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Abstract—This paper describes a developmental framework
for action-driven perception in anthropomorphic robots. The
key idea of the framework is that action generation develops
the agent’s perception of its own body and actions. Action-
driven development is critical for identifying changing body
parts and understanding the effects of actions in unknown or
non-stationary environments. We embedded minimal knowledge
into the robot’s cognitive system in the form of motor synergies
and actions to allow motor exploration. The robot voluntarily
generates actions and develops the ability to perceive its own
body and the effect that it generates on the environment. The
robot, moreover, can compose this kind of learned primitives
to perform complex actions and characterize them in terms of
their sensory effects. After learning, the robot can recognize
manipulative human behaviors with cross-modal anticipation
for recovery of unavailable sensory modality, and reproduce
the recognized actions afterwards. We evaluated the proposed
framework in experiments with a real robot. In the experiments,
we achieved autonomous body identification, learning of fixation,
reaching and grasping actions, and developmental recognition of
human actions as well as their reproduction.

Index Terms—Self Perception, Action Perception, Manipula-
tion, Action Learning, Mirror Neuron, Imitation.

I. INTRODUCTION

HOW can a robot identify the self and understand actions?

Monkeys are able to recognize their own bodies even

when they are experimentally modified or extended [1][2], and

moreover, they understand actions so as to mirror them in

observation and execution [3][4][5]. These kinds of cognitive

functions may have the potential to break the limits of hand-

coded machine intelligence.

The goal of this work is to create a cognitive ability

which actively develops perception of the self and actions in

non-stationary environments. Our claim for current cognitive

systems is that robot actions are developed with perceptual

information, but their perception is not adapted as the result

of the explored action. In short, action-driven development of

perceptual ability is missing in robot learning in non-stationary

environments. Therefore, self-body perception in robots is not

yet reconfigurable and the perception of actions demonstrated

by robots and humans is not treated in the same way at a

perceptual level.

In this work, we introduce a method of primate-like devel-

opmental perception for manipulation tasks. A robot develops
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(a) object manipulation

(b) action observation (c) action execution

Fig. 1. (a) A robot and a person interacting with objects. (b) The robot
observes an experimenter’s grasping action. (c) The robot then reproduces the
recognized action.

its ability to perceive by defining its own body with self-

generated actions (motor exploration). The robot then learns

primitive actions on fixation, reaching and grasping. Finally,

the robot develops action perception based on observation of

the results of self-generated actions. After learning, the robot

can recognize human actions and also reproduce them.

Figure 1(a) shows a typical scene in which a robot and a

person are interacting with objects. Questions here are how

the robot can distinguish its own hand from others and how

the objects are affected by actions. Neither the robot nor

the person can conclude in advance whether the balls are

manipulable (the balls may be fake pictures or stuck to the

table). In our framework, the robot moves its hand and defines

the object as its own hand if the visual movement of the

object is correlated with its own motor sensing. The robot

then demonstrates manipulative actions and characterizes the

actions based on their effects on the objects. Effect-based

action perception allows common identification of actions

demonstrated by different agents (see Fig.1(b),(c)) in different

body contexts (when the robot/human is using the hand or a

tool).

This paper is organized as follows: Section II reviews the

development of perception in biological and robotic systems.
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(a) tool use (b) visual guidance

Fig. 2. Body perception in monkeys. (a) Visual receptive field of the bimodal
neurons (left: before tool use, right: after tool use). The monkey perceives
a tool as an extended body part [1]. (b) Video-guided manipulation. After
training, the monkey recognizes the hands projected on the monitor as its
own hands [2] (the figures were reproduced from [6] under permission).

Section III introduces a principle of body definition. Sec-

tion IV describes a learning method of primitive actions. Sec-

tion V describes the developmental perception of manipulative

behaviors with humans. Section VI gives a comparison of the

proposed method with other robotic and biological systems.

Section VII concludes the proposed work and outlines some

future tasks.

II. DEVELOPMENT OF PERCEPTION

In this section, we review the development of perception

in biological systems and propose a corresponding framework

for a robotic perception system. The detailed comparison of

the proposed framework to other related robotic systems is

presented later in Section VI.

A. Biological systems

Body image is fundamental for manipulation and it is

extremely adaptive in animals. Iriki et al. found visuo-

somatosensory neurons (bimodal neurons) in monkey intra-

parietal cortex that incorporated a tool into a mental image

of the hand [1]. The neurons respond to stimuli in the visual

receptive field (reachable area) and the tactile receptive area

(the surface of the hand or the shoulder). After tool use, the

visual receptive field of these neurons is extended to include

the tool (see Fig. 2(a)). In [2], the authors trained a monkey

to recognize the image of the hand in a video monitor and

demonstrated that the visual receptive field of these bimodal

neurons was projected onto the video screen (see Fig. 2(b)).

The experimental results suggested that the coincidence of

movements between the real hand and the video-image of

the hand led the monkey to use the video image for guiding

hand movements. In summary, both experiments suggest that

the monkey’s body perception is developed through motor

learning and then adapted for situations in operation.

Kaneko et al. investigated the perception of self-agency in

chimpanzees [7]. They reported that chimpanzees are able to

make a distinction between the self and others in external

events that they are monitoring. This shows evidence of the

ability in chimpanzees to perceive self-agency based on self-

generated actions and their effects.

Rizzolatti et al. found visuomotor neurons (mirror neurons)

in the premotor cortex of monkeys, which were activated when

Fig. 3. Grasping mirror neurons in the premotor cortex of a monkey [3] [4].
The neurons were activated when the monkey observed a grasping action
(left) and also when the monkey executed the grasping action (right) (the
illustration was reproduced from [4] under permission).

the monkeys performed a certain action and they also observed

a similar action demonstrated by human experimenters [3] [4].

In the experiments, mirror neurons responded to the action

of grasping, holding, placing, manipulating and two hand

interaction. The activation of grasping mirror neurons is shown

in Fig.3. As illustrated in the figure, the same set of neurons is

activated during both observation (left) and execution (right)

of the grasping action.

Interestingly, activation of the mirror neurons is selective

for the type of actions, but the neurons are not responsive

to mimicry actions without a target object. For example,

Fogassi et al. found that the neurons in the Inferior Parietal

Lobule (IPL) showed different activation for a specific act

(e.g. grasping) when observed as part of different actions (e.g.

eating, placing). The authors suggested that the IPL neurons

and their connections encode not only the observed motor act

but also the context of the act [5].

Beyond the experiments with monkeys, learning of contin-

gency between their actions and events has been investigated

in infant development studies [8]. The results of experiments

with infants suggest that 2-month-olds can acquire and retain

general body movements that induce contingent changes in a

mobile object, while 3- and 4-month-olds form memories that

serve as a constraint, enabling highly specific movements of

their arms to effectively activate a mobile object.

B. A proposed robotic system

We introduce a framework of action-driven development

for the self and action perception. The framework covers the

construction of all perceptual systems in this work on body

definition, motor control and action perception. Figure 4 illus-

trates a schematic presentation of action-driven development:

a robot generates an action and associates the action with the

effect that is perceived as a sensory event.

An original idea of the framework as compared to other

related methods is that self-generated action drives the devel-

opment of perception. In the initial phase, actions are randomly

generated by a motor repertoire that includes simple reciprocal

and ballistic movements like a Lévy process [9]. The generated

actions create stimuli to the self’s sensing system through the

environment, and this sensory feedback develops the self’s

perception system.
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Fig. 4. Schematic presentation of action-driven developments. A robot
generates an action and associates the action with the perceived sensory
event. The causal relation constructs body definition, motor control and action
perception.

Another new principle is that perceptual abilities are devel-

oped in an incremental manner. First, the robot identifies its

own body with simple movements, and then it develops its

body image and motor skills (primitive actions). Finally, the

learned motor skills are combined as more complex manipu-

lative behaviors and the robot develops action perception by

demonstrating the behaviors with humans.

An overview of the system architecture is illustrated in

Figure 5. Each bounding box in the figure represents a

unit of sensory-motor functions that run independently in

the networks. The whole system includes the sub-systems

of vision, proprioception, tactile sensing, sensory integration,

motor recognition and motor execution. Each function of the

sub-systems is given in the following sections.

III. BODY DEFINITION

Coincidence in vision and proprioception offers important

clues for robots to build their body images. In a previous study

we proposed a method for robots to learn their body image

based on visuomotor correlation [10]. This section describes an

extended method of body definition that allows multiple body

segmentation in binocular vision. We first define motion-based

visual extraction of a target, and then introduce a technique

for body definition based on visuomotor correlation. At the

end of the section, we present the results of experiments that

demonstrate body definition.

A. Visual motion

A robot generates motor exploration with the arm motor

synergy. The synergy in this work means coordination in the

movements of multiple joint motors (detailed in Section III-B).

Based on motor exploration, the robot identifies its own body

using vision and proprioception. We use visual motion cues

to segment the robot’s body parts from the background, since

visual motion cues prove the target’s independence from the

environment [11] and the cues are direct evidence of the self’s

motor controllability.
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Fig. 5. A diagram of sensory-motor signal flows. The computations of
sensory-motor modules are distributed in the networks.

Figure 6 illustrates visual motion detection. In the figure,

we assume that there are some moving objects, and here

the task is to extract visual blobs corresponding to moving

objects. It is not critical that some objects that do not belong

to the body are detected in the frame, since objects that move

independently from the body will be filtered based on the

visuomotor correlation in the next step (see Section III-B).

The absolute subtraction between the successive frames of

monochrome image Im(x, t) results in a difference image

If (x, t) as follows;

If (x, t) = |Im(x, t)− Im(x, t− τ)|, (1)

where x = (ξ, η) denotes the horizontal coordinate and vertical

coordinate on the image. t and τ denote a sampling time and

the interval of the frames.

We will now define a procedure for clustering different

blobs and filling in the area. First, motion points/pixels are

grouped in clusters. A set of points is randomly sampled from

the high intensity points on If . Each sample point is given

a small disk. The disk of the i-th point xi is represented as

follows;

Di(x) = {x||x − xi| ≤ ri}, (2)

where ri denotes the radius of the disk. The neighbor disks are

grouped as a new disk, if the disks intersect. The intersection

of disk Di(x) and Dj(x) are detected, when

|xi − xj | < |ri + rj |. (3)
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(a) motion detection

(b) intermediate images

Fig. 6. Visual motion detection. (a) Detection procedure. The motion area
is integrated in a bottom-up manner. (b) Intermediate images; the reference,
difference, sampled points and filled blobs are presented from left to right.

The new disk takes all member points of the merged disks as

its own. The new center and the radius of the merged disks

are the average and distance deviation of the member points.

This integration is repeated while a new disk appears.

After clustering, the set of disk centers {xi}i=1,...,nc
is

used for segmentation to obtain dense blobs of pixels which

correspond to individual objects in the scene. The number of

visual blobs, denoted as nc, is dynamically given by the result

of the area integration. High intensity points on the difference

image are assigned to the nearest disk center, which are mostly

along the outlines of motion areas. Random interpolation of

these points gives a set of points that fill the motion area as

follows:

x′k = axi + (1− a)xj (4)

where xi, xj , x′k denotes the i-th and j-th member point, and

k-th interpolated point, respectively. The number of (i, j)
couples, which corresponds to interpolation density, is selected

empirically. Rate a is selected from uniform distribution in

[0, 1]. The interpolated points of the blob are blurred spatially

by the Gaussian kernel and accumulated temporally as follows;

Iv(x, t) = γIv(x, t− τ) + (1− γ)
∑

k

K(x, x′k), (5)

K(x, x′k) = A exp
{

−
|x − x′k|

2

2σ2

}

, (6)

where Iv(x, t) denotes the result image and xk denotes the

image coordinates of the k-th member point. γ ∈ [0, 1] is a

decay rate. K is the Gaussian kernel. Image Iv(x, t) forms

clouds of labeled motion area. The parameters to be given are

the initial ri (connection scale), γ (sensitivity scale) and σ
(blur scale). We set A = 255 for 8 bit intensity coding. Figure

(a) visuomotor correlation (b) body
parts

Fig. 7. Body identification. (a) The visual motion area is identified as a body
part if its motion is correlated with proprioceptive motion. (b) Examples of
identified body parts (top: inherent body; bottom: extended body).

6(b) shows the intermediate images of motion detection.

Iv(x, t) is initialized as zero each time before starting a body

movement. We do not normalize Iv in Eq.5, since Iv is a

positive value less than 255, and the positive summation in the

second term can be controlled to be less than 255 by changing

parameter A.

B. Body identification

We will now introduce the body identification procedure that

allows a robot to segment its body from the environment. The

assumption is that the causal relation between a self-generated

action and its effect defines the body of the agent. The robot

monitors the visuomotor correlation between proprioceptive

and visual motion. When the robot detects the visuomotor

correlation, the visually moving object is identified as a part

of the body.

We have improved the single body part identification of

the previous system [10] to allow multiple body part iden-

tification as follows: the robot generates actions with each

motor unit (e.g., the wrist or shoulder of the left or right

side), and associates the sensory event with the actuated motor

unit individually. Multiple body part identification enables

the robot to perceive its own body parts and link them to

the corresponding motor units. The robot performs repetitive

movements to exclude other objects from body identification.

Figure 7 illustrates this procedure. The advantage of this

technique is that the action-driven perception generalizes the

body identification in which the body can be modified or

extended by a grasped tool as demonstrated in Fig. 7(b).

The robot generates a movement:

u = q + δq, (7)

where u denotes the motor command of the motor unit, q

denotes the reference encoder values of the motor unit, and

δq denotes a variation. We consider here motor units of wrists

and shoulders in the left and right arm. For example, when

the robot generates a left wrist motor movement, the identified

body part is coupled with the left wrist motor unit.
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TABLE I
BODY DEFINITION, EXPERIMENTAL CONDITIONS

item parameter notation

motor unit arm q ∈ R7

exploration part shoulder, wrist S(us ∈ R3), W(uw ∈ R3)
hand state free, grasp {V, H, N}, {Gf, Ga, Gb}

The visuomotor correlation map Ic(x, t) is given by the

following equations;

Ic(x, t) = γIc(x, t− τ) + (1− γ)c(x, t), (8)

c(x, t) =







∆ if |q̇(t)| > p0, Iv(x, t) > I0,
−∆ if |q̇(t)| < p0, Iv(x, t) > I0,
0 otherwise,

where Iv represents the motion image and q̇ denotes the

velocity of the joint angle vector of the motor unit. ∆, I0, p0
are positive constants. γ is a constant that determines the

smoothing factor. For visualization, the baseline of Ic is set

as the center of the intensity range (128 in [0,255]).

Ic is reset as the center value when the robot starts to

send motor commands, and visuomotor correlation values

are accumulated during the movements. After the repetitive

movements, the system refers to the accumulated values of

the correlation map Ic and extracts highly correlated areas by

simple thresholding (see the dotted area in Fig. 7(a)). This

repetitive approach filters out non-body moving objects in the

frames, since the timing of the movement is uncorrelated with

that of the body.

Segmented body parts are stored in memory as a set of

tuples of visual and proprioceptive data. The visual informa-

tion of a body part includes a blob image (extracted color

patch), the blob’s silhouette (extracted binary patch) and the

blob’s geometrical information (area, location, distortion and

orientation). The proprioceptive information is the joint angle

vector of the corresponding motor unit taken at the time the

body is detected.

In the following experiments, we show that body identifi-

cation is performed separately for different arm orientations.

However, the robot can learn a general mapping of different

postures in a continuous manner; this requires learning of the

Jacobian matrix of the joints. We will explain the details of

continuous body image reconstruction in Section IV-B.

C. Experiments

We performed experiments to evaluate the proposed body

identification. In the experiments, we investigated inherent

body identification, extended body identification and the ef-

fect of the magnitude of movements. Here we use the term

‘inherent body’ to identify the situation in which the body is

not modified (no tools are attached to it). The term ‘extended

body’, on the other hand, is used to identify an inherent body

plus some extensions such as a tool or object that the agent

grasps.

We used the iCub robot platform [12] [13] for the following

experiments. The joint link structure is shown in Fig. 8. Table I

summarizes the experiment conditions. The arm motor synergy

has 7 DOF for each side of the body. q denotes the joint
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Fig. 8. The iCub robot platform [12]. The left side of the body is presented
in the figure (the arm and hand on the right side are identical to those on the
left side).

angle vector given by motor joint encoders (the values were

normalized in [-1,1]).

We define the shoulder and wrist movement as:

us = qs + δqs, (9)

uw = qw + δqw, (10)

where δqs = (δq0, δq1, δq2) and δqw = (δq4, δq5, δq6), re-

spectively. The suffix number corresponds to the joint number

of the arm qa in Fig. 8. In the experiments, we actually per-

formed repetitive movements of a back-and-forth movement

(δq and −δq) for body identification.

We investigated the visual features of the identified body

parts in terms of visual area (how much space the body part

occupies in the view field), location (where the body part is

located in relation to the view field), distortion (how linear the

body part is in shape) and orientation (in which direction the

body part is oriented). In Fig.9, the variables a, x = (ξ, η), λ, θ
represent the area, location, distortion and orientation of the

body part. With the term ‘distortion’ we identify the degree of

similarity to a line segment (or dissimilarity from a circle) in

shape. a is normalized as the frame area to be 1.0. x = (ξ, η) is

normalized as the length of the diagonal segment of the frame

to be 1.0. λ is given as follows: λ = λ1/(λ1 + λ2) where

λ1, λ2 are the eigenvalue of the major and minor axes of the

detected body part. θ is the orientation of the body part by

radian; θ = arctan(e2/e1) where [e1, e2]
T denotes the vector

of the major axis.

1) Inherent body identification: We performed 20 trials of

shoulder and wrist motor exploration for each different posture

condition. In these experiments, we set the range of angular

movement as δqs = δqw = 0.1: (we will show the results of

the different range value later in Section III-C3). We will now

present the results of the right arm.

Figures 9(a) and 10 show the mean (m) and standard

deviation (σ) of the visual features of the identified body
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 0
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 1.5

 2

S-V S-H S-N S-F W-V W-H W-N W-F W-Gf W-Ga W-Gb

m(a)
σ(a)
m(ξ)
σ(ξ)

m(η)
σ(η)
m(λ)
σ(λ)
m(θ)
σ(θ)

(a) inherent and extended body parts

 0

 0.05

 0.1

 0.15

0.1 0.2 0.3 0.4 0.5

m(a)
σ(a)

(b) visual volume of body parts

Fig. 9. Visual features of body parts. (a) visual features of inherent body parts
(S-V, S-H, S-N, S-F, W-V, W-H, W-N, W-F), visual features of extended body
parts (W-Ga, W-Gb, W-Gc), (b) visual volume and magnitude of movements
(the angle range is normalized as 1.0).

parts given by the shoulder and wrist movements. In the

figures, S and W denote the shoulder and wrist that the

robot moves. V, H, N and F denote the condition of the

arm; vertical, horizontal, near and far, respectively. These are

the fixed positions in joint space, which show four different

representative arm postures. The reference frame was fixed for

simplicity here, while in the learning phase of motor control

the robot varies its neck and eyes (refer to Section IV).

The results of the experiments are summarized as follows;

• area, location, and distortion of the body parts were

reliably detected (in the sense of the deviation value σ),

• orientation was comparably reliable for the shoulder part,

but not for the wrist part because the major and minor

motor axes can be easily swapped,

• area average m(a) characterized the distance to the motor

effector, and

• distortion average m(λ) showed that the shape of the

body parts defined by the shoulder and wrist movements

were linear (close to 1.0) and circular (close to 0.5),

respectively.

2) Extended body identification: We performed identifica-

tion of the wrist motor unit in the case that an object is in the

hand. Figures 9(a) and 11 show the mean (m) and standard

(a) vertical posture (S-V,W-V)

(b) horizontal posture (S-H,W-H)

(c) near posture (S-N,W-N)

(d) far posture (S-F,W-F)

Fig. 10. Inherent body identification; the reference frame, body part
(shoulder), body part (wrist), body texture (shoulder), and body texture (wrist)
are presented from left to right.

deviation (σ) of the visual features. The items; Gf, Ga and Gb

denote the type of grasp, free grasp, ball grasp and bottle grasp,

respectively. The results of the experiments are summarized as

follows;

• area average m(a) characterized the volume of the ex-

tended body part, and

• distortion m(λ) characterized a linear shape when grasp-

ing a bottle (Gb) compared to the free and ball grasp (Gf,

Ga) that gave much less distortion in the hand shape.

In these demonstrations, the robot succeeded in identifying

extended parts as its own body. The visual features of extended

body parts are combined with proprioceptive information

(described in Section IV-C).

3) Volume of body parts: We investigated the effects of

the magnitude of the movements for body identification.

Figures 9(b) and 12 show visual features of the body parts

resulting from wrist movements. The norm of the variation

vector |δqw| was set from 0.1 to 0.5 with step 0.1. As shown

in the figures, we can conclude that

• the area average m(a) is higher when the magnitude of

movements is greater,

or, in other words, the variation term δq in the identification

has to be small in order for the detected blob to fit the body

part well.
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(a) free grasping (Gf)

(b) object grasping A (Ga)

(c) object grasping B (Gb)

Fig. 11. Extended body identification

; the reference frame, body part (wrist), and body texture

(wrist) are presented from left to right.

Fig. 12. The effect of the magnitude of movements; the reference frame and
body part with different magnitude of movements, 0.1, 0.2, 0.3, 0.4, 0.5, are
presented from left to right.

IV. LEARNING OF PRIMITIVE ACTIONS

Body identification allows the robot to learn primitive

actions. In this section, we define learning of fixation, reaching

and grasping actions, which will later be used as the building

blocks of more complex manipulative actions. Figure 5 illus-

trates a diagram of sensory-motor signal flows. We assume the

following motor units and corresponding primitive actions;

• head motor unit (fixation),

• arm motor unit (reaching), and

• finger motor unit (grasping).

The motor units give coordinated movements of multiple

joints driven by activation signals from an action generator.

The action generator is a module in a high-level motor

execution system (refer to the module and relation to other

modules in Fig. 5). We will detail its function in Section V.

Our robot platform has two arms with hands. We therefore

assume two independent arm and finger motor units.

The robot demonstrates motor exploration to learn the prim-

itive actions in each motor unit. Motor exploration consists of

two movements: one is a stroke movement to move joints

to different angles, and the other is a repetitive short range

movement for identification of a visual target (which can be the

body part of another target). The robot first generates a random

stroke movement in a motor unit to move the body part into a

certain posture, and then generates perturbative movements to

identify the body. After the movements, the robot associates

the visual and tactile data with the proprioceptive data from

the sampling posture.

After learning the data, the robot can estimate visual and

tactile information from proprioceptive information and is also

able to estimate the information in the opposite direction. This

estimation is implemented as a look-up table in which the

nearest data sample to input in visual/proprioceptive space is

referred and this sample is used as the reference for a local

linear interpolation that offers continuous data association.

In the following sections, we will describe the learning

procedure for a primitive action in each motor unit (head, arm

and finger motor units).

A. Head motor unit

1) Head motor exploration: The robot performs motor

exploration with the head motor unit and it associates the

resulting observed visual variation of the target. The head

motor unit consists of motor joints in the neck and eyes. We

mainly use neck pitch, neck yaw and eye vergence to localize

a target in three-dimensional space. We do not discuss details

here about the other DOF of the eyes for saccadic movements,

however the robot can learn the movements in the same way.

We formulate the egocentric three-dimensional visual loca-

tion of a target z as follows:

z = (ξL, ηL, ξR − ξL), (11)

where xL = (ξL, ηL) and xR = (ξR, ηR) denote the image

coordinates of the target in the left and right images. We use

the left frame as the reference. ξR − ξL corresponds to the

parallax.

The visual effect of the head motor exploration is given as

follows:

δz = Jh(q, z)δq, (12)

where δz and δq denote a variation of the visual target

location and the head posture, respectively. Jh represents the

transformation matrix between them. The robot generates a

posture variation u = q+δq and associates it with the observed

visual position variation δz. We assume a single joint variation:

δqi = (0, · · · , dqi, · · · , 0), (13)

for each i-th component. Therefore, the exploration result

directly gives the i-th column of the transformation:

Jh
i (q, z) = (1/dqi)δzi, (14)

where Jh
i and δzi denote the i-th column vector of Jh and the

observed vector of the visual variation.

Learning action-effect causality in the head motor unit

allows bidirectional associations; vision to head proprioception

(visual projection) and head proprioception to vision (visual

fixation).
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TABLE II
HEAD MOTOR UNIT, EXPERIMENTAL CONDITIONS

item parameter notation

motor unit head q ∈ R6

exploration part neck with eyes uh ∈ R3

head state down, front, right Hd, Hf, Hr
arm state near, far An, Af

2) Visual projection: Visual projection aims at mapping

memorized locations onto a view frame with a different

viewpoint. This is effective for representing memorized visual

locations taken at different viewpoints in a current frame.

Given the current head joint posture q, the location of zi is

estimated in the current frame as follows;

ẑ(qi, zi; q) = zi + Ĵh
k (q − qi), (15)

Ĵh
k = Jh(qk), (16)

k = argminj |q − qj |, (17)

where (qi, zi) denotes a set of head posture and visual location

in the memory (learned sample). (q, ẑ(qi, zi; q)) denote the

current head posture and the estimated visual location in the

current frame. Ĵh
k represents the estimated transformation at

qk.

3) Visual fixation: The opposite association gives visual

fixation, that is, the coordinated neck and eye movement to

bring a target to the center of the view frame. Given the desired

location zd (the center of the view frame), the head joint

posture to allow for visual fixation is estimated as follows;

q̂(q, z; zd) = q + Ĵh#
k (zd − z), (18)

Ĵh
k = Jh(qk), (19)

k = argminj |q − qj |, (20)

where (q, z) denotes the current head posture and the visual

location of the target, and (q̂(q, z; zd), zd) denotes the estimated

head posture and the goal location to bring the target into. In

visual fixation, we assign the coordinates of the center of the

view frame for zd, although the goal location is not limited

to this (i.e. in theory, the robot can bring the target into any

location of the view frame). Ĵh#
k represents the generalized

inverse Ĵh
k at qk.

4) Experiments: We examined visual projection and fix-

ation with the head motor unit. Table II summarizes the

experiment conditions. The head motor unit has 6 DOF.

q ∈ R6 denotes a joint angle vector given by the motor

encoders (the values were normalized in [-1,1]). The variation

is defined as δq = (δq0, δq1, δq5). The suffix of variables

corresponds to the joint number in Fig. 8. We used the body

parts as a visual target in head motor exploration. We believe

the use of body parts for learning to be a natural solution for

the following reasons; the reachable area is the most important

area for the robot to learn; the appearance of the robot’s body

parts can be visually unique in the view frame and the robot is

able to move the location of its own body parts autonomously

while learning.

(a) Visual projection: In this experiment, we evaluate

visual projection ability at each of four different joint postures.

First, the robot performed head motor exploration (body
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(b) arm localization and reach-
ing

Fig. 13. Estimation error. (a) visual projection and fixation after head motor
exploration. (b) arm localization and arm reaching after arm motor exploration.

identification and learning of transformation Jh(q, z)) at a

single joint posture q, and then the robot randomly moved the

joints of its head motor unit around the learned joint posture

in order to sample tuples of a head posture and target location

{qi, zi}i=1,··· ,n for the evaluation. The estimation of multiple

joint postures with a learned single joint posture does not result

in a loss of generality because the location is estimated locally

at the nearest learned joint posture (refer to Eq. 17), and the

estimation is independent from other learned joint postures.

The test tuples were sampled as follows:

u = q + δq, (21)

where u, q and δq denote the head motor command, head

joint angle and its variation. Each component of δq was given

from the uniform distribution in [−α, α] where α is a positive

constant. In the following experiments, we used the value

α = 0.2, corresponding to a variation of 40 % of range from

the learned joint posture. The robot sampled 10 test tuples.

We used the right hand of the robot as a visual target.

After sampling, the robot estimated the visual location zi
at each head posture qi. The estimated location is noted

as ẑ(·, ·; qi). In evaluating the estimations, one sample was

used as a ground-truth sample, and other samples were used

for estimation. The estimation error of the i-th ground-truth

sample ei is formulated as follows:

ei =

n
∑

j=1,··· ,n,i6=j

|zi − ẑ(qj , zj ; qi)|/(n− 1), (22)

where m(e) = 1/n
∑n

i=1 ei and σ(e) = 1/n
∑n

i=1 |ei−m(e)|
denote the average and deviation of the estimation error.

Figures 13(a) and 14(a) show the results of the visual

projection. In Fig. 13(a), m(ep) and σ(ep) denote the average

and deviation of the estimation in the visual projection. The

labels Hd, Hf and Hr denote the head joint posture corre-

sponding to down, front and right. The labels An and Af

denote the arm joint posture posing as positioned near and far

from the head, respectively. In the experiments, we evaluated
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(a) Visual projection (left and right sight)

(b) Visual fixation (left and right sight)

Fig. 14. Results of head motor exploration. (a) Visual projection of a target
(the robot hand). Red dots are estimated locations, and green dots are ground-
truth locations. (b) Visual fixation of a target (own hand). The red dot is the
ground-truth location of the target sampled by wrist body identification after
fixation. (a) and (b) present the results for the Hd-An condition. The results
for other conditions, Hf-An, Hr-An, and Hf-Af, are similar to these (we have
not presented the pictures in order to save space in the paper).

the head-arm posture combinations of Hd-An, Hf-Ad, Hr-

An and Hf-Af. We believe these four types of combinations

represent the most typical and different posture relations of

the head and arm. The robot collected the corresponding

transformation values (Jh(q, z)) for each head joint posture

and visual location pair (q, z). As explained above, the robot

learned the transformation at each head-arm joint posture and

evaluated an estimation of the visual location of the arm with

variations within 40% of the range of each joint angle. As we

can see in the figures, the estimated samples were projected

quite close to the ground-truth sample with small deviations in

different target conditions. We can easily improve the accuracy

of the estimations by increasing the number of head-arm joint

postures from which the robot learns the linear transformation.

(b) Visual fixation: After learning visuo-proprioceptive

association, the robot performed visual fixation at the target

locations sampled in the previous experiment. The desired

visual location is zd = (w/2r, h/2r, 0) where w, h, r denote

the width, height and diagonal length of the view frame,

respectively.

At the i-th tuple (qi, zi), the robot estimated the head joint

posture q̂i = q̂(qi, zi; z
d) to fixate the target, and commanded

this posture as un = q̂i. After fixation, the robot performed

wrist motor exploration to re-sample the target location z′i at

the same head posture q̂i. Therefore, z′i gives the ground-truth

location of the target. The estimation error of the i-th sample

is formulated as follows:

ei = |zd − z′i(q̂i)|. (23)

Figures 13(a) and 14(b) show the results of the visual

fixation. In the table, m(ef ) and σ(ef ) denote the average and

deviation of the estimation in the visual fixation. As shown in

the figures, targets in different configurations are fixated with

high precision.

B. Arm motor unit

1) Arm motor exploration: The robot uses the arm motor

unit to generate motor exploration and associates the observed

visual variation of the body part with the action. This aims at

building arm image and motor control in visual space. We

formulate arm motor exploration in the same framework as

head motor exploration, as follows:

δz = Ja(q, z)δq, (24)

where δz and δq denote a variation of the target’s visual

location and the arm posture, respectively. Ja represents a

transformation between them. The robot generates a posture

variation u = q+δq and associates it with the observed visual

variation of position δz. The exploration schema and visual

coordinates of the body parts are formulated by Eq.13 and 14

substituting Ja for Jh. We mainly use shoulder pitch, yaw

and roll, and elbow pitch in exploration.

Learning action-effect causality in the arm motor unit allows

for bidirectional associations from vision to arm propriocep-

tion (arm image) and from arm proprioception to vision (arm

reaching). This motor exploration supposes that the hand is

not occluded while learning, for if the hand were occluded,

the robot would not be able to construct a correct visuo-

proprioceptive association. However, learning is driven by

body identification. If the robot identifies its own hand, it will

memorize sampled data of the association. If not, the robot

will not memorize sampled data and randomly vary its arm

posture to reattempt body identification in a different position.

This procedure minimizes the situations that the hand is not

visible in the image. In this work, we simply used uniform

distribution for random exploration, but more sophisticated

approaches, such as performance-biased random exploration

in [14], could be applied.

2) Arm image: The arm image aims at mapping the body

silhouette onto a view field. This function permits estima-

tion of positions and visual appearances of the body parts

from proprioception.First, the system recalls its own visual

features corresponding to the current arm posture (the look-

up procedure is similar to the one described previously for the

head visual projection in Section IV-A2). The binocular visual

location of the arm image is then estimated as follows:

ẑ(qi, zi; q) = zi + Ĵa
k (q − qi), (25)

Ĵa
k = Ja(qk), (26)

k = argminj |q − qj |, (27)

where (qi, zi) denotes a set of arm posture and visual location

in the memory. (q, ẑ(qi, zi; q)) denotes the arm posture and

estimated visual location.

This procedure compensates for translation only. In theory,

it could easily be extended using the affine transformations

to handle rotations, but this would require high dimensional
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(a) arm image

(b) visual occlusion

Fig. 15. Arm image. (a) the reference, hand domains and forearm domains are
presented from left to right. (b) the reference before occlusion, the reference
after occlusion and the hand image while occluded are presented from left to
right.

Ja. Instead, we simply sampled different arm postures and

interpolated the body image based on the sampled ground-

truth locations with low dimensional Ja. This is practical for

implementations in real robot platforms and supposes local

linearity around the sampled points. In fact, it was successful

in the following experiments.

Figure 15(a) shows the arm image estimated after learning.

Four body parts (left hand, left forearm, right hand and right

forearm) are projected in Fig. 15(a). In general, it is not easy

to visually identify the left and right hand in the same frame,

since their appearances are similar. On the other hand, the

proprioceptive identification in Fig. 15(a) is distinctive and

it even works for building an arm image when the arm is

occluded as shown in Fig. 15(b). Note that in theory, we can

assume the number of arm images to be equivalent to the

number of motor units in the robot.

3) Arm reaching: Arm reaching aims at motor control of

the arm to move the hand to a destination in three dimensional

space. Given a current head posture qh and a desired location

zd, a motor command of the arm posture q̂ is estimated as

follows:

q̂(q, z; zd) = q + Ĵa#(q)(zd − z), (28)

Ĵa
k = Ja(qk), (29)

k = argminj |q − qj |, (30)

where (q, z) denotes a reference arm posture and reference

location. (q̂(q, z; zd), zd) denote an estimated arm posture and

the desired visual location. Ĵa#
k represents the generalized

inverse Ĵa
k at qk.

The reference (q, z) can be given either in feed-forward or

feedback mode. The feed-forward mode is a memory-based

ballistic reaching that moves the arm into sight. The references

(a) (b) (c) (d)

Fig. 16. Anticipation of arm and hand locations in object operation. The hand
and forearm visual appearances are presented as a pink and white transparent
cloud. The red dot with the red and blue segment represent the anticipated
visual location, and the major and minor axes of the arm, respectively. The
green dots represent learned visual locations. The time course of pictures is
from left to right. In (a) and (b), the robot is reaching for a bottle and grasping
it. (a) shows the expected location and shape of the arm/hand at the end of the
movement. (b) shows the arm/hand postures after the reaching and grasping.
Similarly in (c) and (d), but this time the arm is going back to its initial
position.

are given by the memory as follows:

(q, z) = (qi, zi), (31)

i = argmin
j

|qh − qhj |, (32)

where (qhi , qi, zi) denotes the head posture, the arm posture

and visual location in the memory. In the feedback mode,

the current arm posture and the identified visual location

at the current head posture are given as reference (q, z).
The difference between the feed-forward and the feedback

mode is that the former uses a memorized hand location and

the latter uses the current hand location identified by visual

recognition or visual-proprioceptive body identification. Note

that the visual location depends on the head posture qh. In all

the above computation, the visual location z is adjusted to fit

the current head posture by visual projection, as described in

Section IV-A2.

Figure 16 shows the anticipation of arm and hand locations

in object operation. When the robot identifies an object of

interest (the bottle, in this case), it anticipates the reaching

and grasping postures. The robot, then, executes the task.

Consequently, it selects the visual location towards the object

to be moved. Using Eq.28, the robot estimates the arm posture

from which it predicts the expected final appearance of the

arm and hand in the visual field (Eq.25), substituting q̂ for q

with compensation of the head posture using Eq.15. Grasping

posture anticipation with visual object recognition is detailed

in Section IV-C.

4) Experiments: We examined arm localization for arm im-

age and arm reaching with the arm motor unit. Table III sum-

marizes the experimental conditions. The arm motor unit has 7

DOF for each arm. q ∈ R7 denotes a joint angle vector given

by motor encoders (the values were normalized in [-1,1]). The

variation is defined as δqa = (δqa0, δqa1, δqa2, δqa3) where

the suffix of variables corresponds to the joint number in

Fig. 8. In the experiments, we evaluated the head-arm posture

combinations of Hf-Af, Hf-An and Hd-An where Hf and Hd

denote the front and down head postures, and Af and An

denote the far and near arm postures, respectively.

(a) Arm localization: First, the robot performed arm mo-

tor exploration as described in Section IV-B1, and learned
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TABLE III
ARM MOTOR UNIT, EXPERIMENTAL CONDITIONS

item parameter notation

motor unit arm q ∈ R7

exploration part shoulder, elbow ua ∈ R4

head state front down Hf, Hd
arm state near, far An, Af

the visuo-proprioceptive association. The robot then sampled

tuples of an arm posture and hand location, {qi, zi}i=1,··· ,n

to evaluate the learning results. 20 tuples were sampled

by generating random arm postures around the learned arm

posture q as follows:

ua = q + δq, (33)

where ua and δq denote the arm motor command and the arm

variation. Each component of δq was given from the uniform

distribution in [−α, α] where α is a positive constant. We used

the right hand as a target body part. The head posture was fixed

in each condition (while it is variable in experiment (b)).

The robot estimated visual location ẑi = ẑ(·, ·; qi) from head

posture qhi . zi was used as the ground-truth location of the hand

as follows:

eli = |̂zi − zi|, (34)

where eli denotes the error in localization for the i-th sample.

Figures 17(a) and 13(b) show the results of arm localization

with α = 0.2. m(el) and σ(el) denoting the average and

deviation of the localization error, respectively. As shown in

the table, the arm was localized with a high level of precision

given the maximum variation of 0.2 between arm and reference

postures.

(b) Arm reaching: We performed arm reaching coordinated

with visual projection. In contrast to experiment (a), the head

posture was variable. After learning the visuo-proprioceptive

association with the head and arm motor unit, the robot

performed arm reaching.

The task of the action was to move the hand to an anony-

mous fixation point. The robot generated a set of random head

postures {qhi }i=1,··· ,n based on Eq.21, and estimated the arm

posture q̂i to reach the view center zc for each head posture.

The i-th error of effector reaching is defined as follows:

eri = |z′i(q̂i)− zc|. (35)

where z′i denotes the ground-truth location of the hand sampled

after reaching. The average and deviation of the error are

denoted as m(er) and σ(er), respectively.

As shown in Fig. 17(b) and Fig. 13(b), arm reaching

towards fixated points was successful in the different head

postures. Note that this method does not use the external world

coordinates to accomplish three dimensional reaching, but

manages it with internal coordinates (horizontal and vertical

components in the left frame with vergence of the left and

right frames). Therefore, arm localization and arm reaching

are achieved with both left and right cameras.

(a) Arm localization

(b) Arm reaching

Fig. 17. Results of arm motor exploration. (a) Arm localization. The
green and red dots represent the estimated and ground-truth locations of the
hand, respectively. (b) Arm reaching. The red dot represents the ground-truth
location of the hand. The black lines indicate the horizontal and vertical center.
(a) and (b) represent the result for the Hf-An condition. The results for the
other conditions, Hf-Af, Hd-An, are similar to this; (we have not presented
the pictures in order to save space in the paper).

C. Finger motor unit

1) Finger motor exploration: The robot uses the finger

motor unit to perform motor exploration with an object, and

associates the observed somatosensory event with the features

of action and the object. The objects are detected by the visual

attention system in advance (detailed as in Section IV-C2).

We define finger motor exploration based on grip sensing

as follows:

uf
i =

{

qi + δqi if gi < g0,
qi otherwise,

(36)

where uf and q denote the motor command vector and encoder

value vector of finger joint angles, respectively. g denotes the

reaction grip (as defined below). The suffix i corresponds to

the finger joint number in Fig. 8. The robot continues to fold

each finger joint unless the corresponding reaction grip reaches

a limit g0. When all the joints stop folding, the finger posture

vector is memorized. The reaction grip should be given by a

torque sensor. Our robot platform, however, is not equipped

with such sensors in the finger joints, though the joints are

mechanically compliant. We employed this compliance to

simulate the reaction grip; the reaction grip is defined as the

difference between the motor command and the joint position

as follows:

gi(t) = |uf
i (t)− qi(t)|. (37)

Note that there is an elastic coupling (spring) between the

motor and the corresponding finger joint so that the current
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position of the motor and the finger joint are different in the

presence of a contact force that deflects the spring.

2) Visual attention: When the robot completes a trial in

finger motor exploration, a tuple consisting of the object’s

visual blob Ib and the final finger posture q is stored. After

learning, the robot visually identifies the object and grasps it

with the associated finger posture. This visuo-proprioceptive

association of objects and finger postures allows feed-forward

finger shaping to grasp the object.

We implemented simple visual attention based on a motion

cue that detects objects. In computer vision, visual attention is

implemented based on various cues such as edges, colors and

shapes [15]. In man-robot interaction, however, motion cues

are considered more useful; we can easily inform a robot of

an object of interest by moving it, while the other visual cues

cannot be easily controlled by human partners.

3) Experiments: We examined reaction grip detection with

the finger motor unit and visual attention for objects to be

grasped.

(a) Reaction grip: Figure 18 shows profiles of the reaction

grip in relation to the motor command while grasping and

releasing. We let the robot perform successive grasps and

releases two times: i.e., demonstration of grasp, release, grasp,

release and stop. We compared the results for two different

conditions. The first condition was action with an object

(object grasp); the second condition was action without an

object (free grasp). During the initial and third phase of motor

commanding in Fig. 18(a), we can see the non-zero gi(t)
caused by object grasping. On the other hand, during those

periods in Fig. 18(b) gi(t) converged to zero. As shown in the

figures, the reaction grip gi(t) differentiates the two conditions

correctly.

(b) Visual attention: Figure 19 shows motion-based visual

attention and detected objects. This attention system detects

an object that maintains motion for several seconds (set as

3s in the experiments). A similar mechanism can inform the

robot of the experimenter’s hand as shown in Fig. 19(d). This

function is also used for the perception of human actions in

Section V.

V. PERCEPTION OF MANIPULATIVE BEHAVIORS

We will now propose a series of actions that can be shared

between humans and robots. We characterize manipulative

behaviors based on their effects on the geometrical relation

of the hand and object (as defined in Section V-A). The

characteristics of the proposed action perception system are

summarized as follows:

• the action perception system is developed by observing

the robot’s self-generated actions,

• the motor repertoire is constructed incrementally by com-

bining learned primitives,

• the sensory effect of an action is encoded in multi-modal

sensory space,

• human actions are predictively recognized via intermedi-

ate evaluation of the sensory effect, and,

• action perception allows cross-modal sensory anticipation

and action reproduction.
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Fig. 18. Profiles of reaction grip. (a) object grasping and releasing. (b) free
grasping and releasing. In each figure, two profiles of grip force (upper half)
and two profiles of motor command (lower half) are presented. The profiles
correspond to the joints in the thumb and index finger.

(a) object A (b) object B

(c) object C (d) object d

Fig. 19. Motion-based visual attention. The reference frame, attracted domain
and detected object are presented from left to right in each target object.

Some features of the action perception system are consistent

with mirror systems in nature [3][4][7] and allow for more

complex manipulative behaviors (e.g. a sequential combination

of grasp, hold and drop). In the following sections, we

formulate the processes of visual, proprioceptive and tactile

sensing and a multi-sensory action perception system.

A. Sensory effects of actions

We will now propose a way to quantify the effects of

actions. Actions of interest in this work are those that both
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Fig. 20. A schematic representation of action perception. The motor
command {ua, uf}, proprioceptive feedback {qa, qf} and tactile feedback
τ are available when the action is self-generated. The visual location of the
hand and target ze and zt are available regardless of the action agent (human
or robot).

robots and humans can perform using some objects in a similar

manner. We assume that the effect of an action toward an

object can be quantified by change in perception before and

after the action. We use visual cues to quantify changes in

the geometry of the action effector (i.e. hand) and operated

object. We also use proprioceptive and tactile cues to quantify

changes in sensing due to physical interaction with objects.

Figure 20 is a schematic representation of action perception.

In the figure, ze and zt denote the position of a hand of either a

robot or an human experimenter and a target in the view frame,

respectively. Motor command of the arm and fingers {ua, uf},

proprioceptive feedback of those joint postures {qa, qf}, and

tactile feedback τ are available, when the agent of the action

is the robot itself. The superscript a and f indicate the joint

angle vector of the arm and finger motor unit, respectively.

To detect locations ze and zt, we used the visual tracking

system proposed previously in [10], which tracks hands and

objects based on color and edge features. Here we let the

robot memorize the appearance of a human hand by using a

visual attention system (Section IV-C2). We then let the robot

perform body identification (Section III-B) and forward the

resulting appearance of its own hand to the visual attention

system as input to memorize. In the following experiments,

hand locations were detected successfully against small vari-

ations of hand shapes of the robot and human experimenter

during movements of the arm and grasping of an object. We

believe that successful detection resulted from less variation

of edge information for the robot hand and less variation of

color information for the human hand.

We define visual feature fv = {δzt, δd} as follows:

δzt(t) = zt(t)− zt(ts), (38)

δd(t) = d(t)− d(ts), (39)

d(t) = |ze(t)− zt(t)|, (40)

where δzt and δd represent the change in the target position

and the change in distance between the target and the hand,

respectively. ts is the time the action starts. The feature fv

encodes the visual effect on the hand and object state caused
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Fig. 21. Action perception system. The sensory features are classified into
a visual, proprioceptive and tactile class. An action can be recognized either
from all or one of the available modality classes. The cross-modal anticipation
is computed for any missing sensory signals (refer to Section V-A). The
parameters are learned from the self-generated actions.

by an action. We assume that the human hand and target

are visually tracked. The action agency is confirmed by the

following visuo-proprioceptive contingency:

s =
te
∑

t=ts

|ze(t)− ẑ
a(t)|, (41)

where ẑ
a(t) denotes the location of the self’s hand estimated

from arm proprioception using Eq.15 and Eq.25. te denotes

the time the action ends. The system recognizes self agency

when the value of s is below a threshold.

We define a proprioceptive feature fm = {δẑ
a, δdf} as

follows:

δẑ
a(t) = ẑ

a(t)− ẑ
a(ts), (42)

δdf (t) = df (t)− df (ts), (43)

ẑ
a(t) = ẑ(qa(t)), (44)

df (t) = |qf (t)− q̂
f(T )|, (45)

where ẑ
a(t) denotes the estimated hand location (defined

above), and df (t) represents the distance between the current

finger posture qf and the finger posture q̂
f(T )

corresponding

to the visually identified object T to be grasped (see Sec-

tion IV-C2).

We define a tactile feature f τ = {τ(ts), τ(t)} as follows:

τ(t) = max
i

τi(t), (46)

where τ denotes the maximum tactile intensity of all fingers.

τi denotes the summation of all tactile sensor values on the

i-th fingertip. This maximization relaxes ambiguity of contact

conditions.

Note that perception of all of the features mentioned above

is based on previously developed systems of body perception,

visual attention and motor skills. In particular, learned primi-

tive actions (reaching and grasping) play an important role in

realizing complex behaviors for manipulation to be perceived

developmentally in the action perception phase.

B. Action generation and action perception

We will now set an action perception based on the above-

defined multi-modal sensory features {fv, fm, f τ}. The pro-
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posed action perception system is illustrated in Fig. 21. In

action perception, we assume three action contexts;

(AC1) observation and execution,

(AC2) predictive observation, and

(AC3) blind execution.

(AC1) represents the robot’s action execution and simulta-

neous observation of the action. This context is used in

the action learning phase and reproduction phase to perform

recognized actions. (AC2) represents predictive observation of

actions performed by human experimenters. Predictive action

perception is made possible by intermediate evaluation of the

sensory effect, which was inspired by [16]. (AC3) represents

the robot’s action execution in a blind condition. After a one-

shot visual detection of a target object in the work space,

the robot executes an action without visual information. This

property simulates monkeys’ mirror neurons that are active

while grasping an object in a blind condition [3].

In the learning phase, the sensory features {fv, fm, f τ} at

the end of the actions are stored. When a certain number

of sensory features have been learned, the system updates

the clustering parameters. Clustering sensory features aids in

reducing computations in action recognition, and discretization

by clustering allows for the application of a naive Bayesian

estimation.

We used the k-means algorithm [17] for unsupervised

clustering of each sensory feature as follows:

vi =

{

1 (|f − wi| ≤ |f − wj |, ∀j)
0 (otherwise)

(47)

where f denotes the input vector (either of {fv, fm, f τ}),

and v denotes the output vector following the winner-takes-

all rule. {wi}i=1,··· ,nc
denotes a set of prototype vectors; (nc

denotes the number of the classes). A single component of v is

activated (i.e. the best match class), and the other component

values are deactivated. Consequently, the sensory effect class

is defined as e = argi{vi = 1}. ev , ep and eτ denote the

visual, proprioceptive and tactile effect class, respectively. In

the following, ei represents either of {ev, ep, eτ}. For learning,

we used a standard learning rule detailed in [17].

Action perception is modeled based on the causal relation

between an action and the corresponding effect. We repre-

sented the causal relation with the Bayesian rule as follows:

â(E = (· · · , ei, · · · ))

= argmax
a

p(A = a)

n
∏

i=1

p(Ei = ei|A = a), (48)

where a denotes the action class, which corresponds to a

category of actions in the motor repertoire. When an action is

executed, its action class is given by the action generator, like

an efference copy of a motor command in biological systems.

The efference copy is known as a neural signal of a motor

command originating in the central nervous system in motor

control domains [18]. When another agent’s action is observed,

the action class is estimated from the sensory effect classes.

An action is a single continuous movement composed of the

reaching and grasping primitive learned in the earlier phase.

In our implementation, the action generator module (refer to

TABLE IV
ACTION PERCEPTION, EXPERIMENTAL CONDITIONS.

action number of trials (agent) initial

grasp 10 (robot), 10 (human) free
place 10 (robot), 10 (human) grasp
hold 10 (robot), 10 (human) grasp
drop 10 (robot), 10 (human) grasp
poke 10 (robot), 10 (human) free

illustration of the module in Fig. 5) decodes the i-th action

class ai as a sequence of primitive actions {a0i , a
1
i , · · · }, and

sends signals to corresponding primitive action modules in the

same order. For example, the grasping action class (detailed in

Section V-C) is composed of the grasping primitive action and

the reaching primitive action, and the action generator sends

execution commands in that order.

Ei and A represent corresponding random variables. Prob-

abilities are given by a set of learned tuples composed of

the efference copy of action, visual, proprioceptive and tactile

effect class. The data set is learned in (AC1). In (AC2),

only the visual effect class is used as the sensory effect,

while in (AC3) the proprioceptive and tactile effect class are

used. For simplicity, we assume that each Ei is conditionally

independent of every other Ej for j 6= i.

Multi-modal action perception allows for the estimation or

recovery of unavailable sensory modality information during

action observation and execution. We propose cross-modal

sensory image (sensory anticipation) as follows:

ê′(E = (· · · , ei, · · · ))

= argmax
e′

p(E′ = e′)
n
∏

i=1

p(Ei = ei|E
′ = e′). (49)

In (AC2), e′ denotes the tactile class (eτ ), which gives a tactile

anticipation from visual observation of an experimenter’s

action. In (AC3), e′ denotes the visual effect class (ev), which

gives a visual anticipation from the self’s action execution in

a blind condition.

C. Experiments

We performed experiments to evaluate the perceptual ability

of the action perception system. An experimenter and robot

performed manipulative behaviors. The types of actions and

the number of trials are listed in Table IV. In the table, the

grasp action denotes an action to reach an object and grasp

it. The place action denotes an action to release an object and

retract the hand. The hold action denotes an action to hold up

a grasped object. The drop action denotes an action to release

an object when holding it up. The poke action denotes an

action to side-push an object. All actions were composed of

the fixation, reaching and grasping primitives learned in the

earlier phase. In the experiments, the actions were performed

by both the robot and a human experimenter.

In the learning phase, we let the robot generate actions in the

motor repertoire and simultaneously observe the sensory effect

of the actions. Tuples of the actions and the sensory effects

were used to develop action perception. After the learning
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Fig. 22. Snapshots of actions performed by a robot and an experimenter.
All of the actions are observed by the robot’s vision system. (a) to (e) present
the grasp, place, hold, drop and poke actions performed by the robot. (f) to
(j) present the actions performed by an experimenter. The arrow indicates the
time course.

phase, an experimenter performed the actions, and the robot

recognized the observed actions.

When the robot observed an action performed by itself,

the robot was aware of the timing of the start and end

of actions from its own proprioceptive signals. When the

robot observed an action performed by an experimenter, we

manually informed the robot of the timings for simplicity. The

system, however, has an autonomous mode to detect action

timing by monitoring increases and decreases in the area of

visual motion in the view frame and segmenting a sequence

of the action.

We excluded failed actions from the evaluation in order to

focus the evaluation on action perception rather than motor

control (although the failure rate was less than 10% of all

trials). In the experiments, the location of the target was not

precisely controlled, but the robot adapted its actions to the

environment.

Snapshots of actions performed by a robot and an experi-

menter are shown in Fig. 22. All of the actions are observed

by the robot’s vision system. In preliminary experiments, we

performed actions with different objects (that were acceptable
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Fig. 23. Visual features of actions. The actions were performed by the robot
and a human experimenter. The features are labeled the visual effect class
in (a) and (c), and the action class in (b) and (d). (e) plots consistency in
the predictive classification of the experimenter’s actions. The horizontal and
vertical axes indicate consistency in time and classification.

for dropping) and got similar results in sensory effects. Below,

we present and discuss the results obtained with a single

object to eliminate noise from the comparison of perception

in different modalities.

1) Visual effect: We analyzed the experimental results of

visual effect classification and action recognition. The actions

were performed by either the robot or the human experimenter

and in both cases the robot recognized the actions using vision

only (without proprioception and tactile information) in order

to compare the results with different action agents in the same

condition.

The clustering results of visual features are shown in

Fig. 23. Figures 23(a) and (b) plot a set of visual fea-

tures fv(te) of the actions performed by the robot. Here,

fv = (δz1, δz2, δz3, δd), but we present the following three

components; (f1, f2, f4) = (δz1, δz2, δd) in the plot. The

visual features were sampled at the end of action te. For

comparison, we plotted the visual features with labels of the

visual effect class {evi }i=1,··· ,5 in Fig. 23(a) and then with

labels of the action class {ai}i=1,··· ,5 in Fig. 23(b). The visual

effect classes were estimated using Eq.47. The number of

visual classes was empirically set as five in the experiments.
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As we can see in these figures, visual features were classified

similarly to action classes. Note that the clustering results of

visual features are not necessarily similar to the action classes,

since actions and visual effects are not always in one-to-one

correspondence.

Figure 23(c) and (d) plot a set of the visual features fv(te)
of actions performed by an experimenter with labels of visual

effect classes and action classes, respectively. Figure 23(d) also

presents the trajectories of the intermediate visual features

fv(t) (they are referred to in classification consistency as

detailed later). The visual effect of the experimenter’s action

was classified by the prototypes trained with self-generated

actions. A comparison of Fig. 23(a) with (c) suggests that the

visual features of the experimenter’s actions were distributed

similarly to those of the robot’s actions. Therefore, the visual

effects of the actions performed by the robot and the experi-

menter were similarly classified.

Figure 23(e) shows the consistency of the visual effect

classification of the experimenter’s actions at intermediate

states (referred to in Fig. 23(d)). The horizontal and vertical

axes indicate time and classification consistency, respectively.

Here, classification consistency cc represents the number of

trials with an identical classification result at the present t
and the end of the action te. The values in Fig. 23(e) were

normalized with the number of trials (the maximum value is

1.0), and the time interval was normalized with five slices.

Most of the original time intervals of the actions were around

3s. The error bar in the plot indicates the deviation of the

values with respect to the action class. Figure 23(e) shows that

predictive classification of the visual effect from observation

of 1/2 of the action sequence had a consistency rate of 86%. In

comparison, predictive classification upon observing 3/4 of the

action sequence achieved 96% with an acceptable deviation.

2) Action perception: Figure 24 shows the results of action

perception. In all of the graphs, the horizontal axis from left

to right indicates the number of visual classes (2 to 10), and

the horizontal axis from near to far indicates the number of

proprioceptive effect classes (2 to 10). The number of classes

corresponds to the resolution of the sensory effect in cluster-

ing. The vertical axis indicates the action recognition rate. The

number of tactile classes was fixed at 3. We selected the best

clustering results from 20 learning trials for each coupling of

the visual and proprioceptive effect class numbers. The action

recognition rate is the number of correctly recognized actions

divided by the number of all trials. Note that all grid points in

the graphs correspond to real values given by the experimental

results (i.e. no interpolation technique was used for visualizing

the grid surface).

Figures 24(a), (b) and (c) show the recognition results of the

actions performed by the robot. The recognized action classes

were given by Eq.48. Figure 24(a) shows the recognition

results when the system used all sensory modalities (vision,

proprioception and touch). Figure 24(b) shows the results

when the system only used vision. Figure 24(c) shows the

results when the system used proprioception and touch (i.e. the

action was recognized in a blind condition). In these contexts,

the action perception system was aware of the action classes

because they were given by the action generator (refer to
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Fig. 24. Action recognition. The horizontal axes from left to right and from
near to far indicate the number of classes (resolution of description) of visual
and proprioceptive sensory effect, respectively. The vertical axis indicates the
recognition rate. (a) presents the action recognition rate when the action agent
was the robot and the sensory modalities used in recognition were vision,
proprioception and touch. (b), (c) and (d) are labeled in the same manner.

efference copy presented in Fig. 21). Efference copies were

used as ground-truth action classes to evaluate the estimations.

Figure 24(a) suggests that if the class number of either

modality of vision or proprioception was five or more, action

recognition rates were maximal. This means that a synergy

of multi-modal sensing recovers low resolution of a member

modality in action recognition. As shown in Fig. 24(b) and (c),

when some sensory modalities are unavailable, the available

modalities (vision in (b), and proprioception and touch in (c))

require high resolution to achieve a high action recognition

rate. Figure 24(d) shows the recognition results of actions

performed by the experimenter. The experimenter’s actions

were recognized well if the resolution of visual effect was

high enough. This result was similar to the recognition of self-

generated actions with vision-only in Fig. 24(b).

3) Cross-modal sensory anticipation: Figure 25 shows the

results of cross-modal sensory anticipation. Estimations from

Eq.49 and actual perception are compared.

The horizontal axes in both graphs are the same as those

in Fig. 24. The vertical axis indicates the sensory match

rate defined as the number of correctly estimated sensory

effect classes divided by the number of all trials. Figure 25(a)

shows visual sensory anticipation from the proprioceptive and

tactile effect (visual anticipation) in (AC3). In this context,

the actions were generated by the robot in a blind condition.

Figure 25(b) shows tactile sensory anticipation from the visual

effect (tactile anticipation) in (AC2). In this context, the

actions were generated by the experimenter. To evaluate the

sensory match rate, we used the corresponding visual and
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Fig. 25. Cross-modal sensory anticipation. The horizontal axes indicate
the number of classes (resolution of description) of visual and proprioceptive
sensory effect, respectively. The vertical axis indicates the sensory match rate.
The graph labels present the estimated sensory modality and the action agent.

tactile effect classes observed in (AC1) as the ground-truth

classes.

Figure 25(a) suggests that visual anticipation scored highly

when the resolution of the visual effect was low and that of the

proprioceptive effect was high. This means that (1) if visual

resolution is low, visual anticipation matches easily; and (2)

if the proprioceptive resolution is high, the input information

is not lost and this then aids in reliable estimation. This

experiment corresponds to the recovery of the visual sensory

modality while executing an action in darkness. The results

are also related to the behaviors of monkeys’ mirror neurons

in darkness [3].

Figure 25(b) suggests that tactile anticipation scored highly

when resolution of the visual effect is high. Tactile anticipation

is not affected by proprioceptive resolution, since only the

visual sensory modality describes the experimenter’s actions

and no useful information comes from proprioception while

observing them. Tactile anticipation is an interesting property

of the proposed action perception; as we can see in the results,

developments in action perception enabled the robot to gener-

ate internal sensory information of the experimenter (his touch

sense) based on observation of human actions and the robot’s

sensory experience in its own action executions. We believe

that action learning by robots set in human environments may

increase the robots’ sympathetic perception of humans.

4) Action reproduction by observation: We let the robot

reproduce sequential actions from observation. Figure 26

presents scenes of action observation and action reproduction.

An experimenter presented sequential actions to a robot. The

action perception system buffered the recognition results and

sent them to the action generator (see Fig. 5). The action

generator then reproduced the actions in the buffered order.

Figure 26 shows a demonstration composed of the grasp, hold

and drop actions in the recognized order. At the end of each

action, the experimenter paused between movements. This

pause was used to segment the actions in the action perception

system. As shown in the figure, the robot reproduced these

actions in the same order as the experimenter’s demonstration.

VI. DISCUSSION

In this section, we compare the proposed method to related

works in robotics and discuss the relation to infant develop-

(a) action observation

(b) action reproduction

Fig. 26. Action reproduction by observation. The grasp, hold and drop
actions are sequentially presented by an experimenter. The robot observed the
actions and reproduced them in the order of recognition. The time course of
the scenes is from left to right.

ment and biological mirror systems. We then present the limits

of the proposed framework and possible solutions.

A. Comparison with robotic systems

In robotics, developmental sensory-motor coordination in-

volving neuroscientific aspects and developmental psychology

is well studied; e.g. sensorimotor prediction [19][20], mirror

system [11][21], action-perception link [22], and imitation

learning [23][24] are representative studies. Below, we will

review literature that addresses body presentation and object

affordance. These two aspects constitute the cornerstone of the

research into body image and action perception implemented

in this work.

Body presentation plays an important role for a robot

dealing with voluntary actions [25]. Hikita et al. proposed a

visuo-proprioceptive representation of the end effector based

on Hebbian learning [26]. Stoytchev proposed a visually-

guided developmental reaching [27] which demonstrated tasks

similar to those examined in [2]. Kemp et al. approached

robot hand discovery utilizing mutual information between

arm joint angles and the visual location of an object [28].

Saegusa et al. proposed an own body definition system based

on visuomotor correlation, and the system created a body

representation regardless of body appearances or kinematic

structures [10].

Object affordance (or possible actions to operate an object)

plays an important role in manipulation [29]. In literature

on robotic object manipulation, Natale et al. proposed a

developmental grasping system that allows self hand recog-

nition [30]. Montesano et al. proposed a learning model

of object affordance using Bayesian networks [31]. In this

work, the probabilistic links between action, effect, and object

allow plausible action imitation [21]. Oztop et al. proposed

a biologically comparable model of mirror systems [16][32].

Castellini et al. studied an effect of object affordance in object

recognition [33] in which the authors experimentally showed

that object recognition with visuomotor features gives higher
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scores than a case with visual features.

In contrast to the previous studies, the framework proposed

here is original in its developmental construction of the whole

perception system (e.g. body identification, learning of motor

control and learning of action perception) driven by self-

generated actions. We hypothesize that only the results of ac-

tions can lead to reliable identity of the dynamically changing

body and the meaning of actions in unknown or non-stationary

environments. In previous work of [10], we proposed a body

definition system based on visuomotor correlation that creates

the body image of a single motor unit in monocular vision.

The new system allows for creation of a more general body

image with distinction of multiple motor units in binocular

vision.

Moreover, the proposed system develops an incremental

motor repertoire and action perception that is able to recognize

human actions predictively. A simple action for humans such

as picking up an object is rather complicated for robots. In the

literature, Yokota et al. achieved action encoding and decoding

with recursive network models [34]. Paine et al. proposed

a model to decompose an action into motor primitives au-

tonomously [35]. In our developmental scenario, we let a

robot learn primitive actions (fixate, reach and grasp) and then

construct more complex manipulative actions by combining

them. This approach allows the motor repertoire to be built

incrementally.

Compared to the predictive recognition system in [16], we

implemented the system on an actual robot and demonstrated

action perception in the real world. The Bayesian approach

for action perception in [21][31] is related to the proposed

work. We generalized the main idea of these studies to en-

compass cross-modal sensory association which yields sensory

anticipation or compensation of unavailable sensory modalities

when observing and executing actions. For example, the robot

anticipates tactile sensory input when observing a human

action, whereas the robot anticipates visual sensory input

when executing an action blind. These are new functions

compared to related methods. Compared to the latest studies

in affordance learning [36] [37], the proposed method focuses

on incremental ability in the development of perception from

low level sensory-motor signals.

B. Comparison with biological systems

The findings of the study in [8] overlap the proposed

procedure of learning from primitive to specific in this work.

In the initial phase, the proposed system develops perception

ability of the self’s body from low-level visuomotor signals

and proceeds to learn primitive actions (e.g. fixation, reaching

and grasping) in the next phase. In the final phase, the robot

develops the recognition of more specific, complex behaviors

(e.g. grasp, hold and drop an object) based on the developed

body image and primitive actions.

Some functions of the proposed action perception system

are consistent with mirror systems in nature [3][4][7]. In par-

ticular, the proposed system supports the three action contexts,

AC1, AC2 and AC3, for learning action perception, action

execution and reproduction of recognized actions. These action

contexts are equivalent to the experimental conditions with

monkeys in [3]. In modeling action perception as well, the

box of motor repertoire and connected signal flows in Fig. 21

correspond to the instance of mirror neurons in monkeys.

C. Limits of the proposed system

The described method proposes different phases in au-

tonomous development of perception. However, we did not

investigate how the transition between these phases could

happen in a continuous developmental path. In the experiments

reported in this paper, the human experimenter manually

switched each learning phase (the learning phase of primitive

actions and action perception). How to make this autonomous

is an important problem to be investigated in the future. In

addition, complex actions like a sequence of grasp, hold and

drop were defined beforehand by selecting and combining

together the learned primitives. Such actions could however be

learned autonomously by the robot either in exploration [38]

or observation [39].

Additionally, a general and consistent learning algorithm

applicable for all modules should be introduced into the

proposed framework. At the moment, the learning modules use

a memory system that indexes data using a nearest neighbor

approach and interpolates the output locally. This approach

can scale well to allow for long-term learning in which a large

amount of data has to be processed, but it also has limitations

due to the lack of topological maps representing the state

space. Learning such topological maps was not investigated

in this work, since, as mentioned in Section I, the main focus

of this work is not on the development of motor control but

rather on the development of sensory perception.

VII. CONCLUSION

We proposed a robot’s developmental perception driven by

active motor exploration. In the proposed framework, the robot

discovers its own body (body image) through self-generated

actions, the relationship between sensory states and motor

commands (motor control), and the effects of actions on

objects (action perception). In the development of perception,

multi-modal sensing played an important role, since multi-

modality allows cross-modal sensory anticipation.

We evaluated the proposed framework in repetitive experi-

ments with an anthropomorphic robot. The robot developmen-

tally achieved the following perceptual abilities: body image

of multiple motor units, primitive motor skills of fixation,

reaching and grasping, predictive human action recognition,

and cross-modal sensory effect anticipation. Overall, the robot

succeeded in recognizing actions performed by a human exper-

imenter and in mapping the corresponding sensory feedback

on its own internal sensory system.

Development ability is the most important aspect for robots

or mobile intelligence targeted for work in non-stationary

environments. A typical problem of non-stationary settings for

robots is self-perception. As shown in the experiments, the

self-perception system was able to adapt to drastic changes in

body appearance as a result of object grasping. This perceptual
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ability also helped the robot perceive actions performed by

humans.

An ability lacking in the proposed system is the use of a

tool. Tool use was beyond the scope of the current work, since

we intended to focus on the robot’s perceptual developments

rather than those of motor control. However, in this work we

demonstrated that the proposed system can adapt to changes

in the kinematics and hand visual appearance resulting when

the robot grasps a tool. Such a perceptual component is of

critical importance for learning tool use.
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