
Journal of Artificial Intelligence Research 21 (2004) 63-100 Submitted 8/03; published 2/04

Competitive Coevolution through Evolutionary
Complexification

Kenneth O. Stanley kstanley@cs.utexas.edu

Risto Miikkulainen risto@cs.utexas.edu

Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712 USA

Abstract

Two major goals in machine learning are the discovery and improvement of solutions to
complex problems. In this paper, we argue that complexification, i.e. the incremental elab-
oration of solutions through adding new structure, achieves both these goals. We demon-
strate the power of complexification through the NeuroEvolution of Augmenting Topologies
(NEAT) method, which evolves increasingly complex neural network architectures. NEAT
is applied to an open-ended coevolutionary robot duel domain where robot controllers com-
pete head to head. Because the robot duel domain supports a wide range of strategies, and
because coevolution benefits from an escalating arms race, it serves as a suitable testbed for
studying complexification. When compared to the evolution of networks with fixed struc-
ture, complexifying evolution discovers significantly more sophisticated strategies. The
results suggest that in order to discover and improve complex solutions, evolution, and
search in general, should be allowed to complexify as well as optimize.

1. Introduction

Evolutionary Computation (EC) is a class of algorithms that can be applied to open-ended
learning problems in Artificial Intelligence. Traditionally, such algorithms evolve fixed-
length genomes under the assumption that the space of the genome is sufficient to encode
the solution. A genome containing n genes encodes a single point in an n-dimensional search
space. In many cases, a solution is known to exist somewhere in that space. For example,
the global maximum of a function of three arguments must exist in the three dimensional
space defined by those arguments. Thus, a genome of three genes can encode the location
of the maximum.

However, many common structures are defined by an indefinite number of parameters.
In particular, those solution types that can contain a variable number of parts can be
represented by any number of parameters above some minimum. For example, the number
of parts in neural networks, cellular automata, and electronic circuits can vary (Miller, Job,
& Vassilev, 2000a; Mitchell, Crutchfield, & Das, 1996; Stanley & Miikkulainen, 2002d). In
fact, theoretically two neural networks with different numbers of connections and nodes can
represent the same function (Cybenko, 1989). Thus, it is not clear what number of genes is
appropriate for solving a particular problem. Researchers evolving fixed-length genotypes
must use heuristics to estimate a priori the appropriate number of genes to encode such
structures.

c©2004 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Stanley & Miikkulainen

A major obstacle to using fixed-length encodings is that heuristically determining the
appropriate number of genes becomes impossible for very complex problems. For example,
how many nodes and connections are necessary for a neural network that controls a ping-
pong playing robot? Or, how many bits are needed in the neighborhood function of a
cellular automaton that performs information compression? The answers to these questions
can hardly be based on empirical experience or analytic methods, since little is known
about the solutions. One possible approach is to simply make the genome extremely large,
so that the space it encodes is extremely large and a solution is likely to lie somewhere
within. Yet the larger the genome, the higher dimensional the space that evolution needs to
search. Even if a ping-pong playing robot lies somewhere in the 10,000 dimensional space
of a 10,000 gene genome, searching such a space may take prohibitively long.

Even more problematic are open-ended problems where phenotypes are meant to im-
prove indefinitely and there is no known final solution. For example, in competitive games,
estimating the complexity of the “best” possible player is difficult because such an estimate
implicitly assumes that no better player can exist, which we cannot always know. Moreover,
many artificial life domains are aimed at evolving increasingly complex artificial creatures
for as long as possible (Maley, 1999). Such continual evolution is difficult with a fixed
genome for two reasons: (1) When a good strategy is found in a fixed-length genome, the
entire representational space of the genome is used to encode it. Thus, the only way to
improve it is to alter the strategy, thereby sacrificing some of the functionality learned over
previous generations. (2) Fixing the size of the genome in such domains arbitrarily fixes
the maximum complexity of evolved creatures, defeating the purpose of the experiment.

In this paper, we argue that structured phenotypes can be evolved effectively by start-
ing evolution with a population of small, simple genomes and systematically elaborating
on them over generations by adding new genes. Each new gene expands the search space,
adding a new dimension that previously did not exist. That way, evolution begins searching
in a small easily-optimized space, and adds new dimensions as necessary. This approach
is more likely to discover highly complex phenotypes than an approach that begins search-
ing directly in the intractably large space of complete solutions. In fact, natural evolution
utilizes this strategy, occasionally adding new genes that lead to increased phenotypic com-
plexity (Martin 1999; Section 2). In biology, this process of incremental elaboration is called
complexification, which is why we use this term to describe our approach as well.

In evolutionary computation, complexification refers to expanding the dimensionality
of the search space while preserving the values of the majority of dimensions. In other
words, complexification elaborates on the existing strategy by adding new structure without
changing the existing representation. Thus the strategy does not only become different, but
the number of possible responses to situations it can generate increases (Figure 1).

In the EC domain of neuroevolution (i.e. evolving neural networks), complexification
means adding nodes and connections to already-functioning neural networks. This is the
main idea behind NEAT (NeuroEvolution of Augmenting Topologies; Stanley and Miikku-
lainen 2002b,c,d), the method described in this paper. NEAT begins by evolving networks
without any hidden nodes. Over many generations, new hidden nodes and connections are
added, complexifying the space of potential solutions. In this way, more complex strategies
elaborate on simpler strategies, focusing search on solutions that are likely to maintain
existing capabilities.

64

Competitive Coevolution through Evolutionary Complexification

Original Strategy Strategy Fails Altered Strategy Strategy Fails

Original Strategy Strategy Fails Elaborated Strategy Skill Remains!

Alteration

Elaboration

Figure 1: Alteration vs. elaboration example. The dark robot must evolve to avoid the
lighter robot, which attempts to cause a collision. In the alteration scenario (top), the
dark robot first evolves a strategy to go around the left side of the opponent. However,
the strategy fails in a future generation when the opponent begins moving to the left.
Thus, the dark robot alters its strategy by evolving the tendency to move right instead
of left. However, when the light robot later moves right, the new, altered, strategy fails
because the dark robot did not retain its old ability to move left. In the elaboration
scenario (bottom), the original strategy of moving left also fails. However, instead of
altering the strategy, it is elaborated by adding a new ability to move right as well. Thus,
when the opponent later moves right, the dark robot still has the ability to avoid it by
using its original strategy. Elaboration is necessary for a coevolutionary arms race to
emerge and it can be achieved through complexification.

Expanding the length of the size of the genome has been found effective in previous
work (Cliff, Harvey, & Husbands, 1993; Harvey, 1993; Koza, 1995; Lindgren & Johansson,
2001). NEAT advances this idea by making it possible to search a wide range of increas-
ingly complex network topologies simultaneously. This process is based on three technical
components: (1) Keeping track of which genes match up with which among differently sized
genomes throughout evolution; (2) speciating the population so that solutions of differing
complexity can exist independently; and (3) starting evolution with a uniform population
of small networks. These components work together in complexifying solutions as part of
the evolutionary process. In prior work, NEAT has been shown to solve challenging rein-
forcement learning problems more efficiently than other neuroevolution methods (Stanley
and Miikkulainen 2002b,c,d). The focus of these studies was on optimizing a given fitness
function through complexifying evolution.

65

Stanley & Miikkulainen

In this paper, we focus on open-ended problems that have no explicit fitness function;
instead, fitness depends on comparisons with other agents that are also evolving. The goal
is to discover creative solutions beyond a designer’s ability to define a fitness function. It is
difficult to continually improve solutions in such coevolutionary domains because evolution
tends to oscillate between idiosyncratic yet uninteresting solutions (Floreano & Nolfi, 1997).
Complexification encourages continuing innovation by elaborating on existing solutions.

In order to demonstrate the power of complexification in coevolution, NEAT is applied
to the competitive robot control domain of Robot Duel. There is no known optimal strategy
in the domain but there is substantial room to come up with increasingly sophisticated
strategies. The main results were that (1) evolution did complexify when possible, (2)
complexification led to elaboration, and (3) significantly more sophisticated and successful
strategies were evolved with complexification than without it. These results imply that
complexification allows establishing a coevolutionary arms race that achieves a significantly
higher level of sophistication than is otherwise possible.

We begin by reviewing biological support for complexification, as well as past work in
coevolution, followed by a description of the NEAT method, and experimental results.

2. Background

The natural process of complexification has led to important biological innovations. Its
most natural application in EC is in competitive coevolution, as will be reviewed below.

2.1 Complexification in Nature

Mutation in nature not only results in optimizing existing structures: New genes are occa-
sionally added to the genome, allowing evolution to perform a complexifying function over
and above optimization. In addition, complexification is protected in nature in that inter-
species mating is prohibited. Such speciation creates important dynamics differing from
standard GAs. In this section, we discuss these characteristics of natural evolution as a
basis for our approach to utilizing them computationally in genetic algorithms.

Gene duplication is a special kind of mutation in which one or more parental genes are
copied into an offspring’s genome more than once. The offspring then has redundant genes
expressing the same proteins. Gene duplication has been responsible for key innovations in
overall body morphology over the course of natural evolution (Amores, Force, Yan, Joly,
Amemiya, Fritz, Ho, Langeland, Prince, Wang, Westerfield, Ekker, & Postlethwait, 1998;
Carroll, 1995; Force, Lynch, Pickett, Amores, lin Yan, & Postlethwait, 1999; Martin, 1999).

A major gene duplication event occurred around the time that vertebrates separated
from invertebrates. The evidence for this duplication centers around HOX genes, which
determine the fate of cells along the anterior-posterior axis of embryos. HOX genes are
crucial in shaping the overall pattern of development in embryos. In fact, differences in
HOX gene regulation explain a great deal of the diversity among arthropods and tetrapods
(Carroll, 1995). Invertebrates have a single HOX cluster while vertebrates have four, sug-
gesting that cluster duplication significantly contributed to elaborations in vertebrate body-
plans (Amores et al., 1998; Holland, Garcia-Fernandez, Williams, & Sidow, 1994; Nadeau
& Sankoff, 1997; Postlethwait, Yan, Gates, Horne, Amores, Brownlie, & Donovan, 1998;
Sidow, 1996). The additional HOX genes took on new roles in regulating how vertebrate

66

Competitive Coevolution through Evolutionary Complexification

anterior-posterior axis develops, considerably increasing body-plan complexity. Although
Martin (1999) argues that the additional clusters can be explained by many single gene du-
plications accumulating over generations, as opposed to massive whole-genome duplications,
researchers agree that gene duplication in some form contributed significantly to body-plan
elaboration.

A detailed account of how duplicate genes can take on novel roles was given by Force et al.
(1999): Base pair mutations in the generations following duplication partition the initially
redundant regulatory roles of genes into separate classes. Thus, the embryo develops in the
same way, but the genes that determine the overall body-plan are confined to more specific
roles, since there are more of them. The partitioning phase completes when redundant
clusters of genes are separated enough so that they no longer produce identical proteins
at the same time. After partitioning, mutations within the duplicated cluster of genes
affect different steps in development than mutations within the original cluster. In other
words, duplication creates more points at which mutations can occur. In this manner,
developmental processes complexify.

Gene duplication is a possible explanation how natural evolution indeed expanded the
size of genomes throughout evolution, and provides inspiration for adding new genes to
artificial genomes as well. In fact, gene duplication motivated Koza (1995) to allow entire
functions in genetic programs to be duplicated through a single mutation, and later differ-
entiated through further mutations. When evolving neural networks, this process means
adding new neurons and connections to the networks.

In order to implement this idea in artificial evolutionary systems, we are faced with
two major challenges. First, such systems evolve differently sized and shaped network
topologies, which can be difficult to cross over without losing information. For example,
depending on when new structure was added, the same gene may exist at different positions,
or conversely, different genes may exist at the same position. Thus, artificial crossover may
disrupt evolved topologies through misalignment. Second, with variable-length genomes,
it may be difficult to find innovative solutions. Optimizing many genes takes longer than
optimizing only a few, meaning that more complex networks may be eliminated from the
population before they have a sufficient opportunity to be optimized.

However, biological evolution also operates on variable-length genomes, and these prob-
lems did not stop complexification in nature. How are these problems avoided in biological
evolution? First, nature has a mechanism for aligning genes with their counterparts during
crossover, so that data is not lost nor obscured. This alignment process has been most
clearly observed in E. coli (Radding, 1982; Sigal & Alberts, 1972). A special protein called
RecA takes a single strand of DNA and aligns it with another strand at genes that express
the same traits, which are called homologous genes. This process is called synapsis.

Second, innovations in nature are protected through speciation. Organisms with signifi-
cantly divergent genomes never mate because they are in different species. If any organism
could mate with any other, organisms with initially larger, less-fit genomes would be forced
to compete for mates with their simpler, more fit counterparts. As a result, the larger,
more innovative genomes would fail to produce offspring and disappear from the popula-
tion. In contrast, in a speciated population, organisms with larger genomes compete for
mates among their own species, instead of with the population at large. That way, organ-
isms that may initially have lower fitness than the general population still have a chance

67

Stanley & Miikkulainen

to reproduce, giving novel concepts a chance to realize their potential without being pre-
maturely eliminated. Because speciation benefits the evolution of diverse populations, a
variety of speciation methods have been employed in EC (Goldberg & Richardson, 1987;
Mahfoud, 1995; Ryan, 1994).

It turns out complexification is also possible in evolutionary computation if abstractions
of synapsis and speciation are made part of the genetic algorithm. The NEAT method
(section 3) is an implementation of this idea: The genome is complexified by adding new
genes which in turn encode new structure in the phenotype, as in biological evolution.

Complexification is especially powerful in open-ended domains where the goal is to
continually generate more sophisticated strategies. Competitive coevolution is a particularly
important such domain, as will be reviewed in the next section.

2.2 Competitive Coevolution

In competitive coevolution, individual fitness is evaluated through competition with other
individuals in the population, rather than through an absolute fitness measure. In other
words, fitness signifies only the relative strengths of solutions; an increased fitness in one
solution leads to a decreased fitness for another. Ideally, competing solutions will continually
outdo one another, leading to an ”arms race” of increasingly better solutions (Dawkins &
Krebs, 1979; Rosin, 1997; Van Valin, 1973). Competitive coevolution has traditionally been
used in two kinds of problems. First, it can be used to evolve interactive behaviors that
are difficult to evolve in terms of an absolute fitness function. For example, Sims (1994)
evolved simulated 3D creatures that attempted to capture a ball before an opponent did,
resulting in a variety of effective interactive strategies. Second, coevolution can be used
to gain insight into the dynamics of game-theoretic problems. For example, Lindgren &
Johansson (2001) coevolved iterated Prisoner’s Dilemma strategies in order to demonstrate
how they correspond to stages in natural evolution.

Whatever the goal of a competitive coevolution experiment, interesting strategies will
only evolve if the arms race continues for a significant number of generations. In practice, it
is difficult to establish such an arms race. Evolution tends to find the simplest solutions that
can win, meaning that strategies can switch back and forth between different idiosyncratic
yet uninteresting variations (Darwen, 1996; Floreano & Nolfi, 1997; Rosin & Belew, 1997).
Several methods have been developed to encourage the arms race (Angeline & Pollack, 1993;
Ficici & Pollack, 2001; Noble & Watson, 2001; Rosin & Belew, 1997). For example, a ”hall
of fame” or a collection of past good strategies can be used to ensure that current strategies
remain competitive against earlier strategies. Recently, Ficici and Pollack (2001) and Noble
and Watson (2001) introduced a promising method called Pareto coevolution, which finds
the best learners and the best teachers in two populations by casting coevolution as a mul-
tiobjective optimization problem. This information enables choosing the best individuals
to reproduce, as well as maintaining an informative and diverse set of opponents.

Although such techniques allow sustaining the arms race longer, they do not directly
encourage continual coevolution, i.e. creating new solutions that maintain existing capa-
bilities. For example, no matter how well selection is performed, or how well competitors
are chosen, if the search space is fixed, a limit will eventually be reached. Also, it may

68

Competitive Coevolution through Evolutionary Complexification

occasionally be easier to escape a local optimum by adding a new dimension to the search
space than by searching for a new path through the original space.

For these reasons, complexification is a natural technique for establishing a coevolu-
tionary arms race. Complexification elaborates strategies by adding new dimensions to the
search space. Thus, progress can be made indefinitely long: Even if a global optimum
is reached in the search space of solutions, new dimensions can be added, opening up a
higher-dimensional space where even better optima may exist.

To test this idea experimentally, we chose a robot duel domain that combines preda-
tor/prey interaction and food foraging in a novel head-to-head competition (Section 4).
We use this domain to demonstrate how NEAT uses complexification to continually elabo-
rate solutions. The next section reviews the NEAT neuroevolution method, followed by a
description of the robot duel domain and a discussion of the results.

3. NeuroEvolution of Augmenting Topologies (NEAT)

The NEAT method of evolving artificial neural networks combines the usual search for
appropriate network weights with complexification of the network structure. This approach
is highly effective, as shown e.g. in comparison to other neuroevolution (NE) methods in the
double pole balancing benchmark task (Stanley & Miikkulainen, 2002b,c,d). The NEAT
method consists of solutions to three fundamental challenges in evolving neural network
topology: (1) What kind of genetic representation would allow disparate topologies to
crossover in a meaningful way? Our solution is to use historical markings to line up genes
with the same origin. (2) How can topological innovation that needs a few generations
to optimize be protected so that it does not disappear from the population prematurely?
Our solution is to separate each innovation into a different species. (3) How can topologies
be minimized throughout evolution so the most efficient solutions will be discovered? Our
solution is to start from a minimal structure and add nodes and connections incrementally.
In this section, we explain how each of these solutions is implemented in NEAT.

3.1 Genetic Encoding

Evolving structure requires a flexible genetic encoding. In order to allow structures to com-
plexify, their representations must be dynamic and expandable. Each genome in NEAT
includes a list of connection genes, each of which refers to two node genes being connected.
(Figure 2). Each connection gene specifies the in-node, the out-node, the weight of the con-
nection, whether or not the connection gene is expressed (an enable bit), and an innovation
number, which allows finding corresponding genes during crossover.

Mutation in NEAT can change both connection weights and network structures. Con-
nection weights mutate as in any NE system, with each connection either perturbed or not.
Structural mutations, which form the basis of complexification, occur in two ways (Figure
3). Each mutation expands the size of the genome by adding gene(s). In the add connection
mutation, a single new connection gene is added connecting two previously unconnected
nodes. In the add node mutation, an existing connection is split and the new node placed
where the old connection used to be. The old connection is disabled and two new connec-
tions are added to the genome. The connection between the first node in the chain and the
new node is given a weight of one, and the connection between the new node and the last

69

Stanley & Miikkulainen

Node 1

Sensor

Node 2

Sensor

Node 3

Sensor

Node 4

Output

Node 5

Hidden

In 1

Out 4

Weight 0.7

Enabled
Innov 1

In 2

Out 4

Weight−0.5

DISABLED
Innov 2

In 3

Out 4

Weight 0.5

Enabled
Innov 3

In 2

Out 5

Weight 0.2

Enabled
Innov 4

In 5 In 1 In 4

Out 4 Out 5 Out 5

Weight 0.4 Weight 0.6 Weight 0.6

Enabled Enabled Enabled
Innov 5 Innov 6 Innov 11

Genome (Genotype)
Node

Genes
Connect.

Genes

Network (Phenotype)

1 2 3
5

4

Figure 2: A NEAT genotype to phenotype mapping example. A genotype is depicted that
produces the shown phenotype. There are 3 input nodes, one hidden, and one output
node, and seven connection definitions, one of which is recurrent. The second gene is
disabled, so the connection that it specifies (between nodes 2 and 4) is not expressed in
the phenotype. In order to allow complexification, genome length is unbounded.

node in the chain is given the same weight as the connection being split. Splitting the con-
nection in this way introduces a nonlinearity (i.e. sigmoid function) where there was none
before. When initialized in this way, this nonlinearity changes the function only slightly,
and the new node is immediately integrated into the network. Old behaviors encoded in the
preexisting network structure are not destroyed and remain qualitatively the same, while
the new structure provides an opportunity to elaborate on these original behaviors.

Through mutation, the genomes in NEAT will gradually get larger. Genomes of varying
sizes will result, sometimes with different connections at the same positions. Crossover must
be able to recombine networks with differing topologies, which can be difficult (Radcliffe,
1993). The next section explains how NEAT addresses this problem.

3.2 Tracking Genes through Historical Markings

It turns out that the historical origin of each gene can be used to tell us exactly which genes
match up between any individuals in the population. Two genes with the same historical
origin represent the same structure (although possibly with different weights), since they
were both derived from the same ancestral gene at some point in the past. Thus, all a
system needs to do is to keep track of the historical origin of every gene in the system.

Tracking the historical origins requires very little computation. Whenever a new gene
appears (through structural mutation), a global innovation number is incremented and
assigned to that gene. The innovation numbers thus represent a chronology of every gene
in the system. As an example, let us say the two mutations in Figure 3 occurred one after

70

Competitive Coevolution through Evolutionary Complexification

1

1

1

1

2

2

2

2

3

3

3

3
6

5

5

5

5

4

4

4

4

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

3−>4

3−>4

3−>4

3−>4

2−>5

2−>5

2−>5

2−>5

5−>4

5−>4

5−>4

5−>4

1−>5

1−>5

1−>5

1−>5

3−>5

3−>6 6−>4

DIS

DIS DIS

DIS

DIS

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

8 9

Mutate Add Connection

Mutate Add Node

Figure 3: The two types of structural mutation in NEAT. Both types, adding a connection
and adding a node, are illustrated with the genes above their phenotypes. The top number
in each genome is the innovation number of that gene. The bottom two numbers denote
the two nodes connected by that gene. The weight of the connection, also encoded in the
gene, is not shown. The symbol DIS means that the gene is disabled, and therefore not
expressed in the network. The figure shows how connection genes are appended to the
genome when a new connection and a new node is added to the network. Assuming the
depicted mutations occurred one after the other, the genes would be assigned increasing
innovation numbers as the figure illustrates, thereby allowing NEAT to keep an implicit
history of the origin of every gene in the population.

another in the system. The new connection gene created in the first mutation is assigned
the number 7, and the two new connection genes added during the new node mutation
are assigned the numbers 8 and 9. In the future, whenever these genomes crossover, the
offspring will inherit the same innovation numbers on each gene. Thus, the historical origin
of every gene in the system is known throughout evolution.

A possible problem is that the same structural innovation will receive different innovation
numbers in the same generation if it occurs by chance more than once. However, by keeping
a list of the innovations that occurred in the current generation, it is possible to ensure that
when the same structure arises more than once through independent mutations in the
same generation, each identical mutation is assigned the same innovation number. Through
extensive experimentation, we established that resetting the list every generation as opposed
to keeping a growing list of mutations throughout evolution is sufficient to prevent an
explosion of innovation numbers.

Through innovation numbers, the system now knows exactly which genes match up
with which (Figure 4). Genes that do not match are either disjoint or excess, depending on
whether they occur within or outside the range of the other parent’s innovation numbers.
When crossing over, the genes with the same innovation numbers are lined up and are

71

Stanley & Miikkulainen

1−>4

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

2−>4

3−>4

3−>4

2−>5

2−>5

2−>5

2−>5

2−>5

5−>4

5−>4

5−>4

5−>6

5−>4

5−>4

1−>5

1−>5

6−>4

6−>4

1−>6

1−>6

1−>61−>5

5−>6

5−>6

3−>5

3−>5

3−>56−>4

3−>4

3−>4

3−>4

DISAB

DISAB

DISAB

DISAB

DISAB

DISAB

DISAB DISAB

1

1

1

1

1

2

2

2

2

2

3

3

4

4

4

4

4

5

5

5

6

5

5

8

8

7

7

10

10

108

6

6

9

9

97

3

3

3

disjointdisjoint

disjoint

excessexcess

Parent1 Parent2

Parent2

Offspring

Parent1

1

1

1
2

2

2
3

3

3

5

5

5

6

4

4

6

4

Figure 4: Matching up genomes for different network topologies using innovation num-
bers. Although Parent 1 and Parent 2 look different, their innovation numbers (shown
at the top of each gene) tell us that several of their genes match up even without topo-
logical analysis. A new structure that combines the overlapping parts of the two parents
as well as their different parts can be created in crossover. In this case, equal fitnesses
are assumed, so the disjoint and excess genes from both parents are inherited randomly.
Otherwise they would be inherited from the more fit parent. The disabled genes may
become enabled again in future generations: There is a preset chance that an inherited
gene is disabled if it is disabled in either parent.

randomly chosen for the offspring genome. Genes that do not match are inherited from the
more fit parent, or if they are equally fit, from both parents randomly. Disabled genes have
a 25% chance of being reenabled during crossover, allowing networks to make use of older
genes once again.1

Historical markings allow NEAT to perform crossover without the need for expensive
topological analysis. Genomes of different organizations and sizes stay compatible through-
out evolution, and the problem of comparing different topologies is essentially avoided. This

1. See Appendix A for specific mating parameters used in the experiments in this paper.

72

Competitive Coevolution through Evolutionary Complexification

methodology allows NEAT to complexify structure while still maintaining genetic compat-
ibility. However, it turns out that a population of varying complexities cannot maintain
topological innovations on its own. Because smaller structures optimize faster than larger
structures, and adding nodes and connections usually initially decreases the fitness of the
network, recently augmented structures have little hope of surviving more than one gen-
eration even though the innovations they represent might be crucial towards solving the
task in the long run. The solution is to protect innovation by speciating the population, as
explained in the next section.

3.3 Protecting Innovation through Speciation

NEAT speciates the population so that individuals compete primarily within their own
niches instead of with the population at large. This way, topological innovations are pro-
tected and have time to optimize their structure before they have to compete with other
niches in the population. In addition, speciation prevents bloating of genomes: Species with
smaller genomes survive as long as their fitness is competitive, ensuring that small networks
are not replaced by larger ones unnecessarily. Protecting innovation through speciation fol-
lows the philosophy that new ideas must be given time to reach their potential before they
are eliminated.

Historical markings make it possible for the system to divide the population into species
based on topological similarity. We can measure the distance δ between two network en-
codings as a linear combination of the number of excess (E) and disjoint (D) genes, as well
as the average weight differences of matching genes (W):

δ =
c1E

N
+

c2D

N
+ c3 · W. (1)

The coefficients c1, c2, and c3 adjust the importance of the three factors, and the factor
N , the number of genes in the larger genome, normalizes for genome size (N can be set
to 1 if both genomes are small). Genomes are tested one at a time; if a genome’s distance
to a randomly chosen member of the species is less than δt, a compatibility threshold, it
is placed into this species. Each genome is placed into the first species from the previous
generation where this condition is satisfied, so that no genome is in more than one species.
If a genome is not compatible with any existing species, a new species is created. The
problem of choosing the best value for δt can be avoided by making δt dynamic; that is,
given a target number of species, the system can raise δt if there are too many species, and
lower δt if there are too few.

As the reproduction mechanism for NEAT, we use explicit fitness sharing (Goldberg &
Richardson, 1987), where organisms in the same species must share the fitness of their niche.
Thus, a species cannot afford to become too big even if many of its organisms perform well.
Therefore, any one species is unlikely to take over the entire population, which is crucial for
speciated evolution to maintain topological diversity. The adjusted fitness f ′i for organism
i is calculated according to its distance δ from every other organism j in the population:

f ′i =
fi∑n

j=1 sh(δ(i, j))
. (2)

73

Stanley & Miikkulainen

The sharing function sh is set to 0 when distance δ(i, j) is above the threshold δt;
otherwise, sh(δ(i, j)) is set to 1 (Spears, 1995). Thus,

∑n
j=1 sh(δ(i, j)) reduces to the number

of organisms in the same species as organism i. This reduction is natural since species
are already clustered by compatibility using the threshold δt. Every species is assigned
a potentially different number of offspring in proportion to the sum of adjusted fitnesses
f ′i of its member organisms. Species reproduce by first eliminating the lowest performing
members from the population. The entire population is then replaced by the offspring of
the remaining organisms in each species.

The net effect of speciating the population is that structural innovation is protected.
The final goal of the system, then, is to perform the search for a solution as efficiently as
possible. This goal is achieved through complexification from a simple starting structure,
as detailed in the next section.

3.4 Minimizing Dimensionality through Complexification

Unlike other systems that evolve network topologies and weights (Angeline, Saunders, &
Pollack, 1993; Gruau, Whitley, & Pyeatt, 1996; Yao, 1999; Zhang & Muhlenbein, 1993),
NEAT begins with a uniform population of simple networks with no hidden nodes, differing
only in their initial random weights. Speciation protects new innovations, allowing topo-
logical diversity to be gradually introduced over evolution. Thus, because NEAT protects
innovation using speciation, it can start in this manner, minimally, and grow new structure
over generations.

New structure is introduced incrementally as structural mutations occur, and only those
structures survive that are found to be useful through fitness evaluations. This way, NEAT
searches through a minimal number of weight dimensions, significantly reducing the num-
ber of generations necessary to find a solution, and ensuring that networks become no
more complex than necessary. This gradual production of increasingly complex structures
constitutes complexification. In other words, NEAT searches for the optimal topology by
incrementally complexifying existing structure.

In previous work, each of the three main components of NEAT (i.e. historical markings,
speciation, and starting from minimal structure) were experimentally ablated in order to
demonstrate how they contribute to performance (Stanley & Miikkulainen, 2002b,d). The
ablation study demonstrated that all three components are interdependent and necessary
to make NEAT work. In this paper, we further show how complexification establishes the
arms race in competitive coevolution. The next section describes the experimental domain
in which this result will be demonstrated.

4. The Robot Duel Domain

Our hypothesis is that the complexification process outlined above allows discovering more
sophisticated strategies, i.e. strategies that are more effective, flexible, and general, and
include more components and variations than do strategies obtained through search in a
fixed space. To demonstrate this effect, we need a domain where it is possible to develop
a wide range increasingly sophisticated strategies, and where sophistication can be readily
measured. A coevolution domain is particularly appropriate because a sustained arms race
should lead to increasing sophistication.

74

Competitive Coevolution through Evolutionary Complexification

In choosing the domain, it is difficult to strike a balance between being able to evolve
complex strategies and being able to analyze and understand them. Pursuit and evasion
tasks have been utilized for this purpose in the past (Gomez & Miikkulainen, 1997; Jim
& Giles, 2000; Miller & Cliff, 1994; Reggia, Schulz, Wilkinson, & Uriagereka, 2001; Sims,
1994), and can serve as a benchmark domain for complexifying coevolution as well. While
past experiments evolved either a predator or a prey, an interesting coevolution task can
be established if the agents are instead equal and engaged in a duel. To win, an agent must
develop a strategy that outwits that of its opponent, utilizing structure in the environment.

In this paper we introduce such a duel domain, in which two simulated robots try to
overpower each other (Figure 5). The two robots begin on opposite sides of a rectangular
room facing away from each other. As the robots move, they lose energy in proportion to
the amount of force they apply to their wheels. Although the robots never run out of energy
(they are given enough to survive the entire competition), the robot with higher energy wins
when it collides with its competitor. In addition, each robot has a sensor indicating the
difference in energy between itself and the other robot. To keep their energies high, the
robots can consume food items, arranged in a symmetrical pattern in the room.

The robot duel task supports a broad range of sophisticated strategies that are easy to
observe and interpret. The competitors must become proficient at foraging, prey capture,
and escaping predators. In addition, they must be able to quickly switch from one behavior
to another. The task is well-suited to competitive coevolution because naive strategies such
as forage-then-attack can be complexified into more sophisticated strategies such as luring
the opponent to waste its energy before attacking.

The simulated robots are similar to Kheperas (Mondada et al. 1993; Figure 6). Each
has two wheels controlled by separate motors. Five rangefinder sensors can sense food and
another five can sense the other robot. Finally, each robot has an energy-difference sensor,
and a single wall sensor.

The robots are controlled with neural networks evolved with NEAT. The networks re-
ceive all of the robot sensors as inputs, as well as a constant bias that NEAT can use to
change the activation thresholds of neurons. They produce three motor outputs: Two to
encode rotation either right or left, and a third to indicate forward motion power. These
three values are then translated into forces to be applied to the left and right wheels of the
robot.

The state st of the world at time t is defined by the positions of the robots and food,
the energy levels of the robots, and the internal states (i.e. neural activation) of the robots’
neural networks, including sensors, outputs, and hidden nodes. The subsequent state st+1

is determined by the outputs of the robots’ neural network controllers, computed from the
inputs (i.e. sensor values) in st in one step of propagation through the network. The robots
change their position in st+1 according to their neural network outputs as follows. The
change in direction of motion is proportional to the difference between the left and right
motor outputs. The robot drives forward a distance proportional to the forward output
on a continuous board of size 600 by 600. The robot first makes half its turn, then moves
forward, then completes the second half of its turn, so that the turning and forward motions
are effectively combined. If the robot encounters food, it receives an energy boost, and the
food disappears from the world. The loss of energy due to movement is computed as the
sum of the turn angle and the forward motion, so that even turning in place takes energy. If

75

Stanley & Miikkulainen

Figure 5: The Robot Duel Domain. The robots begin on opposite sides of the board facing
away from each other as shown by the arrows pointing away from their centers. The
concentric circles around each robot represent the separate rings of opponent sensors
and food sensors available to each robot. Each ring contains five sensors. The robots
lose energy when they move around, and gain energy by consuming food (shown as
small sandwiches). The food is always placed in the depicted horizontally symmetrical
pattern around the middle of the board. The objective is to attain a higher level of
energy than the opponent, and then collide with it. Because of the complex interaction
between foraging, pursuit, and evasion behaviors, the domain allows for a broad range
of strategies of varying sophistication. Animated demos of such evolved strategies are
available at www.cs.utexas.edu/users/nn/pages/research/neatdemo.html.

the robots are within a distance of 20, a collision occurs and the robot with a higher energy
wins (see Appendix B for the exact parameter values used).

Since the observed state ot taken by the sensors does not include the internal state
of the opponent robot, the robot duel is a partially-observable Markov decision process
(POMDP). Since the next observed state ot+1 depends on the decision of the opponent, it
is necessary for robots to learn to predict what the opponent is likely to do, based on their
past behavior, and also based on what is reasonable behavior in general. For example, it
is reasonable to assume that if the opponent robot is quickly approaching and has higher
energy, it is probably trying to collide. Because an important and complex portion of s is
not observable, memory, and hence recurrent connections, are crucial for success.

This complex robot-control domain allows competitive coevolution to evolve increasingly
sophisticated and complex strategies, and can be used to understand complexification, as
will be described next.

76

Competitive Coevolution through Evolutionary Complexification

Figure 6: Robot Neural Networks. Five food sensors and five robot sensors detect the presence
of objects around the robot. A single wall sensor indicates proximity to walls, and
the energy difference sensor tells the robot how its energy level differs from that of its
opponent. This difference is important because the robot with lower energy loses if the
robots collide. The three motor outputs are mapped to forces that control the left and
the right wheel.

5. Experiments

In order to demonstrate how complexification enhances performance, we ran thirty-three
500-generation runs of coevolution in the robot duel domain. Thirteen of these runs were
based on the full NEAT method. Complexification was turned off in the remaining 20 runs
(although networks were still speciated based on weight differences), in order to see how
complexification contributes evolving sophisticated strategies. The competitive coevolution
setup is described first, followed by an overview of the dominance tournament method for
monitoring progress.

5.1 Competitive Coevolution Setup

The robot duel domain supports highly sophisticated strategies. Thus, the question in
such a domain is whether continual coevolution will take place, i.e. whether increasingly
sophisticated strategies will appear over the course of evolution. The experiment has to be
set up carefully for this process to emerge, and to be able to identify it when it does.

In competitive coevolution, every network should play a sufficient number of games to
establish a good measure of fitness. To encourage interesting and sophisticated strategies,
networks should play a diverse and high quality sample of possible opponents. One way
to accomplish this goal is to evolve two separate populations. In each generation, each
population is evaluated against an intelligently chosen sample of networks from the other
population. The population currently being evaluated is called the host population, and
the population from which opponents are chosen is called the parasite population (Rosin &

77

Stanley & Miikkulainen

Belew, 1997). The parasites are chosen for their quality and diversity, making host/parasite
evolution more efficient and more reliable than one based on random or round robin tour-
nament.

In the experiment, a single fitness evaluation included two competitions, one for the east
and one for the west starting position. That way, networks needed to implement general
strategies for winning, independent of their starting positions. Host networks received a
single fitness point for each win, and no points for losing. If a competition lasted 750 time
steps with no winner, the host received zero points.

In selecting the parasites for fitness evaluation, good use can be made of the speciation
and fitness sharing that already occur in NEAT. Each host was evaluated against the four
highest species’ champions. They are good opponents because they are the best of the
best species, and they are guaranteed to be diverse because their distance must exceed the
threshold δt (section 3.3). Another eight opponents were chosen randomly from a Hall of
Fame composed of all generation champions (Rosin & Belew, 1997). The Hall of Fame
ensures that existing abilities need to be maintained to obtain a high fitness. Each network
was evaluated in 24 games (i.e. 12 opponents, 2 games each), which was found to be effective
experimentally. Together speciation, fitness sharing, and Hall of Fame comprise an effective
competitive coevolution methodology.

It should be noted that complexification does not depend on the particular coevolution
methodology. For example Pareto coevolution (Ficici & Pollack, 2001; Noble & Watson,
2001) could have been used as well, and the advantages of complexification would be the
same. However, Pareto coevolution requires every member of one population to play every
member of the other, and the running time in this domain would have been prohibitively
long.

In order to interpret experimental results, a method is needed for analyzing progress in
competitive coevolution. The next section describes such a method.

5.2 Monitoring Progress in Competitive Coevolution

A competitive coevolution run returns a record of every generation champion from both
populations. The question is, how can a sequence of increasingly sophisticated strategies
be identified in this data, if one exists? This section describes the dominance tournament
method for monitoring progress in competitive coevolution (Stanley & Miikkulainen, 2002a)
that allows us to do that.

First we need a method for performing individual comparisons, i.e. whether one strategy
is better than another. Because the board configurations can vary between games, champion
networks were compared on 144 different food configurations from each side of the board,
giving 288 total games for each comparison. The food configurations included the same
9 symmetrical food positions used during training, plus an additional 2 food items, which
were placed in one of 12 different positions on the east and west halves of the board. Some
starting food positions give an initial advantage to one robot or another, depending on how
close they are to the robots’ starting positions. Thus, the one who wins the majority of
the 288 total games has demonstrated its superiority in many different scenarios, including
those beginning with a disadvantage. We say that network a is superior to network b if a
wins more games than b out of the 288 total games.

78

Competitive Coevolution through Evolutionary Complexification

Given this definition of superiority, progress can be tracked. The obvious way to do it is
to compare each network to others throughout evolution, finding out whether later strategies
can beat more opponents than earlier strategies. For example, Floreano & Nolfi (1997) used
a measure called master tournament, in which the champion of each generation is compared
to all other generation champions. Unfortunately, such methods are impractical in a time-
intensive domain such as the robot duel competition. Moreover, the master tournament
only counts how many strategies can be defeated by each generation champion, without
identifying which ones. Thus, it can fail to detect cases where strategies that defeat fewer
previous champions are actually superior in a direct comparison. For example, if strategy A
defeats 499 out of 500 opponents, and B defeats 498, the master tournament will designate
A as superior to B even if B defeats A in a direct comparison. In order to decisively
track strategic innovation, we need to identify dominant strategies, i.e. those that defeat
all previous dominant strategies. This way, we can make sure that evolution proceeds
by developing a progression of strictly more powerful strategies, instead of e.g. switching
between alternative ones.

The dominance tournament method of tracking progress in competitive coevolution
meets this goal (Stanley & Miikkulainen, 2002a). Let a generation champion be the winner
of a 288 game comparison between the host and parasite champions of a single genera-
tion. Let dj be the jth dominant strategy to appear over evolution. Dominance is defined
recursively starting from the first generation and progressing to the last:

• The first dominant strategy d1 is the generation champion of the first generation;

• dominant strategy dj , where j > 1, is a generation champion such that for all i < j,
dj is superior to di (i.e. wins the 288 game comparison with it).

This strict definition of dominance prohibits circularities. For example, d4 must be su-
perior to strategies d1 through d3, d3 superior to both d1 and d2, and d2 superior to d1.
We call dn the nth dominant strategy of the run. If a network c exists that, for example,
defeats d4 but loses to d3, making the superiority circular, it would not satisfy the second
condition and would not be entered into the dominance hierarchy.

The entire process of deriving a dominance hierarchy from a population is a dominance
tournament, where competitors play all previous dominant strategies until they either lose
a 288 game comparison, or win every comparison to previous dominant strategies, thereby
becoming a new dominant strategy. Dominance tournament allows us to identify a sequence
of increasingly more sophisticated strategies. It also requires significantly fewer comparisons
than the master tournament (Stanley & Miikkulainen, 2002a).

Armed with the appropriate coevolution methodology and a measure of success, we
can now ask the question: Does the complexification result in more successful competitive
coevolution?

6. Results

Each of the 33 evolution runs took between 5 and 10 days on a 1GHz Pentium III processor,
depending on the progress of evolution and sizes of the networks involved. The NEAT
algorithm itself used less than 1% of this computation: Most of the time was spent in

79

Stanley & Miikkulainen

20

40

60

80

100

120

140

160

180

200

220

240

0 50 100 150 200 250 300 350 400 450 500

C
on

ne
ct

io
ns

Generation

Connections in Highest Dom.
Random Fitness Min. Connections
Random Fitness Max. Connections

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350 400 450 500

N
od

es

Generation

Nodes in Highest Dom.
Random Fitness Min. Nodes

Random Fitness Max. Nodes

Figure 7: Complexification of connections and nodes over generations. The hashed lines
depict the average number of connections and the average number of hidden nodes in the
highest dominant network in each generation. Averages are taken over 13 complexifying
runs. A hash mark appears every generation in which a new dominant strategy emerged
in at least one of the 13 runs. The graphs show that as dominance increases, so does
complexity. The differences between the average final and first dominant strategies are
statistically significant for both connections and nodes (p < 0.001). For comparison the
dashed lines depict the sizes of the average smallest and largest networks in the entire
population over five runs where the fitness is assigned randomly. These bounds show that
the increase in complexity is not inevitable; both very simple and very complex species
exist in the population throughout the run. When the dominant networks complexify,
they do so because it is beneficial.

evaluating networks in the robot duel task. Evolution of fully-connected topologies took
about 90% longer than structure-growing NEAT because larger networks take longer to
evaluate.

In order to analyze the results, we define complexity as the number of nodes and con-
nections in a network: The more nodes and connections there are in the network, the more
complex behavior it can potentially implement. The results were analyzed to answer three
questions: (1) As evolution progresses does it also continually complexify? (2) Does such
complexification lead to more sophisticated strategies? (3) Does complexification allow bet-
ter strategies to be discovered than does evolving fixed-topology networks? Each question
is answered in turn below.

6.1 Evolution of Complexity

NEAT was run thirteen times, each time from a different seed, to verify that the results
were consistent. The highest levels of dominance achieved were 17, 14, 17, 16, 16, 18, 19,
15, 17, 12, 12, 11, and 13, averaging at 15.15 (sd = 2.54).

At each generation where the dominance level increased in at least one of the thirteen
runs, we averaged the number of connections and number of nodes in the current dominant
strategy across all runs (Figure 7). Thus, the graphs represent a total of 197 dominance
transitions spread over 500 generations. The rise in complexity is dramatic, with the average
number of connections tripling and the average number of hidden nodes rising from 0 to

80

Competitive Coevolution through Evolutionary Complexification

almost six. In a smooth trend over the first 200 generations, the number of connections
in the dominant strategy grows by 50%. During this early period, dominance transitions
occur frequently (fewer prior strategies need to be beaten to achieve dominance). Over the
next 300 generations, dominance transitions become more sparse, although they continue
to occur.

Between the 200th and 500th generations a stepped pattern emerges: The complexity
first rises dramatically, then settles, then abruptly increases again (This pattern is even
more marked in individual complexifying runs; the averaging done in Figure 7 smooths
it out somewhat). The cause for this pattern is speciation. While one species is adding a
large amount of structure, other species are optimizing the weights of less complex networks.
Initially, added complexity leads to better performance, but subsequent optimization takes
longer in the new higher-dimensional space. Meanwhile, species with smaller topologies have
a chance to temporarily catch up through optimizing their weights. Ultimately, however,
more complex structures eventually win, since higher complexity is necessary for continued
innovation.

Thus, there are two underlying forces of progress: The building of new structures, and
the continual optimization of prior structures in the background. The product of these two
trends is a gradual stepped progression towards increasing complexity.

An important question is: Because NEAT searches by adding structure only, not by
removing it, does the complexity always increase whether it helps in finding good solutions
or not? To demonstrate that NEAT indeed prefers simple solutions and complexifies only
when it is useful, we ran five complexifying evolution runs with fitness assigned randomly
(i.e. the winner of each game was chosen at random). As expected, NEAT kept a wide
range of networks in its population, from very simple to highly complex (Figure 7). That is,
the dominant networks did not have to become more complex; they only did so because it
was beneficial. Not only is the minimum complexity in the random-fitness population much
lower than that of the dominant strategies, but the maximum complexity is significantly
greater. Thus, evolution complexifies sparingly, only when the complex species holds its
own in comparison with the simpler ones.

6.2 Sophistication through Complexification

To see how complexification contributes to evolution, let us observe how a sample dominant
strategy develops over time. While many complex networks evolved in the experiments,
we follow the species that produced the winning network d17 in the third run because its
progress is rather typical and easy to understand. Let us use Sk for the best network in
species S at generation k, and hl for the lth hidden node to arise from a structural mutation
over the course of evolution. We will track both strategic and structural innovations in order
to see how they correlate. Let us begin with S100 (Figure 8a), when S had a mature zero-
hidden-node strategy:

• S100’s main strategy was to follow the opponent, putting it in a position where it might
by chance collide with its opponent when its energy is up. However, S100 followed the
opponent even when the opponent had more energy, leaving S100 vulnerable to attack.
S100 did not clearly switch roles between foraging and chasing the enemy, causing it
to miss opportunities to gather food.

81

Stanley & Miikkulainen

Figure 8: Complexification of a Winning Species. The best networks in the same species are
depicted at landmark generations. Nodes are depicted as squares beside their node num-
bers, and line thickness represents the strength of connections. Over time, the networks
became more complex and gained skills. (a) The champion from generation 10 had no
hidden nodes. (b) The addition of h22 and its respective connections gave new abilities.
(c) The appearance of h172 refined existing behaviors.

• S200. During the next 100 generations, S evolved a resting strategy, which it used
when it had significantly lower energy than its opponent. In such a situation, the robot
stopped moving, while the other robot wasted energy running around. By the time
the opponent got close, its energy was often low enough to be attacked. The resting
strategy is an example of improvement that can take place without complexification:
It involved increasing the inhibition from the energy difference sensor, thereby slightly
modifying intensity of an existing behavior.

• In S267 (Figure 8b), a new hidden node, h22, appeared. This node arrived through
an interspecies mating, and had been optimized for several generations already. Node
h22 gave the robot the ability to change its behavior at once into an all-out attack.
Because of this new skill, S267 no longer needed to follow the enemy closely at all
times, allowing it to collect more food. By implementing this new strategy through a
new node, it was possible not to interfere with the already existing resting strategy, so
that S now switched roles between resting when at a disadvantage to attacking when
high on energy. Thus, the new structure resulted in strategic elaboration.

• In S315 (Figure 8c), another new hidden node, h172, split a link between an input sensor
and h22. Replacing a direct connection with a sigmoid function greatly improved S315’s
ability to attack at appropriate times, leading to very accurate role switching between
attacking and foraging. S315 would try to follow the opponent from afar focusing on
resting and foraging, and only zoom in for attack when victory was certain. This final
structural addition shows how new structure can improve the accuracy and timing of
existing behaviors.

The analysis above shows that in some cases, weight optimization alone can produce
improved strategies. However, when those strategies need to be extended, adding new

82

Competitive Coevolution through Evolutionary Complexification

Figure 9: Sophisticated Endgame. Robot S313 dashes for the last piece of food while S210

is still collecting the second-to-last piece. Although it appeared that S313 would lose
because S210 got the second-to-last piece, (gray arrow), it turns out that S210 ends with
a disadvantage. It has no chance to get to the last piece of food before S313, and S313

has been saving energy while S210 wasted energy traveling long distances. This way,
sophisticated strategies evolve through complexification, combining multiple objectives,
and utilizing weaknesses in the opponent’s strategy.

structure allows the new behaviors to coexist with old strategies. Also, in some cases
it is necessary to add complexity to make the timing or execution of the behavior more
accurate. These results show how complexification can be utilized to produce increasing
sophistication.

In order to illustrate the level of sophistication achieved in this process, we conclude
this section by describing the competition between two sophisticated strategies, S210 and
S313, from another run of evolution. At the beginning of the competition, S210 and S313

collected most of the available food until their energy levels were about equal. Two pieces
of food remained on the board in locations distant from both S210 and S313 (Figure 9).
Because of the danger of colliding with similar energy levels, the obvious strategy is to rush
for the last two pieces of food. In fact, S210 did exactly that, consuming the second-to-last
piece, and then heading towards the last one. In contrast, S313 forfeited the race for the
second-to-last piece, opting to sit still, even though its energy temporarily dropped below
S210’s. However, S313 was closer to the last piece and got there first. It received a boost
of energy while S210 wasted its energy running the long distance from the second-to-last
piece. Thus, S313’s strategy ensured that it had more energy when they finally met. Robot
S313’s behavior was surprisingly deceptive, showing that high strategic sophistication had
evolved. Similar waiting behavior was observed against several other opponents, and also
evolved in several other runs, suggesting that it was a robust result.

This analysis of individual evolved behaviors shows that complexification indeed elab-
orates on existing strategies, and allows highly sophisticated behaviors to develop that
balance multiple goals and utilize weaknesses in the opponent. The last question is whether
complexification indeed is necessary to achieve these behaviors.

83

Stanley & Miikkulainen

6.3 Complexification vs. Fixed-topology Evolution and Simplification

Complexifying coevolution was compared to two alternatives: standard coevolution in a
fixed search space, and to simplifying coevolution from a complex starting point. Note
that it is not possible to compare methods using the standard crossvalidation techniques
because no external performance measure exists in this domain. However, the evolved neural
networks can be compared directly by playing a duel. Thus, for example, a run of fixed-
topology coevolution can be compared to a run of complexifying coevolution by playing the
highest dominant strategy from the fixed-topology run against the entire dominance ranking
of the complexifying run. The highest level strategy in the ranking that the fixed-topology
strategy can defeat, normalized by the number of dominance levels, is a measure of its
quality against the complexifying coevolution. For example, if a strategy can defeat up to
and including the 13th dominant strategy out of 15, then its performance against that run
is 13

15 = 86.7%. By playing every fixed-topology champion, every simplifying coevolution
champion, and every complexifying coevolution champion against the dominance ranking
from every complexifying run and averaging, we can measure the relative performance of
each of these methods.

In this section, we will first establish the baseline performance by playing complexifying
coevolution runs against themselves and demonstrating that a comparison with dominance
levels is a meaningful measure of performance. We will then compare complexification with
fixed-topology coevolution of networks of different architectures, including fully-connected
small networks, fully-connected large networks, and networks with an optimal structure
as determined by complexifying coevolution. Third, we will compare the performance of
complexification with that of simplifying coevolution.

6.3.1 Complexifying Coevolution

The highest dominant strategy from each of the 13 complexifying runs played the entire
dominance ranking from every other run. Their average performance scores were 87.9%,
83.8%, 91.9%, 79.4%, 91.9%, 99.6%, 99.4%, 99.5%, 81.8%, 96.2%, 90.6%, 96.9%, and 89.3%,
with an overall average of 91.4% (sd=12.8%). Above all, this result shows that complexifying
runs produce consistently good strategies: On average, the highest dominant strategies
qualify for the top 10% of the other complexifying runs. The best runs were the sixth,
seventh, and eighth, which were able to defeat almost the entire dominance ranking of
every other run. The highest dominant network from the best run (99.6%) is shown in
Figure 10.

In order to understand what it means for a network to be one or more dominance levels
above another, Figure 11 shows how many more games the more dominant network can
be expected to win on average over all its 288-game comparisons than the less dominant
network. Even at the lowest difference (i.e. that of one dominance level), the more domi-
nant network can be expected to win about 50 more games on average, showing that each
difference in dominance level is important. The difference grows approximately linearly:
A network 5 dominance levels higher will win 100 more games, while a network 10 levels
higher will win 150 and 15 levels higher will win 200. These results suggest that dominance
level comparisons indeed constitute a meaningful way to measure relative performance.

84

Competitive Coevolution through Evolutionary Complexification

Figure 10: The Best Complexifying Network.

The highest dominant network from the sixth complexifying coevolution run was able to
beat 99.6% of the dominance hierarchy of the other 12 runs. The network has 11 hidden
units and 202 connections (plotted as in figure 8), making significant use of structure.
While it still contains the basic direct connections, the strategy they represent has been
elaborated by adding several new nodes and connections. For example, lateral and
recurrent connections allow taking past events into account, resulting in more refined
decisions. While such structures can be found reliably through complexification, it
turns out difficult to discover them directly in the high dimensional space through
fixed-topology evolution or through simplification.

6.3.2 Fixed-Topology Coevolution of Large Networks

In fixed-topology coevolution, the network architecture must be chosen by the experimenter.
One sensible approach is to approximate the complexity of the best complexifying network.
(Figure 10). This network included 11 hidden units and 202 connections, with both recur-
rent connections and direct connections from input to output. As an idealization of this
structure, we used 10-hidden-unit fully recurrent networks with direct connections from
inputs to outputs, with a total of 263 connections. A network of this type should be able to
approximate the functionality of the most effective complexifying strategy. Fixed-topology
coevolution runs exactly as complexifying coevolution in NEAT, except that no structural
mutations can occur. In particular, the population is still speciated based on weight differ-
ences (i.e. W from equation 1), using the usual speciation procedure.

Three runs of fixed-topology coevolution were performed with these networks, and their
highest dominant strategies were compared to the entire dominance ranking of every com-
plexifying run. Their average performances were 29.1%, 34.4%, and 57.8%, for an overall
average of 40.4%. Compared to the 91.4% performance of complexifying coevolution, it is

85

Stanley & Miikkulainen

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18

A
ve

ra
ge

 S
co

re

Dominance Level Difference

Average Score Difference (out of 288)
Standard Deviation

Figure 11: Interpreting Differences in Dominance Levels. The graph shows how many
games in a 288-game comparison a more dominant network can be expected to win,
averaged over all runs at all dominance levels of complexifying coevolution. For example,
a network one level higher wins 50 more games out of 288. A larger difference in
dominance levels translates to a larger difference in performance approximately linearly,
suggesting that dominance levels can be used as a measure of performance when an
absolute measure is not available.

clear that fixed-topology coevolution produced consistently inferior solutions. As a matter
of fact, no fixed-topology run could defeat any of the highest dominant strategies from the
13 complexifying coevolution runs.

This difference in performance can be illustrated by computing the average generation of
complexifying coevolution with the same performance as fixed-topology coevolution. This
generation turns out to be 24 (sd = 8.8). In other words, 500 generations of fixed-topology
coevolution reach on average the same level of dominance as only 24 generations of com-
plexifying coevolution! In effect, the progress of the entire fixed-topology coevolution run
is compressed into the first few generations of complexifying coevolution (Figure 12).

6.3.3 Fixed-Topology Coevolution of Small Networks

One of the arguments for using complexifying coevolution is that starting the search directly
in the space of the final solution may be intractable. This argument may explain why the
attempt to evolve fixed-topology solutions at a high level of complexity failed. Thus, in
the next experiment we aimed at reducing the search space by evolving fully-connected,
fully-recurrent networks with a small number of hidden nodes as well as direct connections
from inputs to outputs. After considerable experimentation, we found out that five hidden
nodes (144 connections) was appropriate, allowing fixed-topology evolution to find the best

86

Competitive Coevolution through Evolutionary Complexification

11 500
00

15
D

om
. L

ev
el

Complexifying
Coevolution

11 500
00

15

D
om

. L
ev

el

10− Hidden− Unit
Fixed− Topoloogy

Coevolution

Generations

Equivalent
Performance

Figure 12: Comparing Typical Runs of Complexifying Coevolution and Fixed-Topology
Coevolution with Ten Hidden Units. Dominance levels are charted on the y-axis
and generations on the x-axis. A line appears at every generation where a new dominant
strategy arose in each run. The height of the line represents the level of dominance. The
arrow shows that the highest dominant strategy found in 10-hidden-unit fixed-topology
evolution only performs as well as the 8th dominant strategy in the complexifying run,
which was found in the 19th generation. (Average = 24, sd = 8.8) In other words, only
a few generations of complexifying coevolution are as effective as several hundred of
fixed-topology evolution.

solutions it could. Five hidden nodes is also about the same number of hidden nodes as the
highest dominant strategies had on average in the complexifying runs.

A total of seven runs were performed with the 5-hidden-node networks, with average
performances of 70.7%, 85.5%, 66.1%, 87.3%, 80.8%, 88.8%, and 83.1%. The overall average
was 80.3% (sd=18.4%), which is better but still significantly below the 91.4% performance
of complexifying coevolution (p < 0.001).

In particular, the two most effective complexifying runs were still never defeated by any
of the fixed-topology runs. Also, because each dominance level is more difficult to achieve
than the last, on average the fixed-topology evolution only reached the performance of
the 159th complexifying generation (sd=72.0). Thus, even in the best case, fixed-topology

87

Stanley & Miikkulainen

11 500
00

15
D

om
. L

ev
el

Complexifying
Coevolution

11 500
00

15

D
om

. L
ev

el

5− Hidden− Unit
Fixed− Topoloogy

Coevolution

Generations

Equivalent
Performance

Figure 13: Comparing Typical Runs of Complexifying Coevolution and Fixed-Topology
Coevolution with Five Hidden Units. As in figure 12, dominance levels are
charted on the y-axis and generations on the x-axis, a line appears at every generation
where a new dominant strategy arose in each run, and the height of the line represents
the level of dominance. The arrow shows that the highest dominant strategy found in
the 5-hidden-unit fixed-topology evolution only performs as well as the 12th dominant
strategy in the complexifying run, which was found in the 140th generation (Average
159, sd = 72.0). Thus, even in the best configuration, fixed-topology evolution takes
about twice as long to achieve the same level of performance.

coevolution on average only finds the level of sophistication that complexifying coevolution
finds halfway through a run (Figure 13).

6.3.4 Fixed-Topology Coevolution of Best Complexifying Network

One problem with evolving fully-connected architectures is that they may not have an
appropriate topology for this domain. Of course, it is very difficult to guess an appropriate
topology a priori. However, it is still interesting to ask whether fixed-topology coevolution
could succeed in the task assuming that the right topology was known? To answer this
question, we evolved networks as in the other fixed-topology experiments, except this time
using the topology of the best complexifying network (Figure 10). This topology may

88

Competitive Coevolution through Evolutionary Complexification

constrain the search space in such a way that finding a sophisticated solution is more likely
than with a fully-connected architecture. If so, it is possible that seeding the population
with a successful topology gives it an advantage even over complexifying coevolution, which
must build the topology from a minimal starting point.

Five runs were performed, obtaining average performance score 86.2%, 83.3%, 88.1%,
74.2%, and 80.3%, and an overall average of 82.4% (sd=15.1%). The 91.4% performance
of complexifying coevolution is significantly better than even this version of fixed-topology
coevolution (p < 0.001). However, interestingly, the 40.4% average performance of 10-
hidden-unit fixed topology coevolution is significantly below best-topology evolution, even
though both methods search in spaces of similar sizes. In fact, best-topology evolution
performs at about the same level as 5-hidden-unit fixed-topology evolution (80.3%), even
though 5-hidden-unit evolution optimizes half the number of hidden nodes. Thus, the results
confirm the hypothesis that using a successful evolved topology does help constrain the
search. However, in comparison to complexifying coevolution, the advantage gained from
starting this way is still not enough to make up for the penalty of starting search directly in
a high-dimensional space. As Figure 14 shows, best-topology evolution on average only finds
a strategy that performs as well as those found by the 193rd generation of complexifying
coevolution.

The results of the fixed-topology coevolution experiments can be summarized as follows:
If this method is used to search directly in the high-dimensional space of the most effective
solutions, it reaches only 40% of the performance of complexifying coevolution. It does
better if it is allowed to optimize less complex networks; however, the most sophisticated
solutions may not exist in that space. Even given a topology appropriate for the task, it
does not reach the same level as complexifying coevolution. Thus, fixed-topology coevolu-
tion does not appear to be competitive with complexifying coevolution with any choice of
topology.

The conclusion is that complexification is superior not only because it allows discovering
the appropriate high-dimensional topology automatically, but also because it makes the
optimization of that topology more efficient. This point will be discussed further in Section
7.

6.3.5 Simplifying Coevolution

A possible remedy to having to search in high-dimensional spaces is to allow evolution to
search for smaller structures by removing structure incrementally. This simplifying coevo-
lution is the opposite of complexifying coevolution. The idea is that a mediocre complex
solution can be refined by removing unnecessary dimensions from the search space, thereby
accelerating the search.

Although simplifying coevolution is an alternative method to complexifying coevolution
for finding topologies, it still requires a complex starting topology to be specified. This
topology was chosen with two goals in mind: (1) Simplifying coevolution should start
with sufficient complexity to at least potentially find solutions of equal or more complexity
than the best solutions from complexifying coevolution, and (2) with a rate of structural
removal equivalent to the rate of structural addition in complexifying NEAT, it should be
possible to discover solutions significantly simpler than the best complexifying solutions.

89

Stanley & Miikkulainen

11 500
00

15
D

om
. L

ev
el

Complexifying
Coevolution

11 500
00

15

D
om

. L
ev

el

Best Solution
Fixed− Topology

Coevolution

Generations

Equivalent
Performance

Figure 14: Comparing Typical Runs of Complexifying Coevolution and Fixed-Topology
Coevolution of the Best Complexifying Network. Dominance levels are charted
as in figure 12. The arrow shows that the highest dominant strategy found by evolving
the fixed topology of the best complexifying network only performs as well as the domi-
nant strategy that would be found in the 193rd generation of complexifying coevolution
(Average 193, sd = 85). Thus, even with an appropriate topology given, fixed-topology
evolution takes almost twice as long to achieve the same level of performance.

Thus, we chose to start search with a 12-hidden-unit, 339 connection fully-connected fully-
recurrent network. Since 162 connections were added to the best complexifying network
during evolution, a corresponding simplifying coevolution could discover solutions with 177
connections, or 25 less than the best complexifying network.

Thus, simplify coevolution was run just as complexifying coevolution, except that the
initial topology contained 339 connections instead of 39, and structural mutations removed
connections instead of adding nodes and connections. If all connections of a node were
removed, the node itself was removed. Historical markings and speciation worked as in
complexifying NEAT, except that all markings were assigned in the beginning of evolution.
(because structure was only removed and never added). A diversity of species of varying
complexity developed as before.

90

Competitive Coevolution through Evolutionary Complexification

11 500
00

15
D

om
. L

ev
el

Complexifying
Coevolution

11 500
00

15

D
om

. L
ev

el

Simplifying
Coevolution

Equivalent
Performance

Generations
227

339

C
on

ne
ct

io
ns

 in
 D

om
.

39

149

C
on

ne
ct

io
ns

 in
 D

om
.

Figure 15: Comparing Typical Runs of Complexifying Coevolution and Simplifying Co-
evolution. Dominance levels are charted as in figure 12. In addition, the line plot
shows the complexity of each dominance level in terms of number of connections in the
networks with scale indicated in the y-axis at right. In this typical simplifying run, the
number of connections reduced from 339 to 227 connections. The arrow shows that the
highest dominant strategy found in simplifying coevolution only performs as well as the
9th or 10th dominant strategy of complexifying coevolution, which is normally found
after 56 generations (sd = 31). In other words, even though simplifying coevolution
finds more dominance levels, the search for appropriate structure is less effective than
that of complexifying coevolution.

The five runs of simplifying coevolution performed at 64.8%, 60.9%, 56.6%, 36.4%, and
67.9%, with an overall average of 57.3% (sd=19.8%). Again, such performance is signifi-
cantly below the 91.4% performance of complexifying coevolution (p < 0.001). Interestingly,
even though it started with 76 more connections than fixed-topology coevolution with ten
hidden units, simplifying coevolution still performed significantly better (p < 0.001), sug-
gesting that evolving structure through reducing complexity is better than evolving large
fixed structures.

Like Figures 12–14, Figure 15 compares typical runs of complexifying and simplifying
coevolution. On average, 500 generations of simplification finds solutions equivalent to 56
generations of complexification. Simplifying coevolution also tends to find more dominance
levels than any other method tested. It generated an average of 23.2 dominance levels per
run, once even finding 30 in one run, whereas e.g. complexifying coevolution on average
finds 15.2 levels. In other words, the difference between dominance levels is much smaller in

91

Stanley & Miikkulainen

Coevolution Type Ave. Highest Ave. Highest Average Equivalent
Dom. Level Generation Performance Generation

(out of 500)
Complexifying 15.2 353.6 91.4% 343
Fixed-Topology 12.0 172 40.4% 24
10 Hidden Node
Fixed-Topology 13.0 291.4 80.3% 159
5 Hidden Node
Fixed-Topology 14.0 301.8 82.4% 193
Best Network
Simplifying 23.2 444.2 57.3% 56

Table 1: Summary of the performance comparison. The second column shows how
many levels of dominance were achieved in each type of coevolution on average. The third
specifies the average generation of the highest dominant strategy, indicating how long inno-
vation generally continues. The fourth column gives the average level in the complexifying
coevolution dominance hierarchy that the champion could defeat, and the fifth column shows
its average generation. The differences in performance (p < 0.001) and equivalent genera-
tion (p < 0.001) between complexifying coevolution and every other method are significant.
The main result is that the level of sophistication reached by complexifying coevolution is
significantly higher than that reached by fixed-topology or simplifying coevolution.

simplifying coevolution than complexifying coevolution. Unlike in other methods, dominant
strategies tend to appear in spurts of a few at a time, and usually after complexity has
been decreasing for several generations, as also shown in Figure 15. Over a number of
generations, evolution removes several connections until a smaller, more easily optimized
space is discovered. Then, a quick succession of minute improvements creates several new
levels of dominance, after which the space is further refined, and so on. While such a process
makes sense, the inferior results of simplifying coevolution suggest that simplifying search
is an ineffective way of discovering useful structures compared to complexification.

6.3.6 Comparison Summary

Table 1 shows how the coevolution methods differ on number of dominance levels, gener-
ation of the highest dominance level, overall performance, and equivalent generation. The
conclusion is that complexifying coevolution innovates longer and finds a higher level of
sophistication than the other methods.

7. Discussion and Future Work

What makes complexification such a powerful search method? Whereas in fixed-topology
coevolution, as well as in simplifying coevolution, the good structures must be optimized
in the high-dimensional space of the solutions themselves, complexifying coevolution only
searches high-dimensional structures that are elaborations of known good lower-dimensional
structures. Before adding a new dimension, the values of the existing genes have already
been optimized over preceding generations. Thus, after a new gene is added, the genome is

92

Competitive Coevolution through Evolutionary Complexification

already in a promising part of the new, higher-dimensional space. Thus, the search in the
higher-dimensional space is not starting blindly as it would if evolution began searching in
that space. It is for this reason that complexification can find high-dimensional solutions
that fixed-topology coevolution and simplifying coevolution cannot.

Complexification is particularly well suited for coevolution problems. When a fixed
genome is used to represent a strategy, that strategy can be optimized, but it is not possible
to add functionality without sacrificing some of the knowledge that is already present. In
contrast, if new genetic material can be added, sophisticated elaborations can be layered
above existing structure, establishing an evolutionary arms race. This process was evident
in the robot duel domain, where successive dominant strategies often built new functionality
on top of existing behavior by adding new nodes and connections.

The advantages of complexification do not imply that fixed-sized genomes cannot some-
times evolve increasingly complex phenotypic behavior. Depending on the mapping between
the genotype and the phenotype, it may be possible for a fixed, finite set of genes to represent
solutions (phenotypes) with varying behavioral complexity. For example, such behaviors
have been observed in Cellular Automata (CA), a computational structure consisting of a
lattice of cells that change their state as a function of their own current state and the state
of other cells in their neighborhood. This neighborhood function can be represented in a
genome of size 2n+1 (assuming n neighboring cells with binary state) and evolved to obtain
desired target behavior. For example, Mitchell et al. (1996) were able to evolve neighbor-
hood functions to determine whether black or white cells were in the majority in the CA
lattice. The evolved CAs displayed complex global behavior patterns that converged on a
single classification, depending on which cell type was in the majority. Over the course of
evolution, the behavioral complexity of the CA rose even as the genome remained the same
size.

In the CA example, the correct neighborhood size was chosen a priori. This choice is
difficult to make, and crucial for success. If the desired behavior had not existed within the
chosen size, even if the behavior would become gradually more complex, the system would
never solve the task. Interestingly, such a dead-end could be avoided if the neighborhood
(i.e. the genome) could be expanded during evolution. It is possible that CAs could be
more effectively evolved by complexifying (i.e. expanding) the genomes, and speciating to
protect innovation, as in NEAT.

Moreover, not only can the chosen neighborhood be too small to represent the solution,
but it can also be unnecessarily large. Searching in a space of more dimensions than
necessary can impede progress, as discussed above. If the desired function existed in a
smaller neighborhood it could have been found with significantly fewer evaluations. Indeed,
it is even possible that the most efficient neighborhood is not symmetric, or contains cells
that are not directly adjacent to the cell being processed. Moreover, even the most efficient
neighborhood may be too large a space in which to begin searching. Starting search in a
small space and incrementing into a promising part of higher-dimensional space is more
likely to find a solution. For these reasons, complexification can be an advantage, even if
behavioral complexity can increase to some extent within a fixed space.

The CA example raises the intriguing possibility that any structured phenotype can
be evolved through complexification from a minimal starting point, historical markings,
and the protection of innovation through speciation. In addition to neural networks and

93

Stanley & Miikkulainen

CA, electrical circuits (Miller et al., 2000a; Miller, Job, & Vassilev, 2000b), genetic pro-
grams (Koza, 1992), robot body morphologies (Lipson & Pollack, 2000), Bayesian networks
(Mengshoel, 1999), finite automata (Brave, 1996), and building and vehicle architectures
(O’Reilly, 2000) are all structures of varying complexity that can benefit from complexifi-
cation. By starting search in a minimal space and adding new dimensions incrementally,
highly complex phenotypes can be discovered that would be difficult to find if search began
in the intractable space of the final solution, or if it was prematurely restricted to too small
a space.

The search for optimal structures is a common problem in Artificial Intelligence (AI).
For example, Bayesian methods have been applied to learning model structure (Attias, 2000;
Ueda & Ghahramani, 2002). In these approaches, the posterior probabilities of different
structures are computed, allowing overly complex or simplistic models to be eliminated.
Note that these approaches are not aimed at generating increasingly complex functional
structures, but rather at providing a model that explains existing data. In other cases,
solutions involve growing gradually larger structures, but the goal of the growth is to form
gradually better approximations. For example, methods like Incremental Grid Growing
(Blackmore & Miikkulainen, 1995), and Growing Neural Gas (Fritzke, 1995) add neurons
to a network until it approximates the topology of the input space reasonably well. On the
other hand, complexifying systems do not have to be non-deterministic (like NEAT), nor do
they need to be based on evolutionary algorithms. For example, Harvey (1993) introduced a
deterministic algorithm where the chromosome lengths of the entire population increase all
at the same time in order to expand the search space; Fahlman & Lebiere (1990) developed
a supervised (non-evolutionary) neural network training method called cascade correlation,
where new hidden neurons are added to the network in a predetermined manner in order to
complexify the function it computes. The conclusion is that complexification is an important
general principle in AI.

In the future, complexification may help with the general problem of finding the ap-
propriate level of abstraction for difficult problems. Complexification can start out with
a simple, high-level description of the solution, composed of general-purpose elements. If
such an abstraction is insufficient, it can be elaborated by breaking down each high-level
element into lower level and more specific components. Such a process can continue indef-
initely, leading to increasingly complex substructures, and increasingly low-level solutions
to subproblems. Although in NEAT the solutions are composed of only connections and
nodes, it does provide an early example of how such a process could be implemented.

One of the primary and most elusive goals of AI is to create systems that scale up. In
a sense, complexification is the process of scaling up. It is the general principle of taking a
simple idea and elaborating it for broader application. Much of AI is concerned with search,
whether over complex multi-dimensional landscapes, or through highly-branching trees of
possibilities. However, intelligence is as much about deciding what space to search as it is
about searching once the proper space has already been identified. Currently, only humans
are able to decide the proper level of abstraction for solving many problems, whether it be a
simple high-level combination of general-purpose parts, or an extremely complex assembly
of low-level components. A program that can decide what level of abstraction is most
appropriate for a given domain would be a highly compelling demonstration of Artificial

94

Competitive Coevolution through Evolutionary Complexification

Intelligence. This is, we believe, where complexification methods can have their largest
impact in the future.

8. Conclusion

The experiments presented in this paper show that complexification of genomes leads to
continual coevolution of increasingly sophisticated strategies. Three trends were found in
the experiments: (1) As evolution progresses, complexity of solutions increases, (2) evo-
lution uses complexification to elaborate on existing strategies, and (3) complexifying co-
evolution is significantly more successful in finding highly sophisticated strategies than
non-complexifying coevolution. These results suggest that complexification is a crucial
component of a successful search for complex solutions.

Acknowledgments

This research was supported in part by the National Science Foundation under grant IIS-
0083776 and by the Texas Higher Education Coordinating Board under grant ARP-003658-
476-2001. Special thanks to an anonymous reviewer for constructive suggestions for non-
complexifying comparisons.

Appendix A. NEAT System Parameters

Each population had 256 NEAT networks, for a total of 512. The coefficients for measuring
compatibility were c1 = 1.0, c2 = 1.0, and c3 = 2.0. The initial compatibility distance was
δt = 3.0. However, because population dynamics can be unpredictable over hundreds of
generations, we assigned a target of 10 species. If the number of species grew above 10, δt

was increased by 0.3 to reduce the number of species. Conversely, if the number of species
fell below 10, δt was decreased by 0.3 to increase the number of species. The normalization
factor N used to compute compatibility was fixed at one. In order to prevent stagnation,
the lowest performing species over 30 generations old was not allowed to reproduce. The
champion of each species with more than five networks was copied into the next generation
unchanged. There was an 80% chance of a genome having its connection weights mutated, in
which case each weight had a 90% chance of being uniformly perturbed and a 10% chance of
being assigned a new random value. (The system is tolerant to frequent mutations because
of the protection speciation provides.) There was a 75% chance that an inherited gene was
disabled if it was disabled in either parent. In 40% of crossovers, the offspring inherited
the average of the connection weights of matching genes from both parents, instead of
the connection weight of only one parent randomly. In each generation, 25% of offspring
resulted from mutation without crossover. The interspecies mating rate was 0.05. The
probability of adding a new node was 0.01 and the probability of a new link mutation
was 0.1. We used a modified sigmoidal transfer function, ϕ(x) = 1

1+e−4.9x , at all nodes.
These parameter values were found experimentally, and they follow a logical pattern: Links
need to be added significantly more often than nodes, and an average weight difference
of 0.5 is about as significant as one disjoint or excess gene. Performance is robust to

95

Stanley & Miikkulainen

moderate variations in these values. NEAT software is available in the software section at
http://nn.cs.utexas.edu.

Appendix B. Robot Duel Domain Coefficients of Motion

The turn angle θ is determined as θ = 0.24|l−r|, where l is the output of the left turn neuron,
and r is the output of the right turn neuron. The robot moves forward a distance of 1.33f
on the 600 by 600 board, where f is the forward motion output. These coefficients were
calibrated through experimentation to achieve accurate and smooth motion with neural
outputs between zero and one.

References

Amores, A., Force, A., Yan, Y.-L., Joly, L., Amemiya, C., Fritz, A., Ho, R. K., Langeland,
J., Prince, V., Wang, Y.-L., Westerfield, M., Ekker, M., & Postlethwait, J. H. (1998).
Zebrafish HOX clusters and vertebrate genome evolution. Science, 282, 1711–1784.

Angeline, P. J., & Pollack, J. B. (1993). Competitive environments evolve better solutions for
complex tasks. In Forrest, S. (Ed.), Proceedings of the Fifth International Conference
on Genetic Algorithms (pp. 264–270). San Francisco, CA: Morgan Kaufmann.

Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1993). An evolutionary algorithm
that constructs recurrent neural networks. IEEE Transactions on Neural Networks, 5,
54–65.

Attias, H. (2000). A variational bayesian framework for graphical models. In Advances
in Neural Information Processing Systems, 12 (pp. 209–215). Cambridge, MA: MIT
Press.

Blackmore, J., & Miikkulainen, R. (1995). Visualizing high-dimensional structure with the
incremental grid growing neural network. In Prieditis, A., & Russell, S. (Eds.), Machine
Learning: Proceedings of the 12th Annual Conference (pp. 55–63). San Francisco, CA:
Morgan Kaufmann.

Brave, S. (1996). Evolving deterministic finite automata using cellular encoding. In Koza,
J. R., Goldberg, D. E., Fogel, D. B., & Riolo, R. L. (Eds.), Genetic Programming
1996: Proceedings of the First Annual Conference (pp. 39–44). Stanford University,
CA, USA: MIT Press.

Carroll, S. B. (1995). Homeotic genes and the evolution of arthropods and chordates.
Nature, 376, 479–485.

Cliff, D., Harvey, I., & Husbands, P. (1993). Explorations in evolutionary robotics. Adaptive
Behavior, 2, 73–110.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals, and Systems, 2 (4), 303–314.

96

Competitive Coevolution through Evolutionary Complexification

Darwen, P. J. (1996). Co-Evolutionary Learning by Automatic Modularisation with Specia-
tion. Doctoral Dissertation, School of Computer Science, University College, University
of New South Wales.

Dawkins, R., & Krebs, J. R. (1979). Arms races between and within species. Proceedings
of the Royal Society of London Series B, 205, 489–511.

Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. In
Touretzky, D. S. (Ed.), Advances in Neural Information Processing Systems 2 (pp.
524–532). San Francisco, CA: Morgan Kaufmann.

Ficici, S. G., & Pollack, J. B. (2001). Pareto optimality in coevolutionary learning. In
Kelemen, J. (Ed.), Sixth European Conference on Artificial Life. Berlin; New York:
Springer-Verlag.

Floreano, D., & Nolfi, S. (1997). God save the red queen! Competition in co-evolutionary
robotics. Evolutionary Computation, 5.

Force, A., Lynch, M., Pickett, F. B., Amores, A., lin Yan, Y., & Postlethwait, J. (1999).
Preservation of duplicate genes by complementary, degenerative mutations. Genetics,
151, 1531–1545.

Fritzke, B. (1995). A growing neural gas network learns topologies. In G.Tesauro,
D.S.Touretzky, & T.K.Leen (Eds.), Advances in Neural Information Processing Sys-
tems 7 (pp. 625–632). Cambridge, MA: MIT Press.

Goldberg, D. E., & Richardson, J. (1987). Genetic algorithms with sharing for multimodal
function optimization. In Grefenstette, J. J. (Ed.), Proceedings of the Second Interna-
tional Conference on Genetic Algorithms (pp. 148–154). San Francisco, CA: Morgan
Kaufmann.

Gomez, F., & Miikkulainen, R. (1997). Incremental evolution of complex general behavior.
Adaptive Behavior, 5, 317–342.

Gruau, F., Whitley, D., & Pyeatt, L. (1996). A comparison between cellular encoding and
direct encoding for genetic neural networks. In Koza, J. R., Goldberg, D. E., Fogel,
D. B., & Riolo, R. L. (Eds.), Genetic Programming 1996: Proceedings of the First
Annual Conference (pp. 81–89). Cambridge, MA: MIT Press.

Harvey, I. (1993). The Artificial Evolution of Adaptive Behavior . Doctoral Dissertation,
School of Cognitive and Computing Sciences, University of Sussex, Sussex.

Holland, P. W., Garcia-Fernandez, J., Williams, N. A., & Sidow, A. (1994). Gene duplica-
tions and the origin of vertebrate development. Development Supplement, pp. 125–133.

Jim, K.-C., & Giles, C. L. (2000). Talking helps: Evolving communicating agents for the
predator-prey pursuit problem. Artificial Life, 6 (3), 237–254.

97

Stanley & Miikkulainen

Koza, J. (1995). Gene duplication to enable genetic programming to concurrently evolve
both the architecture and work-performing steps of a computer program. In Pro-
ceedings of the 14th International Joint Conference on Artificial Intelligence. Morgan
Kaufmann.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means
of Natural Selection. Cambridge, MA: MIT Press.

Lindgren, K., & Johansson, J. (2001). Coevolution of strategies in n-person prisoner’s
dilemma. In Crutchfield, J., & Schuster, P. (Eds.), Evolutionary Dynamics - Exploring
the Interplay of Selection, Neutrality, Accident, and Function. Reading, MA: Addison-
Wesley.

Lipson, H., & Pollack, J. B. (2000). Automatic design and manufacture of robotic lifeforms.
Nature, 406, 974–978.

Mahfoud, S. W. (1995). Niching Methods for Genetic Algorithms. Doctoral Dissertation,
University of Illinois at Urbana-Champaign, Urbana, IL.

Maley, C. C. (1999). Four steps toward open-ended evolution. In Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO-1999) (pp. 1336–1343). San
Francisco, CA: Morgan Kaufmann.

Martin, A. P. (1999). Increasing genomic complexity by gene duplication and the origin of
vertebrates. The American Naturalist, 154 (2), 111–128.

Mengshoel, O. J. (1999). Efficient Bayesian Network Inference: Genetic Algorithms,
Stochastic Local Search, and Abstraction. Doctoral Dissertation, University of Illinois
at Urbana-Champaign Computer Science Department, Urbana-Champaign, IL.

Miller, G., & Cliff, D. (1994). Co-evolution of pursuit and evasion i: Biological and game-
theoretic foundations. Tech. Rep. CSRP311, School of Cognitive and Computing Sci-
ences, University of Sussex, Brighton, UK.

Miller, J. F., Job, D., & Vassilev, V. K. (2000a). Principles in the evolutionary design of
digital circuits – Part I. Journal of Genetic Programming and Evolvable Machines,
1 (1), 8–35.

Miller, J. F., Job, D., & Vassilev, V. K. (2000b). Principles in the evolutionary design of
digital circuits – Part II. Journal of Genetic Programming and Evolvable Machines,
3 (2), 259–288.

Mitchell, M., Crutchfield, J. P., & Das, R. (1996). Evolving cellular automata with genetic
algorithms: A review of recent work. In Proceedings of the First International Confer-
ence on Evolutionary Computation and Its Applications (EvCA’96). Russian Academy
of Sciences.

Mondada, F., Franzi, E., & Ienne, P. (1993). Mobile robot miniaturization: A tool for in-
vestigation in control algorithms. In Proceedings of the Third International Symposium
on Experimental Robotics (pp. 501–513).

98

Competitive Coevolution through Evolutionary Complexification

Nadeau, J. H., & Sankoff, D. (1997). Comparable rates of gene loss and functional divergence
after genome duplications early in vertebrate evolution. Genetics, 147, 1259–1266.

Noble, J., & Watson, R. A. (2001). Pareto coevolution: Using performance against coe-
volved opponents in a game as dimensions for parerto selection. In et al, L. S. (Ed.),
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001).
San Francisco, CA: Morgan Kaufmann.

O’Reilly, U.-M. (2000). Emergent design: Artificial life for architecture design. In 7th
International Conference on Artificial Life (ALIFE-00). Cambridge, MA: MIT Press.

Postlethwait, H. H., Yan, Y. L., Gates, M. A., Horne, S., Amores, A., Brownlie, A., &
Donovan, A. (1998). Vertebrate genome evolution and the zebrafish gene map. Nature
Genetics, 18, 345–349.

Radcliffe, N. J. (1993). Genetic set recombination and its application to neural network
topology optimization. Neural computing and applications, 1 (1), 67–90.

Radding, C. M. (1982). Homologous pairing and strand exchange in genetic recombination.
Annual Review of Genetics, 16, 405–437.

Reggia, J. A., Schulz, R., Wilkinson, G. S., & Uriagereka, J. (2001). Conditions enabling
the evolution of inter-agent signaling in an artificial world. Artificial Life, 7, 3–32.

Rosin, C. D. (1997). Coevolutionary Search Among Adversaries. Doctoral Dissertation,
University of California, San Diego, San Diego, CA.

Rosin, C. D., & Belew, R. K. (1997). New methods for competitive evolution. Evolutionary
Computation, 5.

Ryan, C. (1994). Pygmies and civil servants. In Kinnear, Jr., K. E. (Ed.), Advances in
Genetic Programming (Chap. 11, pp. 243–263). MIT Press.

Sidow, A. (1996). Gen(om)e duplications in the evolution of early vertebrates. Current
Opinion in Genetics and Development, 6, 715–722.

Sigal, N., & Alberts, B. (1972). Genetic recombination: The nature of a crossed strand-
exchange between two homologous DNA molecules. Journal of Molecular Biology,
71 (3), 789–793.

Sims, K. (1994). Evolving 3D morphology and behavior by competition. In Brooks, R. A.,
& Maes, P. (Eds.), Proceedings of the Fourth International Workshop on the Synthesis
and Simulation of Living Systems (Artificial Life IV) (pp. 28–39). Cambridge, MA:
MIT Press.

Spears, W. (1995). Speciation using tag bits. In Handbook of Evolutionary Computation.
IOP Publishing Ltd. and Oxford University Press.

99

Stanley & Miikkulainen

Stanley, K. O., & Miikkulainen, R. (2002a). The dominance tournament method of moni-
toring progress in coevolution. In Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO-2002) Workshop Program. San Francisco, CA: Morgan
Kaufmann.

Stanley, K. O., & Miikkulainen, R. (2002b). Efficient evolution of neural network topologies.
In Proceedings of the 2002 Congress on Evolutionary Computation (CEC’02). IEEE.

Stanley, K. O., & Miikkulainen, R. (2002c). Efficient reinforcement learning through evolv-
ing neural network topologies. In Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO-2002). San Francisco, CA: Morgan Kaufmann.

Stanley, K. O., & Miikkulainen, R. (2002d). Evolving neural networks through augmenting
topologies. Evolutionary Computation, 10 (2), 99–127.

Ueda, N., & Ghahramani, Z. (2002). Bayesian model search for mixture models based on
optimizing variational bounds. Neural Networks, 15, 1223–1241.

Van Valin, L. (1973). A new evolutionary law. Evolution Theory, 1, 1–30.

Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87 (9), 1423–
1447.

Zhang, B.-T., & Muhlenbein, H. (1993). Evolving optimal neural networks using genetic
algorithms with Occam’s razor. Complex Systems, 7, 199–220.

100

