategy the light gradient is actually ignored|to seek the light thecontrollers begin by moving carbot further away from the light, decreasing the light sensorreadings|but once the backward-left portion of the strategy is entered, the sum of lightreadings steadily increases as carbot's heading gradually turns more towards the light.Three of the remaining eight GA-trained controllers developed a many-pointed turn pat-tern of behavior shown in Figure 7. This strategy allows the robot to remain in the vicinityof the light while its heading is systematically adjusted in the appropriate direction. Like thetwo-point turn behavior, this star pattern uses one set of actions to accomplish both goals.Only the last GA-trained network developed a strategy tuned to each goal: the semi-circlebehavior discussed previously.Because the GA-trained controllers typically employed a single strategy regardless of thegoal, they were less successful at following the light gradient correctly and received signi�-cantly more punishment during testing than CRBP-trained controllers (33.29% versus 24.18%[p < :05]). However, the GA-trained controllers performed as well as the CRBP-trained con-trollers in the generalization testing (13.61 steps versus 13.35 steps). Thus the simpler globalstrategies developed by the GA were as robust as the more �nely tuned local strategies de-veloped by CRBP. From these results we should expect that the GA's performance in thenext set of experiments, where the goal is removed, will not diminish as much as CRBP'sperformance.D. NogoalsFor this set of experiments, the explicit goal was removed. Since the controller has no indica-tion of which of the two phases (either seek or avoid) it should be in at any particular time,the optimal strategy must be able to achieve both goals by systematically moving towardsand then away from the light. During learning the networks are provided with reinforcementabout their actions relative to the unknown goal, but during testing this reinforcement is no18
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Figure 7: Many-point turn strategy: Executes alternating backward-right and forward-leftactions for both goals. The resulting pattern sometimes looks like a star. This strategy wasfound by 37.5% of the GA controls and 60% of the GA nogoals.longer present. Why should we expect that controllers without goals could even succeed atthe light task during testing? The recurrent memory allows the network to maintain infor-mation about which phase of the task it is in, enabling it to complete an entire seek or avoidphase before switching to the next phase and thus succeed at this hard task.Under the nogoal condition, only one of the ten CRBP-trained networks was able to reachthe learning criterion. However all the of the other nine networks converged to reasonablelevels of performance, so all ten networks were included in the analysis. For the majorityof these controllers, there were no clearly evident strategies being used. During testing theCRBP-trained nogoal controllers were punished 49.04% of the time and on average required26.95 steps to reach the goals. Both performance measures have doubled with respect to theCRBP control condition, and this di�erence is statistically signi�cant [p < :01]. The locallearning method seems to need the explicit goals to develop distinct patterns of behavior.Perhaps the most telling evidence that the CRBP-trained networks bene�t from explicitgoals is that in three of the ten CRBP nogoal controllers, the learning actually producedhidden units that served a goal-like function. These three networks performed better thanthe remaining seven, receiving less punishment (45.85% versus 52.23%) and requiring manyfewer steps on average to achieve goals (20.21 versus 29.84). Figure 8 shows the activation ofone such goal-like hidden unit during the course of 300 actions along with the sum of carbot'slight readings. The sum of the light readings can range from 0 to 2 while the activation ofthe hidden unit can only range from 0 to 1. To achieve the seek goal the sum of the lightreadings must exceed 1.7, and to achieve the avoid goal the sum must fall below 0.6. Thehidden unit activation remains at the maximum level of 1 most of the time, and then just asa seek goal is being achieved the level drops dramatically for a few steps. This goal-like unitis not perfect though; it is falsely triggered several times (around cycle 175 and 225).In the control experiments, the goal unit's activation in the input layer automaticallyswitched sign to mark the achievement of a goal. In these nogoal experiments, this externalcue was removed, and in response, some of the CRBP-trained nogoal networks developedtheir own internal cue for marking the achievement of seek goals.Somewhat surprisingly, the GA's performance was also quite a�ected by the removal ofthe explicit goals. None of the ten runs reached the learning criterion, but all exhibitedclear strategies. Six of the ten GA-trained nogoal controllers developed the many point turn19
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Figure 8: Development of a goal-like hidden unit when no explicit goal was present. An Sindicates when a seek goal was accomplished and an A indicates when an avoid goal wasaccomplished.strategy again. Another two developed the two-point turn strategy again. The �nal twodiscovered a slight modi�cation to the many-point turn behavior, shown in Figure 9. Herethe avoid pattern is exactly the same as before, but the seek pattern has an additional feature.First a number of alternating turns are used to orient the robot towards the light. Then apartial semi-circle is used to approach the light. In terms of the performance measures, theGA nogoal networks were signi�cantly worse than the GA control networks getting punished45.52% of the time and needing 24.71 steps on average to achieve the goals [p < :01].In comparing the performance of the GA to CRBP in the nogoal condition, there areno signi�cant quantitative di�erences between the two. However, the examination of thequalitative behavior reveals that without explicit goals CRBP's behavior patterns becamemuch more random while the GA's behavior remained fairly stable. Indeed, the GA waseven able to discover a new strategy that combined aspects of two previously successfulstrategies.E. DelaysOne small change in the CRBP learning procedure was made for this set of experimentswhere reinforcement about the light was delayed. Because reward was obtained much lessfrequently (less than 1% of the time even after 750,000 cycles of training), the reward learningrate was increased from 0.3 to 1.0. Despite this change, when the immediate reinforcementabout the light gradient was removed, none of the ten CRBP-trained networks reached the20
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Figure 9: Many-point turn plus semi-circle strategy: Executes alternating backward-right andforward-left actions for both goals, but for seeking the light an additional series of forward-leftactions are used to approach the light. This strategy was found by 20% of the GA nogoalsand 50% of the GA delays.learning criterion. They were punished 66.71% of the time and needed 33.27 steps on averageto achieve the goals. Both of these performance levels are signi�cantly worse than CRBPcontrol and nogoal cases [p < :01].The GA fared much better than CRBP in the delay condition. Two of the ten GA-trained delay networks reached the learning criterion and six others nearly achieved it (theremaining two were excluded from the analysis). Four of the eight viable networks developedthe many-point turn plus semi-circle strategy. Three others settled on the two-point turnstrategy. The last used the semi-circle strategy. Once again we see that the GA's qualitativebehavior remained quite stable despite large variations in the adaptation conditions. TheseGA-trained delay networks were only punished 36.71% of the time and needed only 14.29steps on average to reach the goals. These performance marks are signi�cantly better thanthe GA nogoal performance [p < :01] and equivalent to the GA control performance. Inaddition, these marks are signi�cantly better than CRBP's delay marks [p < :01].V. DISCUSSIONFigure 3 summarized the mean punishment and generalization scores for all the experimen-tal variations. The statistical analyses revealed several signi�cant quantitative di�erencesbetween the two learning methods. First, CRBP out-performed the GA in the control con-dition in terms of punishment received. Second the GA out-performed CRBP in the delaycondition in terms of both punishment received and average number of steps to the goals.Perhaps even more interesting were the qualitative di�erences in the behaviors produced bythe two methods. Being a local method, CRBP is much more sensitive to the moment-to-moment changes in the environment and can thus use the explicit goals to develop uniquestrategies tuned to each goal. In fact when no explicit goal is present, CRBP-trained networkswill sometimes create their own goal-like units in the hidden layer. However this sensitivity tothe environment can also be limiting. We saw that in each successive experimental variation,CRBP's performance signi�cantly degraded to the point that it could not succeed with onlydelayed reinforcement about the light.In comparison, the GA, as a global method, tends to develop a single overall strategy21



that is applicable to both goals. More importantly, the GA's ability to �nd good strategieswas quite robust across the experimental variations. But this insensitivity to conditions alsohas a minor cost: the GA was less attentive to the reinforcement schedule and so receivedmore punishment.The respective strengths and weaknesses of these two adaptation methods are clearlycomplementary, suggesting that some hybrid of the two could be the most e�ective method.Because the GA globally samples the entire space of alternative solutions while CRBP locallysearches the immediate neighborhood of a particular solution, the most straight-forward formof hybrid would be to allow the GA to �nd a good starting point in the weight space andthen use CRBP to do the �ne-tuning. Belew, McInerney, and Schraudolph did a number ofexperiments to test the feasibility of using a GA as a source of initial weights for gradientdescent learning and found that this technique is e�ective [4].To return to the incremental program described in the introduction, combining globaland local adaptation methods such as the GA and CRBP is a promising answer to thequestions raised about how to properly guide the adaptation process of a network controller.As in nature, the global, evolutionary method can determine a good gross solution which thelocal learning method can then appropriately adjust to the current environmental conditions.But, there is a caveat: the computational complexity of these hybrids can be extremely high.However, if such hybrid models can produce controllers that are both robust across largeenvironmental changes and yet sensitive to subtle features, then the additional computationale�ort may be well worth it.Armed with these insights about how to approach the fourth principle, we can now spec-ulate about the next incremental step towards planning described in the �fth principle. Con-sider again the basic control architecture shown in Figure 2. As a side e�ect of learning howto react to the environment and the goals, this network may build up a consolidated recordof its past states in the hidden layer. There is no guarantee that this will be the case, butthe capacity to do so is available in the recurrent connections. Thus immediately after a goalis achieved, the contents of the hidden layer could conceivably re
ect a generalized history ofthe environmental situations encountered while achieving the goal. Initial analyses of thesehidden layer representations show that for the most successful controllers, this kind of his-tory is indeed retained. These observations lead to the following hypothesis: Given a robotcontroller based on this type of recurrent network, if it is provided with explicit, abstractgoals as input and is adapted with a combined global/local reinforcement method, then upongoal achievement, the hidden layer will contain information that can be used to plan for thatgoal.This hypothesis has begun to be tested in subsequent work [25]. The hidden layer repre-sentations at the time of goal achievement were termed protoplans. To investigate whetherprotoplans could actually help to guide behavior, a transfer of learning experiment was done.The protoplans learned in one controller network were used to guide a second network as itlearned the same light seeking and avoiding task from scratch4. In this way the strategiesdiscovered in one controller could bias the strategies developed in a new controller so thatanother agent, rather than a human designer, could direct the learning process.This transfer of learning experiment was conducted as follows. First, a control network4One di�erence was that the robot's touch sensors were replaced with sonar sensors allowing the systemto anticipate obstacles. This change led to a much more varied repertoire of behaviors.22



was trained with reinforcement learning until it was highly successful at the light task, receiv-ing punishment only 11% of the time. After training, this successful network was tested for1,000 actions. Each time it accomplished a goal, the hidden layer activations (constituting theprotoplan) were saved. In addition, the �ve input states that preceded the goal achievementwere saved. These preceding input states provide the cues as to when a particular protoplanis appropriate (when in situation X1, X2, X3, X4, or X5, do protoplan Y ). Next an asso-ciative memory was constructed that mapped these preceding input states to the ultimateprotoplan (X1 ! Y , X2 ! Y , ..., X5 ! Y ). Finally a new controller was trained fromscratch without access to goals but with access to this protoplan memory. Using its currentinput state X 0, this new control network was able to retrieve an appropriate protoplan Y 0out of the associative memory built from the original network's solution.The results of this experiment show that controllers trained with protoplans as inputs,instead of goals, converged more quickly on good solutions than the original controllers withgoals. Protoplans were able to guide the robot's behavior by marking the important momentsin the interaction with the environment when a switch in behavior should occur. This kindof timing information was indirect|no speci�c action was indicated|but knowing when tochange from a particular strategy to a new one can be very useful information.In future work, rather than transferring the information contained in a protoplan betweencontrollers, the protoplan should a�ect the system in which it was created. Speci�cally,a controller should be able to save and generalize over its own protoplans. In this way,the protoplan memory could be updated on every time step to re
ect the system's everchanging summary of the current situation. In addition, this summary could be used tohelp determine the next action. Ultimately protoplans could serve as communication linksbetween separate modules of a much larger network controller. By being grounded in theenvironment, protoplans can provide information about the dynamics of the world to higherorder modules not directly connected to perception. Furthermore, these higher order modulescould create higher order protoplans leading to more complex levels of behavior. Througha series of such incremental steps connectionist controllers may eventually be able reach thelevel of planning.VI. ACKNOWLEDGEMENTSThanks to Doug Blank and Gary McGraw for building carbot, to Mike Gasser for commentingon earlier versions of this paper, to Robert Dufour for his help with the statistical analyses,and to the reviewers whose suggestions greatly improved the paper.References[1] D. H. Ackley and M. L. Littman, \Generalization and scaling in reinforcement learning,"in Advances in Neural Information Processing Systems 2 (D. S. Touretsky, ed.), pp. 550{557, Morgan Kaufmann, San Mateo, CA, 1990.[2] S. Baluja, \Evolution of an arti�cial neural network based autonomous land vehiclecontroller," this issue. 23
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