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Abstract

A theoretical framework for grounding language is introduced that provides a
computational path from sensing and motor action to words and speech acts. The
approach combines concepts from semiotics and schema theory to develop a holis-
tic approach to linguistic meaning. Schemas serve as structured beliefs that are
grounded in an agent’s physical environment through a causal-predictive cycle of
action and perception. Words and basic speech acts are interpreted in terms of
grounded schemas. The framework reflects lessons learned from implementations
of several language processing robots. It provides a basis for the analysis and de-
sign of situated, multimodal communication systems that straddle symbolic and
non-symbolic realms.
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1 Language and Meaning

The relationship between words and the physical world, and consequently our
ability to use words to refer to entities in the world, provides the founda-
tions for linguistic communication. Current approaches to the design of lan-
guage processing systems are missing this critical connection, which is achieved
through a process I refer to as grounding – a term I will define in detail. A sur-
vey of contemporary textbooks on natural language processing reveals a rich
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diversity of data structures and algorithms concerned solely with manipula-
tion of human-interpretable symbols (in either text or acoustic form) without
any serious effort to connect semantic representations to the physical world.

Is this a problem we should really care about? Web search engines and word
processors seem to work perfectly fine – why worry about distant connections
between language and the physical world? To see why, consider the problem
of building natural language processing systems which can in principled ways
interpret the speaker’s meaning in the following everyday scenarios:

An elderly woman asks her aide, “Please push that chair over to me”.

A man says to his waiter, “This coffee is cold!”.

A child asks her father, “What is that place we visited yesterday?”.

How might we build a robot that responds appropriately in place of the aide
or waiter? How might a web search engine be designed to handle the child’s
query? These are of course not questions that are typically considered part of
natural language processing, but these are basic questions that every human
language user handles with deceiving ease. The words in each of these examples
refer to the physical world in very direct ways. The listener cannot do the right
thing unless he / she (it?) knows something about the particular physical
situation to which the words refer, and can assess the speaker’s reasons for
choosing the words as they have. A complete treatment of the meaning of
these utterances – involving both physical and social dynamics – is beyond
the framework presented in this paper. The focus here is on sub-symbolic
representations and processes that connect symbolic language to the physical
world with the ultimate aim of modeling situated language use demonstrated
by these examples.

In recent years, several strands of research have emerged that begin to ad-
dress the problem of connecting language to the world [62, 69, 21, 70, 44,
4, 56, 15, 74, 29, 12, 58, 6, 22, 51] (see also the other papers in this vol-
ume). Our own efforts have led to several implemented conversational robots
and other situated language systems [60, 61, 63, 25, 65, 64]. For example,
one of our robots is able to translate spoken language into actions for object
manipulation guided by visual and haptic perception [64]. Motivated by our
previous implementations, and building upon a rich body of schema theory
[34, 50, 2, 43, 45, 68, 19] and semiotics [49, 47, 20, 42], I present a theoretical
framework for language grounding that provides a computational path from
embodied, situated, sensory-motor primitives to words and speech acts – from
sensing and acting to symbols.

The gist of the framework is as follows. Agents translate between speech acts,
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perceptual acts, and motor acts. For example, an agent that sees a fly or hears
the descriptive speech act, “There is a fly here” is able to translate either obser-
vation into a common representational form. Upon hearing the directive speech
act, “Swat that fly!”, an agent forms a mental representation that guides its
sensory-motor planning mechanisms towards the intended goal. Signs origi-
nate from patterns in the physical world which are sensed and interpreted by
agents to stand for entities (objects, properties, relations, actions, situations,
and, in the case of certain speech acts, goals). Speech acts, constructed from
lexical units, are one class of signs that can be observed by agents. Sensor-
grounded perception leads to two additional classes of signs which indicate,
roughly, the “what” and “where” information regarding an entity. To interpret
signs, agents activate structured networks of beliefs 1 called schemas. Schemas
are made of continuous and discrete elements that are linked through six types
of projections. Two of these projection types, sensor and action projections,
provide links between an agent’s internal representations and the external en-
vironment. These links are shaped by the specific physical embodiment of the
agent. The four remaining projection types are used for internal processes of
attention, categorization, inference, and prediction.

The primary focus of the framework in its current form is the interface between
words and physical environments, and how an agent can understand speech
acts that are about the environment. There are many important issues that
are beyond the scope of this paper. I will not address language generation,
conceptual learning, language learning, or the semantics of social or abstract
domains. These topics are clearly of great importance, and will motivate future
work that takes the framework presented here as a starting point. Learning in
particular deserves further comment. I firmly believe that to scale grounded
language systems, statistical machine learning will be required. Without ap-
propriately structured biases on what is learnable, however, the rich structures
underlying situated language use will be hopelessly out of reach of purely
bottom-up data-driven learning systems. The framework presented here may
provide useful structural constraints for future machine learning systems.

Taxonomic distinctions made in the theory are motivated by recurring distinc-

1 Although this paper deals with topics generally referred to as knowledge repre-
sentation in AI, my focus will be on beliefs. From an agent’s point of view, all that
exists are beliefs about the world marked with degrees of certainty. Admittedly, as
a robot designer, I share the intuition that a robot’s belief that x is true just in the
cases for which the corresponding situation x is the case – a correspondence that I
as the designer can verify (Bickhard calls this “designer semantics” [10]). True be-
liefs may be called knowledge in cases where the robot can in some sense justify its
belief. However, as a starting point I prefer to model beliefs rather than knowledge
so that the notion of correspondence can be explained rather than assumed.
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tions that have emerged in our implementations – distinctions which in turn
were driven by practical engineering concerns. Although the theory is incom-
plete and evolving, I believe it will be of value to those interested in designing
physically embedded natural language processing systems. The theory may
also be of value from a cognitive modeling perspective although this is not the
focus of the paper (see [62]).

Connecting language to the world is of both theoretical and practical interest.
In practical terms, people routinely use language to talk about concrete stuff
that machines cannot make sense of because machines have no way to jointly
represent words and stuff. We talk about places we are trying to find, about the
action and characters of video games, about the weather, about the clothes we
plan to buy, the music we like, and on and on. How can we build machines that
can converse about such everyday matters? From a theoretical perspective, I
believe that language rests upon deep non-linguistic roots. Any attempt to
represent natural language semantics without proper consideration of these
roots is fundamentally limited.

Inherent to current natural language processing (NLP) systems is the prac-
tice of constructing representations of meaning that bottom out in symbolic
descriptions of the world as conceived by human designers. As a result, com-
puters are trapped in sensory deprivation tanks, cut off from direct contact
with the physical world. Semantic networks, meaning postulates, and vari-
ous representations encoded in first order predicate calculus all take objects
and relations as representational primitives that are assigned symbolic names.
Without additional means to unpack the meaning of symbols, the machine
is caught in circular chains of dictionary-like definitions such as those shown
in Figure 1 [27]. Efforts to encode knowledge using symbolic forms which re-
semble natural language and that can be written down by human “knowledge
engineers” [37, 40] are variations of this theme and suffer from the same es-
sential limitations. Dictionary definitions are meaningful to humans in spite
of circularity because certain basic words (such as the words infants tend to
learn first) hook into non-linguistic experience and non-linguistic innate men-
tal structures. How can we design machines that do the same? To address
this question, let us shift our attention to a very different kind of machine
intelligence: robot perception and control.

Consider the problem of designing a robot that avoids obstacles and navigates
to light sources in a room. Robot designers have learned that it is a bad idea
to simply tell robots where obstacles and lights are and expect the robot to
work. This is because in practice, with high probability, human mediated de-
scriptions will not quite match the state of the actual environment. No matter
how accurately we draw a map and provide navigation instructions, the robot
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Fig. 1. A network of definitions extracted from Webster’s Dictionary containing
circularities. To make use of such symbolic networks, non-linguistic knowledge is
essential to ground basic terms of linguistic definitions.

is still likely to fail if it cannot sense the world for itself and adapt its actions
accordingly. These are well known lessons of cybernetics and control theory.
Closed-loop control systems robustly achieve goals in the face of uncertain
and changing environments. Predictive control strategies are far more effec-
tive than reactive ones. Insights into a mathematical basis of teleology derived
from developments in control theory are every bit as relevant today as they
were sixty years ago [59]. Cyclic interactions between robots and their envi-
ronment, when well designed, enable a robot to learn, verify, and use world
knowledge to pursue goals. I believe we should extend this design philosophy
to the domain of language and intentional communication.

A comparison between robotics and NLP provides strong motivation for avoid-
ing knowledge representations that bottom out in symbolic, human generated
descriptions of the world. Language processing systems that rely on human
mediated symbolic knowledge have no way to verify knowledge, nor any prin-
cipled way to map language to physical referents. An NLP system that is told
what the world is like will fail for the same reasons as robot do.

1.1 Language is Embedded in the Physical World

In everyday language, it is the rule rather than the exception that speech acts
leverage non-linguistic context to convey meaning. Barwise and Perry [8] call
this the efficiency of language – the same words can mean infinitely different
things depending on the situation of their use. In a variety of situated language
applications, from spoken dialog systems for cars to conversational interfaces
for assistive robots, the relationship between language and the physical world
is a basis of efficient language use.
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We might design ad hoc solutions for specific restricted applications, but I be-
lieve a principled solution to address in-the-world language processing requires
a basic rethinking of how machines interpret words. The theory I develop is
motivated by such concerns. The framework has emerged through practice.
Over the past several years, we have implemented a series of systems which
learn, generate, and understand simple subsets of language connected to ma-
chine perception and action. These engineering activities have been guided
by the intuition that language needs to be connected to the real world much
the way that infants learn language by connecting words to real, visceral ex-
perience. What has been lacking in our work, however, is a coherent way to
describe and relate the various systems, and provide a theoretical framework
for comparing systems and designing new ones. This paper is an attempt to
address this latter concern. No attempt has been made to prove that the the-
ory is complete or correct in any formal sense given the early stages of the
work.

Although this paper is focused on systems with tight physical embeddings,
the underlying theoretical framework may be applied to communication tasks
in which direct physical grounding is not possible or desirable. My underly-
ing assumption is that an approach which is shaped primarily by concerns of
physical grounding will lead to a richer and more robust general theory of se-
mantics since intentional communication in humans presumably evolved atop
layers of sensory-motor control that were shaped by the nature of the physical
world.

1.2 Duality of Meaning

Consider the coffee scenario, illustrated in Figure 2. How does the speaker
convey meaning by uttering these words in this context? There seems to be a
basic duality in the nature of linguistic meaning. On one hand, the downward
pointing arrow suggests that the speech act conveys meaning by virtue of its
“aboutness” relationship with the physical situation shared by communication
partners. On the other hand, we can interpret speech acts within a larger the-
ory of purposeful action taken by rational agents as indicated by the upwards
arrow.

The everyday common usage of “meaning” also includes an additional sense,
roughly the emotional connotation of something (“My Father gave me that cup
– it has great meaning for me”). I believe connotative meanings of this kind
are more complex and emerge from more basic aspects of meaning, roughly as
a summary statistic of an individual agent’s goal-directed experiences. I will
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Fig. 2. The duality of meaning of an everyday situated speech act.

thus set aside connotations and focus the more basic aspects of meaning.

Referential meaning: Words are used to talk about (refer to) objects, properties,
events, and relations in the world

The sensory-motor associations of taste and temperature conjured by “coffee”
and “cold” rely on agents having similar embodied experiences caused by
common underlying aspects of reality (the chemical composition of coffee and
the dynamics of heat transfer as they interact with bodily actions and senses).
Furthermore, the speech act in Figure 2 is an assertion about the state of a
specific part of the world: “this” coffee. The word “coffee” has meaning for the
listener because, in part, it is directed towards a particular physical object as
jointly conceived by speaker and listener. The words “this” and “is” connect
the speech act to a region of space-time, in this case a part of the agents’
here-and-now.

Functional meaning: Agents use language to pursue goals

Speech acts can be considered within a broader theory of purposeful action
[26]. Beyond the literal meaning of “this coffee is cold” interpreted as an
assertion about the state of the world, in certain contexts the speaker may
also intend an implied meaning to the effect of “I want hot coffee”. Note that
even the literal reading of the sentence can be analyzed with respect to the
speaker’s intentions. For example, the speaker might have just been asked,
“Do you know if that coffee is hot or cold?”.
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I believe that developing a computationally precise and tractable theory of
language use which simultaneously addresses both referential and functional
meaning is a grand challenge for the cognitive sciences. The framework pre-
sented here takes steps towards addressing central aspects of this challenge,
especially with regards to the referential nature of words (but of course much
much more work remains to be done!). My approach will be to identify es-
sential aspects of communicative meaning that are required to build situated
systems with primitive linguistic abilities. Many details will necessarily be
left out in order to keep the whole in view with the intent of establishing a
framework that can later be enriched and extended. This is indeed the spirit
of Wittgenstein’s recommendation in dealing with phenomena as complex as
natural language [78]:

If we want to study the problems of truth and falsehood, of the agreement
and disagreement of propositions with reality, of the nature of assertion,
assumption, and question, we shall with great advantage look at primitive
forms of language in which these forms of thinking appear without the con-
fusing background of highly complicated processes of thought. When we look
at such simple forms of language the mental mist which seems to enshroud
our ordinary use of language disappears. We see activities, reactions, which
are clear-cut and transparent. On the other hand we recognize in these sim-
ple processes forms of language not separated by a break from our more
complicated ones. We see that we can build up the complicated forms from
the primitive ones by gradually adding new forms.

2 Grounding

The term grounding will be used to denote the processes by which an agent
relates beliefs to external physical objects. Agents use grounding processes
to construct models of, predict, and react to, their external environment.
Language grounding refers to processes specialized for relating words and
speech acts to a language user’s environment via grounded beliefs. Thus, the
grounding of language is taken to be derivative of the grounding of beliefs. We
can view the relationship between language, an agent’s beliefs, and the physi-
cal world as illustrated in Figure 3. Schemas are information structures held by
an agent that are modified by perceptual input and that guide action (details
of the internal structure of schematized beliefs are provided in Sections 4-6).
Interactions between schemas and the environment are mediated by percep-
tion and motor action. Language use is achieved through comprehension and
production processes that operate upon schemas. Figure 3 is reminiscent of the
classic semiotic triangle in which all mappings from words to external objects
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Fig. 3. Grounding is an interactive process of predictive control and causal feedback.

are mediated by thoughts [47]. Thus, the framework developed here might be
called an approach to “computational semiotics” in which the interpretation
of signs is performed through schemas.

Agents use schemas to represent beliefs about their environment. Consider an
agent that is situated next to a table that supports a cup. For the agent to
hold the grounded belief that that particular cup is on the table, two conditions
must hold: (1) that cup must have caused the belief via the natural physical
laws of the universe (the flow of information via photons, physical contact, sen-
sory transduction, etc.), and (2) the belief must support predictions of future
outcomes regarding that cup conditioned on actions which the agent might
take. On this definition, the grounding process requires both causal and pre-
dictive relations between referent and belief. This cyclic process corresponds
to an interpretation-control loop that must be implemented by an agent that
holds grounded beliefs.

By virtue of being embedded in a shared physical world, the beliefs of agents
are compelled to alignment, providing the basis for coordinated action. Com-
munication gets off the ground because multiple agents can simultaneously
hold beliefs grounded in common external entities such as cups of coffee.

I take beliefs about the concrete, physical world of objects, properties, spa-
tial relations, and events to be primary. Agents can of course entertain more
abstract beliefs, but these are built upon a physically grounded foundation,
connected perhaps by processes of analogy and metaphor as suggested by the
widespread use of physical metaphor in language [36].

An agent’s basic grounding cycle cannot require mediation by another agent.
This requirement excludes many interesting classes of agents that exist in
purely virtual worlds. This exclusion is purposeful since my goal is to de-
velop a theory of physically grounded semantics. If A tells B that there is a
cup on the table, B’s belief about the cup is not directly grounded. If B sees
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a cup on the table but then permanently loses access to the situation (and
can no longer verify the existence of the cup), then B’s belief is not directly
grounded. I am not suggesting that an agent must ground all beliefs – that
would lead to a rather myopic agent that only knows about what it has directly
experienced and can directly verify. I am suggesting that in order to commu-
nicate with humans and build higher order beliefs from that communication,
an agent must have a subset of its beliefs grounded in the real world without
the mediation of other agents. From a practical point of view, the necessity
for real world unmediated grounding is well known to roboticists as we dis-
cussed above. An autonomous robot simply cannot afford to have a human in
the loop interpreting sensory data on its behalf. Furthermore, complex inner
representations must be coupled efficiently, perhaps through layering, for op-
eration under real-world uncertainty. For autonomous robots to use language,
we have no choice but to deal with internal representations that facilitate
conceiving of the world as objects with properties that participate in events
caused by agents. The need for unmediated grounding can also be argued from
a cognitive development perspective. Infants don’t learn language in a vacuum
– the meanings of first words are learned in relation to the infant’s immediate
environment. Language is bootstrapped by non-linguistic experience and non-
linguistic innate structures, paving the way for comprehension of dictionary
definitions and other sources of ungrounded beliefs. I return to this topic in
Section 8.

It is worth heading off one possible criticism of the theory which may arise
from a misinterpretation of my definition of grounding. Although we have
investigated language learning in several systems (e.g., [60, 66, 63, 61]), the
focus of this paper is on representational issues and many of the implemented
structures that this theory is based on have not yet been learned by any
fully automated system. We have instead used a pragmatic approach in which
some aspects of a representation (typically topological structure) are designed
manually, and machine learning is used to determine settings of parameters
only when standard statistical estimation algorithms are easily applicable.
The potential criticism arises from the fact that human designers are creating
representations for the machines – in essence, it might appear that we are
describing the world for the machine – precisely what I said I wanted to avoid.
However, there is in fact no contradiction when we consider the definition
of grounding carefully. The definition places constraints on the process by
which a particular set of beliefs come to be, are verified, and maintained. The
definition does not make any demands on the source of the underlying design
of representational elements. These might be evolved, designed, or discovered
by the agent. In all of our robotic implementations, the systems do indeed
construct and maintain representations autonomously, and link language to
those belief structures.
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2.1 Causal Sensor-Grounding is Not Enough

Based on the definition of grounding I have stated, causality alone is not a suf-
ficient basis for grounding beliefs. 2 Grounding also requires prediction of the
future with respect to the agent’s own actions. The requirement for a predic-
tive representation is a significant departure from purely causal theories. For
example, Harnad in his 1990 paper on symbol grounding suggested a causal
solution based on categorical perception of sensor-grounded signals [27]. In
my own past work [60, 63] I have used “grounding” to describe language sys-
tems with similar bottom-up sensory-grounded word definitions. The problem
with ignoring the predictive part of the grounding cycle has sometimes been
called the “homunculus problem”. If perception is the act of projecting men-
tal images into an “inner mental theater”, who watches the theater? 3 How
do they represent what they see? A “pictures in the head” theory without an
accompanying theory of interpretation passes the representational buck. The
problem of interpretation is simply pushed one layer inwards, but leaves open
the question of how those internal models have meaning for the beholder. If
the inner process constructs a model of the model, we are led to an infinite
regress of nested models which is of course unsatisfactory.

By requiring that the agent be able to translate beliefs into predictions (not
necessarily about the immediate future) with respect to the agent’s own ac-
tions (where not acting at all is considered a kind of action), we have a broad
working definition of interpretation that avoids descriptive regress. Beliefs have
meaning for the agent because they have the potential to predict future out-
comes of the world, which the agent can verify for itself by comparing pre-
dictions to actual sensations. As a result of this framing, beliefs that have no
possible impact on the agent’s abilities to make predictions about the out-
comes of its actions are deemed to have no value. 4

3 Desiderata for a Theory of Language Grounding

If a theory of language grounding is to provide the basis for agents to use
physically situated natural language, I suggest that it must satisfy three cri-

2 Sloman and Chappell also point out this limitation of purely bottom-up sensory
grounding [71]. They discuss the need for “symbol attachment” which is similar
to the expanded definition of grounding developed in this paper that encompasses
perception and action.
3 Dennett calls this the Cartesian theater [17].
4 This is consistent with Peirce’s pragmatic approach to epistemology [48].
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teria:

(1) Unification of representational primitives: Objects, properties, events, and
situations should be constructed from the same set of underlying prim-
itives. This requirement is desirable if we are to have a way for beliefs
about concrete objects and situations to be efficiently translated into
expectations with respect to actions (affordances).

(2) Cross-modal Translatability: Information derived from perception and
language should be interpretable into a common representational form
since we want to design agents that can talk about what they observe
and do.

(3) Integrated space of actions: Motor acts (e.g., leaning over to resolve a
visual ambiguity) and speech acts (e.g., asking a question to resolve a
visual ambiguity – “is that a cup or a can?”) should be expressed in a
single integrated space of actions so that an agent may plan jointly with
speech and motor acts to pursue goals.

The framework that I will now present is motivated by these requirements. In
Section 7 I will assess to what extent each goal has been satisfied.

4 A Theory of Signs, Beliefs, Projections, and Schemas

The theoretical framework is a product of building systems and represents
my attempt to explicate the theoretical elements and structures that underlie
these complex engineered systems. Rather than separate the description of
implementations, I will highlight relevant implementations in the course of
presenting the framework.

4.1 Signs

The structured nature of the physical world gives rise to patterns. A collection
of data elements (e.g., pixels) contains a pattern if the data has non-random
structure (or equivalently, is compressible, or is low in complexity) [18]. Pat-
terns may be interpreted as signs by agents. For example, a pattern of photons
caused by a fly can serve as a sign of the fly, if appropriately sensed and in-
terpreted by an agent. I take Peirce’s definition of a sign as a starting point
[49]:

A sign...is something which stands to somebody for something in some re-
spect or capacity.
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I will interpret Peirce’s definition in the following way. A sign is a physical
pattern (first instance of “something” in Peirce’s definition) which only exists
as a sign relative to an interpreter (“somebody”). A sign signifies an object,
some entity in the world (second instance of “something”). Signs may take
other signs as their objects, leading to nesting of signs. For example, a shadow
might be a sign of a cloud. If the shadow leads to a cooler patch of ground, the
temperature of the ground serves as a sign for both the shadow, and chains
through to serve as a sign of the cloud. This does not necessarily mean that
an interpreter can make the connection from a sign to its object, only that
the physical causal link exists. Signs signify (stand for) only limited aspects
of their objects (“some respect or capacity”) and thus can serve to abstract
and reduce information.

4.2 Three Classes of Signs: Natural, Indexical, Intentional

Signs may be classified as natural, intentional, and indexical. 5 This classifi-
cation scheme is not mutually exclusive – a physical pattern may be inter-
preted as both a natural and an indexical sign. Natural signs are shaped by
nomic physical laws (natural flow of photons, pull of gravity, etc.) whereas
intentional signs are generated by volitional agents for some purpose. The
configuration of photons signifying the fly is a natural sign. The speech act,
“there’s a fly!”, is an intentional sign. Of course the surface form of the words
exist as a physical pattern of vibrating air molecules, as much a part of the
sensible world as photons, but their origins are fundamentally different. The
word “fly” signifies the fly by convention and is uttered by a rational agent
with some purpose in mind.

Indexical signs situate beliefs relative to a spatiotemporal frame of reference.
The location of the fly within an agent’s field of view may lead to an indexical
sign of its spatial position relative to the viewer’s frame of reference. The
semantics of indexical signs arise from their use as parameters for control.
As we shall see, an indexical belief that specifies the spatial location of an
object may serve as a control parameter in a robot to control reaching and
visual saccade behaviors directed towards a target. An alternative approach
would be to treat the spatiotemporal location of an object as simply another
property of the object like its color or weight. We have found, however, that
in construction of robotic systems, separation of spatiotemporal information

5 This classification scheme is related to Peirce’s three-way classification of iconic,
indexical, and symbolic signs. However, I prefer Ruth Millikan’s distinction between
natural and intentional signs [42] for reasons I explain in the text.
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leads to cleaner conceptual designs. 6 I will now focus in some detail on natural
signs, and how an agent can create beliefs about objects via natural signs.
Indexicals will then be folded in, leading to spatiotemporally situated beliefs
about objects. Finally, we will consider the comprehension and generation of
intentional signs (grounded speech acts).

4.3 Analog Signs

Sensors transduce physical patterns from the environment into analog, con-
tinuously varying signs (for robots, encoded as electrical potentials) which the
agent can further transform, interpret, store, and use to guide actions. The
only way for signs to enter an agent from the environment is through sensors.
The embodiment of an agent determines its sensors and thus directly affects
the signs which an agent can pick up.

The agent is attuned to specific channels of sensory input and only detects
signs that appear within those channels. For example, an agent can be attuned
to high contrast closed forms that are picked out from a visual environment,
localized high intensity impulses from a haptic environment, or speech signals
from an acoustic environment while ignoring other signs from those same
channels. Attunement may be innate and unalterable, or determined by the
agent’s state of attention. Multiple channels can be derived from a single
sensor (e.g., color and shape are different input channels, both of which might
be derived from the same camera). On the other hand, multiple sensors can
contribute to a single input channel. 7

A sensor-derived channel defines a continuous space which I will call the chan-
nel’s domain. Patterns project into domains via sensors. When a pattern is
detected within a channel to which the agent is attuned, the detected pattern
is called an analog sign.

To take a simple example, imagine a robot with camera input that uses an
optical region detector based on background/foreground contrast properties to
detect closed visual regions (sensed patterns corresponding perhaps to external

6 For example, in order to debug machine vision systems, spatial coordinate frames
are very useful from a designer’s perspective. When designing structured motor
control algorithms, conceptualizing action sequences over time is equally useful.
Whether at a formal level these distinctions might be dropped altogether is unclear.
7 The superior colliculus of cats contain neurons which only fire under the condi-
tions of simultaneous auditory, visual, and somatosensory evidence [75]. This is an
example in nature of multiple sensors leading to a single channel of input.
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objects). The robot is designed to measure two features of the region, its
maximum height and width. Presented with an object, an analog sign of the
object is thus a pair of continuously varying magnitudes, h and w. The range
of possible values of h and w, and thus the domain of incoming signs for this
channel, range from 0 to H and 0 to W , the height and width of the robot’s
visual field (measured in pixels). An observed analog sign is a particular pair
of (h, w) values resulting from an external stimulus.

4.4 Analog Beliefs

Analog signs are causally tied to the immediate environment. Their indexical-
ity is inherently limited to the here-and-now. Beliefs, on the other hand, are
persistent information structures that “stretch” indexicality over space and
time. An analog belief is a distribution over all possible observations within a
continuous domain. Analog beliefs map analog signs to scalar magnitudes. An
analog belief can serve as both an element of memory which encodes a history
of observations within a channel, and may also serve as a prediction of what
will be observed within a channel. To be useful in practice, analog beliefs must
be context-dependent. As we shall see, context is defined by the structure of
schemas within which beliefs are embedded.

Returning to the earlier robot vision example, an analog belief for the shape
input channel can be implemented as a probability density function defined
over the two-dimensional H×W domain. One or more analog sign observations
may be summarized as an analog belief, forming the basis for memory.

To recap, analog beliefs are continuous distributions that are about signs since
they are defined with respect to domains inhabited by signs. Natural signs, in
turn, are about aspects of their objects by definition – they are causally con-
nected to their objects due to nomic physical conditions of the environment.
Due to the nested relationship between beliefs, signs, and objects, analog be-
liefs are about objects. Analog beliefs form elements of schemas which enable
an agent to both encode causal histories of signs and make context-dependent
predictions about the observation of new signs, satisfying the causal-predictive
grounding cycle defined in Section 2.

4.5 Sensor Projections

I now introduce a graphical notation of typed nodes and typed edges that I
will use to represent schemas. Figure 4 shows the notation for analog beliefs
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as ovals. Analog beliefs may have names (“A” in Figure 4) for notational
convenience only. The names are not accessible to the agent. The meaning of an
analog belief from the agent’s perspective is derived strictly from its function
in guiding the agent’s interpretative, predictive, and control processes. Figure
4 also introduces a representation of the sensory transduction and observation
process as a projection. I will define five more projections as we proceed.

A

analog beliefsensor projection

Fig. 4. Graphical notation for a sensor projection connected to an analog belief.

4.6 Schema Types and Tokens

Figure 4 is our first example of a schema, a structured network of beliefs
connected by projections. We will encounter a series of schema diagrams of this
kind as we proceed. The purpose of these diagrams is to show how elements
of the theory are combined to implement various functions such as active
sensing, representation of actions and objects, and higher level situational,
goal, and linguistic structures. Agents maintain schema types in a long term
memory schema store. An agent interprets its environment by instantiating,
modifying, and destroying schema tokens which are instances of structures
such as Figure 4. For example, if an agent is attuned to an input channel
represented by the sensor projection in Figure 4, then an observation in this
channel may be interpreted by instantiating a token of the schema, resulting
in an instantiation of an analog belief. The decision of whether to actually
instantiate a schema depends on the control strategy employed by the agent.
The structure of possible interpretations of an observation are determined by
the contents of the agent’s schema store. The contents of the store might be
innate, designed, learned, or some combination thereof.

4.7 Transformer Projections

A second type of projection is called a transformer. A transformer performs
a mapping from one analog domain to another. Transformers may be used to
pick out features of interest from one analog belief to project a new analog be-
lief, or might be used to combine multiple analog beliefs. An observation from
a source domain may be transformed into an observation in a target domain
by a transformer. For example, an observation of a shape represented by h and
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w may be transformed into a one-dimensional domain by taking the product
of the terms. In this case, the transformer is simply an analog multiplier. An
agent might want to make this transformation in order to ground words such
as “large” which depend on surface area. A division transformer (i.e., one that
computes the ratio w/h) could be used to ground words which depend on
visual aspect ratios such as “long” (for an implementation along these lines,
see [61]). The graphical notation for transformers is shown in Figure 5:

A1 A2

transformer

Fig. 5. Graphical notation for a transformer projection which maps a source analog
belief, A1, to a target analog belief, A2.

4.8 Categorizer Projections

The need for categorization is directly motivated by the discrete nature of
language. Words (or morphemes) are discrete categorical labels. For an agent
to use words that refer to the physical world it must have the capacity to dis-
cretely categorize continuously varying representations according to linguistic
convention.

Categorizer projections map analog domains onto discrete domains via pat-
tern categorization. Analog signs are projected into a categorical signs. The
mapping is many to one. Information about differences between a pair of ana-
log signs is lost if the signs happen to map into the same categorical sign.
Categorization provides a mechanism for expressing functional equivalence.
Assuming a well-designed agent, categorization provides the means of estab-
lishing kinds of signs that signify the same information to the agent irrespective
of detectable variations in the signs’ analog domains.

Let us return one last time to our example of shape representation via two-
dimensional height and width features. The analog domain may be discretized
by creating a pair of analog beliefs defined over the domain that are set into
competition with each other. A decision boundary is defined by the points
at which the analog beliefs are of equal magnitude. This process divides the
domain into two categories.

In general, pattern categorization may be implemented by discriminative or
generative means. Discriminative classifiers (e.g., multilayered perceptrons)
explicitly model the boundaries between categories defined with respect to a
fixed input feature space. Generative classifiers capture the variability in data
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in general, for instance by modeling prototypical members of categories, also
with respect to a fixed input feature space. Category boundaries emerge due
to competition between prototypes, or by applying thresholds to prototypes.
All of the systems we have implemented to date rely on prototypes to establish
categorical boundaries.

4.9 Categorical Beliefs

The second elementary form of belief is a categorical belief, which is a belief
about the output of a categorization process which maps an analog domain
to a discrete domain. Categorization is performed by categorizer projections.
The output domain of a categorizer is always a finite discrete set of out-
comes. A categorical belief is thus a discrete distribution (typically a discrete
probability distribution in our implementations). In contrast to analog beliefs,
categorical beliefs rely on categorization – they may be thought of as beliefs
about answers to verbal questions one might ask about analog observations
(e.g., will the brightness of this patch of pixels will be greater than 0.5? Is this
shape a square?). Figure 6 introduces notation for categorizer projections and
categorical beliefs.

A D

categorizer

Fig. 6. Graphical notation for a categorizer projection which maps a source analog
belief, A, to a target categorical belief, D.

In cases where all belief is concentrated on a single discrete outcome, the
specific outcome can be given a lowercase label and shown explicitly in the
graphical notation as illustrated in Figure 7. The interpretation of this di-
agram is that the agent believes (remembers, predicts) that the outcome of
the categorizer will with high likelihood be the indicated value. Residual be-
lief in other outcomes might be maintained – the notation simply makes the
information structure clear for purposes of conceptual design and analysis.

4.10 Action Projections

The specific physical embodiment of an agent gives rise to a natural set of
action primitives. For example, the robots we have constructed [60, 63, 52]
have separate servo motors dedicated to each degree-of-freedom (DOF) of the
robot. Using standard position-derivative control, each motor is associated

18



A D = square

categorizer

Fig. 7. Graphical notation for a categorizer projection which maps a source analog
belief, A, to a target categorical belief with concentrated belief in a single outcome.
The label of this outcome (“square”) is a notational convenience and is unavailable
to the agent.

D

action

success

action

fail

action

Fig. 8. Graphical notation for action projections.

with a lowest-level action primitive, essentially “move to position x along a
specified spatiotemporal path” subject to failure conditions due to unantici-
pated collisions or other external conditions which require reactive response.
When an agent attempts to execute a primitive action, it either succeeds or
fails.

Actions provide a new representational element, an action projection, which
results in a discrete binary (success / fail) outcome identical in form to the
output of categorizer projections. This can be seen in the graphical notation
for action projections indicated by diamonds in Figure 8. Actions lead to
categorical signs that are represented as categorical beliefs, either indicated as
distributions over binary outcomes (left-most figure) or alternatively, specific
beliefs about the success or failure of an action (for notational convenience, I
write “success” rather than “D = success”).

The use of a categorical belief to represent the outcome of an action binds
actions into the theory of signs at a most basic level. Each time the agent
executes an action primitive, the result is a categorical sign about the world
it has acted upon. Action and sensing are thereby intimately intertwined.

4.11 Active Perception / Perceptive Action

Success or failure provides only limited information about an action. In general
an agent may want information about the manner in which an action succeeds
or fails. An agent can achieve this through active sensing – sensing analog signs
while an action is performed. An example of this arose from experiments with
one of our robots, Ripley [52, 64], which I now briefly introduce. Only details
relevant to the development of the theory are mentioned here. More technical
descriptions of the robot may be found in previous papers.
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Ripley, pictured in Figure 9, is a manipulator robot that was designed for
grounded language experiments. Its seven degrees of freedom are driven by
back-drivable, compliant actuators instrumented with position and force sen-
sors, providing the robot with a sense of proprioception. Two miniature video
cameras are placed at the gripper which also serves as the robot’s head (when
the robot talks with people, it is hard-coded to look up and “make eye con-
tact”, to make spoken interaction more natural). Ripley’s gripper fingers are
instrumented with force-resistive sensors giving it a sense of touch.

The visual system of the robot includes several low-level image processing rou-
tines for segmenting foreground objects from the background based on color,
finding closed form connected visual regions, and extracting basic shape and
color features from regions. A higher level visual sub-system tracks regions
over time and maintains correspondence between regions as the robot’s per-
spective shifts. When a region is detected and tracked over time, an object
is instantiated in Ripley’s mental model. The mental model provides Ripley
with object permanence. Ripley can look away from the table (such that all
the objects on the table are out of sight), and when it looks back to the ta-
ble, Ripley retains correspondences between objects from before. If a human
intervenes and adds, removes, or moves physical objects, Ripley instantiates,
destroys, and updates objects in its mental model. Each object in the mental
model encodes basic visual attributes of the object (shape, color) and object
locations encoded with respect to Ripley’s body configuration (we will return
to this last point in the discussion on indexical signs in Section 4.12). Ripley’s
visual system also includes a face tracker to locate the position of its human
communication partner. It is able to use this information to modulate spatial
language to distinguish, for example, “the cup on my right” from “the cup on
your right” [64].

The robot’s work space consists of a round table. The robot’s motor control
system allows it to move around above the table and view the contents of the
table from a range of visual perspectives. A visually-servoed procedure lets the
robot move its gripper to the centroid of visual regions. Several other motion
routines enable the robot to retract to a home position, to lift objects from
the table, and to drop them back onto the table.

Ripley understands a limited set of spoken requests. Output from a speech rec-
ognizer is processed by a spatial language interpreter [25] which maps requests
onto goals with respect to objects in Ripley’s mental model. A limited look-
ahead planner chooses actions to satisfy goals such as looking at, touching,
grasping, lifting, weighing, and moving objects.

We are now ready to consider how Ripley might represent the meaning un-
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Fig. 9. Ripley is a 7 DOF manipulator robot terminating in a gripper, pictured
here handing an apple to its human partner. The human speaks into a head-worn
microphone to communicate with the robot. Two video cameras and touch sensors
are mounted on the robot’s gripper. Each actuated joint contains both a position
and a force sensor, providing proprioceptive sensing.

D

senseGripResistance

COMPLIANCE

closeGrip

Fig. 10. A schema for active sensing of compliance through grasping.

derlying words such as “soft” or “hard” used in their most literal, physical
sense. An obvious approach, one that we implemented, is to sense the degree
of resistance which is met in the course of gripping. The resistance reading in-
dicates the compliance of the object, providing the basis for grounding words
that describe these properties.

Figure 10 shows how to combine some of the elements introduced earlier into
a schema to represent active perception required for touching to gauge com-
pliance, providing the basis for grounding words such as “soft” and “hard”.
The schema may be interpreted as follows. The action primitive closeGrip,
when executed, runs a motor controller connected to the grip motor. The
gripper may or may not reach the targeted position (if the robot successfully
grasps a large rigid object, the object will block the gripper from closing).
The outcome of the action is represented by the categorical belief D. A sen-
sor projection, senseGripResistance, is connected to D and projects an analog
belief with the designer-friendly (but invisible to agent!) annotation COM-
PLIANCE. The connection from D to the projection is interpreted to mean:
run senseGripResistance while the source action connected to D is executed.
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4.12 Indexical Signs and Schema Parameters

Indexical signs signify spatiotemporal locations – regions of space-time. These
signs give rise to beliefs about locations, which in turn provide the ground-
ing for language about space and time. I will use the Ripley implementation
once again as an example of how belief structures can be constructed about
locations, and then generalize the idea to develop the theoretical framework.

To represent a belief about spatial location, consider how Ripley perceives in-
dexical signs of objects such as cups. For Ripley to move its gripper to touch a
cup, it must set six joint angles appropriately (the seventh joint is the gripper
open-close angle). When Ripley touches an object, the six-dimensional joint
configuration at the moment of contact provides an encoding of the object’s
location. Similarly, when Ripley looks around the table and detects that same
object, again its six joint angles encode position when combined with the
two-dimensional coordinates of the object’s visual region within Ripley’s vi-
sual field, leading to an eight-dimensional representation of space. To connect
these two representations of spatial location, we implemented a coordinate
translation algorithm using principles of forward kinematics and optical pro-
jection combined with knowledge of Ripley’s physical embodiment. All object
positions, regardless of which modality detected them, are transformed into a
two-dimensional space corresponding to positions on the surface of the robot’s
work surface. As currently implemented, the location of an object is repre-
sented deterministically. However, similar to Isla and Blumberg [30], we plan
to extend the implementation to support probabilistic representation of spatial
location by assigning a distribution over possible two-dimensional positions.

When an object is detected by Ripley through touch, the configuration of
the robot’s body provides a six-dimensional value which is an observation
of the indexical sign originating from the physical object. We can consider
body pose to be an input channel, and the proprioceptive sensor reading to
be an observation of an indexical sign. The domain of the input channel spans
Ripley’s permissible body poses. A transformer projection maps indexical ob-
servations into a two-dimensional domain, which can be transformed again to
guide grasping or visual targeting.

To generalize, just as in the case of natural signs, an agent may hold indexical
beliefs using the same forms of representation: analog beliefs and categori-
cal beliefs. Indexical analog beliefs are distributions over possible locations
within a continuous spatiotemporal domain. Indexical categorical beliefs are
distributions over discrete spatiotemporal categories. Categorical beliefs can
be used to represent relative temporal and spatial relationships such as Allen’s
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temporal relations [1] or topological spatial relations [55].

4.13 Parameters in Schemas

Consider now a search routine used by Ripley called detectHandContact that
requires a parameter L, an analog belief defined over a location domain that
the robot can map into arm positions. The routine detectHandContact(L) is
not an action primitive, but instead implements an iterative search procedure
in which the peak value in L is used to select where to reach, and if no hand
contact is detected, the region of L around that peak is set to 0, and the next
highest peak in L is tried.

The same analog belief that guides the hand control routine can also be used
to drive a visual routine, detectV isualRegion(L) which performs a similar vi-
sual search through the control of visual saccades. As we shall see in Section 5,
the use of a shared indexical analog belief as the control parameter for multi-
modal action routines provides a basis for deriving a sensory-motor grounded
semantics of spatial location which can be extended to represent location in
space and time.

4.14 Complex Actions and Abstraction

Building on the idea of parameterized actions, we can now construct structured
schemas representing complex actions which will provide the basis for ground-
ing concrete action verbs. The top schema in Figure 11 gives an example of a
schema for lifting. Examining the schema from left to right, when interpreted
as a control procedure, to lift means to search and find the object (using the
parameter L1 to guide the haptic search), close the gripper, query the gripper
touch sensors, make sure a stable grip is found, and then to move the gripper
to a new location specified by the peak value of another analog belief parame-
ter, L2. The same schema can be denoted by an abstracted schema (bottom)
which shows a single action projection that carries the designer-friendly label
lift and its two indexical analog belief parameters, the source and destina-
tion locations. Note that other implementations of lifting which differ from
the top schema, but which take the same input parameters and lead to the
same change in situations can be represented by the single schema at bottom.
The abstraction process suppresses “by means of” details and retains only the
parametric form of the whole.
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TOUCH stable_grip

senseTouch touchCat moveHand(L2)closeGripdetectHandContact(L1)

successsuccess success

lift ( L1, L2 )

success

Fig. 11. Top: Schema for lift; L1 specifies a distribution over possible start loca-
tions and L2 specifies a distribution over the target completion locations. Bottom:
Abstracted representation of the same schema.

5 Schematization of Objects

Consider what effects, which might conceivably have practical bearings, we
conceive the object of our conception to have. Then, our conception of these
effects is the whole of our conception of the object. (Charles Sanders Peirce,
1878).

We are now able to construct schemas for physical objects using a combination
of natural analog beliefs, natural categorical beliefs, indexical analog beliefs,
sensor projections, categorizer projections, and action projections. We have
already seen some examples of schemas for properties (Figure 10) and complex
actions (Figure 11). Object schemas subsume action and property schemas.
This is in contrast to many previous computational interpretations of schema
theory (e.g., [68, 67]) which take objects as representational primitives distinct
from the actions that act upon them. I believe that for an agent to efficiently
generate affordances 8 of novel situations for dynamically changing goals on
the fly, a practical option is to represent objects, actions, and goals with a
common set of lower level primitives.

My approach to the construction of objects from sensory-motor grounded
primitives is consistent with Drescher’s approach [19]. Drescher’s schema mech-
anism represents an object as a set of expected interactions with the envi-
ronment. Drescher, however, chose not to allow parameterization and other
structuring elements to enter his framework, which led to difficulties in scal-
ing the representation to higher order concepts of the kind I seek to address.
Smith’s conception of the “intentional dance” [72] has also directly influenced
my approach to object perception and conception as a dynamic, constructive
process.

8 Affordances is used here as defined by J.J. Gibson to be a function of both the
external real situation and the goals and abilities of the agent [23].
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senseRegion
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SHAPE = s1
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senseTouch

senseHandLocation
senseHandLocation

senseRegionLocation

touchCat moveHand(L2)closeGrip

detectVisualRegion(L)

detectHandContact(L)

success

successsuccess success

L

Fig. 12. Schema for a tangible (touchable, graspable, moveable, visible) object such
as a cup.

Figure 12 illustrates a schema for a palpable visible object such as a cup. 9

A functionally equivalent structure has been implemented in Ripley as the
object permanence part of the robot’s mental model which coordinates visual
perception, motor control for grasping, and referent binding for speech based
understanding of directives [64].

Let us walk through the main paths of this schema to see how it works. The
handle of this schema is the categorical belief labeled O = cup. Symbolic
names (e.g., “cup”) will be attached to handles of schema types. The domain
of O is a discrete set of possible objects known to the agent. 10 The label
O = cup indicates that this schema encodes beliefs that are held in the case
for which belief within the domain of O is concentrated on the outcome cup.
As with all labels, these are provided for us to design and analyze schemas.
From the agent’s perspective, O is simply a categorical belief which derives
its semantics from its relations to other elements of the schema.

Two action projections connect to the schema handle O. Following first the top
action projection, detectV isualRegion(L) projects a binary accomplishment
categorical belief. Two sensor projections emanate from this categorical belief.
The first, senseRegionLocation feeds back the actual location at which a

9 Arbib, Iberall, and Lyons have also suggested detailed schemas for multimodal
integration of vision and grasping of objects such as cup [3], but their choice of
representational elements do not lead to a semiotic interpretation as I seek in here.
10 Of course the agent may be able to learn new categories of objects and thus
increase the span of the domain over time.
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visual region is found to update L. An agent can execute this path, for instance,
to actively track the location of an object. The senseRegion sensor is attuned
to the output of detectV isualRegion and projects R, an analog belief with
a domain over possible region geometries. Two transformers project (extract)
analog color and shape information about R onto separate analog beliefs. A
categorizer projects the shape analog belief onto a specific shape category
outcome, s1 which corresponds to the shape of cups (if the distribution of
belief in O was concentrated on a different object type, say balls, then the
distribution over the SHAPE categorical belief would shift as well). To specify
a cup of a particular color, the distribution of belief would simply be shifted
accordingly in the COLOR analog belief.

The lower pathway of the schema may look familiar – it is an embedding of the
lift schema that we have already seen (Figure 11). Two feedback loops are used
to update L based on haptic sensation using the senseHandLocation sensory
projection. The indexical L can serve as a coordinator between modalities.
In Ripley, for example, we have implemented a coarse-grained vision-servoed
grasping routine which relies on the fact that a single spatial indexical coher-
ently binds the expected success locations for vision and touch.

The object schema is an organizing structure which encodes various causal de-
pendencies between different actions that the agent can take and expectations
of sensory feedback given that a cup actually exists at L. To believe that a
cup is at L, the agent would be committed to the expectations encoded in this
schema. If the agent executed some of the action projections of the schema
and encountered a failure categorical belief, this would provide cause for the
agent to decrease its belief that O = cup. Conversely, if the agent is unaware
of the presence of a cup, it may inadvertently discover evidence which leads
it to instantiate this schema and thus develop a new belief that there is a cup
at L.

The object schema serves as a control structure for guiding action. Embedded
in the network are instructions for multimodal active perception and manip-
ulation directed towards the object. Given a goal with respect to the object
(e.g., finding out what its color is, or moving it to a new location), the schema
provides predictions of sequences of actions which will obtain the desired re-
sults.

A central aspect of the concept of a cup, that its function is to carry stuff,
is not yet captured in this schema. To represent this, containment of objects
relative to other objects must be represented (Section 5.3).
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5.1 Construction of Objects: Individuation and Tracking

To perceive an object, the agent must instantiate a schema token that stands
for that object. A particular internal information structure within the agent
serves as an “absorber” for signs from the environment which the agent at-
tributes to an individual object. It is by virtue of maintaining a particular
mental absorber over time that the agent conceptualizes individuals over time.
These internal structures stand for entities in the world and provide the agent
with a basis for grounding names and categorical labels that refer to the en-
tities.

Partial evidence may cause an agent to instantiate a complex schema token
that makes various predictions about possible interactions with the object.
The schema is grounded in the actual object because (1) physical signs caused
by the object are transduced by the agent and interpreted into schemas, and
(2) these schemas in turn generate a cluster of expectations of future inter-
actions with the object as observed through future signs. Of course an agent
might make mistakes in the process of interpreting partial evidence, leading
to representational errors. Further interaction with the environment may then
lead the agent to revise its beliefs.

5.2 Ambiguity and Error in Interpretation

A sign may give rise to multiple possible interpretations. For instance, any tan-
gible object may be placed within an agent’s path leading to physical contact.
The resulting unanticipated categorical belief (from, say, detectHandContact)
might have been caused by any physical object, not just a cup. Prior context-
dependent beliefs encoded as a distribution over O play an important role in
such cases. If the agent has an a priori basis for limiting expectations to a re-
duced set of objects, then ambiguity is reduced at the outset. If an agent knows
it is indoors, the priors on things usually found outdoors can be reduced.

Regardless of how low the entropy of an agent’s priors may be, sensory aliasing
is a fact of life. A circular visual region impinging on an agent’s retina might
signal the presence of a ball, a can viewed from above, a flat disc, and so forth.
In response, the agent might instantiate multiple schema tokens, one for each
significantly likely interpretation.

An agent may misinterpret signs in two ways. First, if the agent detects a
novel object for which it has not matching schema type, it will be impossible
for it to instantiate an appropriate schema in response to signs of the objects.
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O1 = cupL1
at

O2L2
at

contact

spatialCat

L0

contain(L0, L1)

spatialCat

Fig. 13. The situation corresponding to, “There is a cup here. Something is touching
the cup.”

If the potential number of schemas is too large, a pragmatic approach for the
agent might be to instantiate a likely subset, which can be revised on the basis
of future observations. Error may enter in the process of deciding on the likely
subset. For example, if a robot detects a visual sign of a distant visual region,
this might be a sign of virtually any object it has schematized. By applying
prior probabilities on what objects are expected at that time and place, the
robot can instantiate only the most likely subset of schemas. However if the
priors do not match that particular context, none of the instantiated schemas
will predict future interactions with the object, and thus the interpretation is
in error.

If the agent needs to disambiguate the type of object that caused the am-
biguous sign, its course of action lies within the schemas. The instantiated
alternative schemas are represented in terms of expected outcomes of actions,
and so the agent can choose to execute actions which predict maximally differ-
ent outcomes for different object classes. For the disc-ball-can problem, simply
leaning over to obtain a view from a side perspective will suffice.

5.3 Situation Schemas

A situation is represented by linking schemas via their indexical elements.
Figure 13 shows the schema corresponding to “There is a cup here. Something
is touching the cup”. Only the handle categorical beliefs of the objects O1 and
O2 are shown, along with their associated indexical analog beliefs L1 and L2.
I use the notational shortcut of the at link to summarize object schemas by
their handles and associated indexical analog belief. No expected outcome
of O2 is specified, indicating a high entropy belief state with respect to O2’s
type. A pair of categorizers projects beliefs about spatial relationships between
L1 and L2, and between L1 and L0. The projected categorical belief labeled
contact serves as a situational constraint and encodes the belief that a contact
relationship exists between L1 and L2.
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L0 is a default spatial indexical analog belief corresponding to “here”. L0’s
domain spans the default spatial operating range of the agent which depends
on the agent’s embodiment. A second spatial relation categorical belief encodes
the belief that the cup is contained within L0. For Ripley, L0 is the surface of
a table in front of Ripley which is the only area that Ripley is able to reach.

To represent “the ball is in the cup”, the situational constraint between L1
and L2 is changed to contain(L1, L2), a topological spatial relation. To rea-
son about embedded indexical relationships during goal pursuit, relational
constraints must be taken into account. For example, if the agent wishes to
find the ball but can only see the cup, belief in a containment or contact
relationship between the ball’s indexical analog belief and the cup’s indexical
analog belief support the inference that the ball will be found in the proximity
of the cup.

Clearly there is much more to be modeled with regards to spatial relations.
The complexities of spatial terms such as “in” are well researched [28] and
very detailed geometric models are required to capture spatial relations that
depend not only relation locations of objects, but also their orientations and
specific shapes [56, 57]. Beyond modeling geometry, functional criteria also
play a crucial role [16]. For example, an apple that is at the top of a heaping
bowl of fruit is still said to be “in” the bowl, even though it is not geometrically
contained by the bowl, because the bowl affords control over the location of
the apple (if the bowl is moved, so is the apple). A promising future direction
is to model the interaction of functional and geometric factors (see [11] for
preliminary steps). For example, a mobile robot could ground its understand-
ing of “in the corner” in terms of how the corner restricts the robot’s potential
motion. Such an approach would introduce constraints from motor control to
ground spatial language.

5.4 Negation, Disjunction, and Explicit Representations

Certain forms of negation are handled naturally in the proposed framework,
others are more problematic. In Ripley’s world, some objects can be seen
but not touched because they are flat (e.g., photographs). The distinction
between tangible visible objects and intangible yet visible objects is handled by
replacing the success categorical belief projected by detectHandContact(L) in
Figure 12 with fail, and by removing all outgoing edges from that categorical
belief. In effect, the schema encodes the belief that the two kinds of objects are
identical except that for photographs, the haptic pathway is expected to fail.
The intangible object’s indexical analog belief L is refreshable only through
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visual verification.

Difficult cases for handling negation arise from possible world semantics. For
example, we might want to tell an agent that “there are no cups here”. This
sort of negative description is unnatural to represent in the approach I have
outlined since the agent explicitly instantiates structures to stand for what it
believes to be the case. The representation might be augmented with other
forms of belief, perhaps explicit lists of constraints based on negations and
disjunctions which are compared against explicit models to look for conflicts,
but these directions are beyond the scope of this paper.

Although the difficulty with existential negation and disjunction might seem
to be a serious weakness, there is strong evidence that humans suffer from very
similar weaknesses. For example Johnson-Laird has amassed evidence that hu-
mans make numerous systematic errors in dealing with existential logic that
are neatly predicted by a theory of mental models according to which humans
generate specific representations of situations and reason with these explicit
models even in cases where they know the models are overly specific [32]. Sim-
ilar constraints on mental representations of machines may lead to a better
“meeting of the minds” since systems that conceive of their environment in
similar ways can talk about them in similar ways. From a computational per-
spective, I believe my approach is closely related to Levesque’s idea of “vivid
representations”, which have difficulty dealing with certain classes of existen-
tial negation and disjunction for similar reasons [38]. Levesque has argued
that the choice of vivid representations is defendable when practical concerns
of computational tractability are taken into account.

5.5 Event Schemas

Events are partial changes in situations. In Figure 14, an indexical anchor for
time binds groups of spatial analog beliefs from two situations at two different
points in time (indicated by the two large rectangular frames). Temporal ana-
log beliefs (T1 and T2) encode regions along a one-dimensional local timeline
exactly analogous to the two-dimensional spatial domain for spatial indexicals
in Ripley. A temporal categorizer temporalCat projects the categorical belief
after(T2, T1), specifying that the situation on the right follows in time.

In the initial situation at T1, a ball is believed to be contained in a cup,
which is contained in the default spatial domain. At some later time T2, the
containment relation between the ball and cup becomes invalid – the agent
places zero belief in the outcome contain(L1, L2). Only changes from T1 are
indicated in the situation for T2 – all other aspects of the original situation are

30
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O2 = ballL2
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L2

~ contain(L1, L2)

during
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temporalCat

after(T2,T1)

categorizer

Fig. 14. The situation corresponding to, “The ball was in the cup. Now it is not.”

assumed unchanged. Like actions, events may be represented at higher levels
of abstraction to suppress “by means of” details, retaining only higher level
representations about changes of state. At one level the particular trajectory
of the motion of a cup might be specified, at a higher level only the before-after
change in position and orientation.

6 Intentional Signs

The representational foundations are finally in place to address the motivation
behind this entire theoretical construction: grounding language. Recall that
there are three classes of signs. We have covered natural and indexical signs.
The final class of signs, intentional signs, are used by agents for goal-driven
communication.

Speech acts are the canonical intentional sign. Viewed from a Gricean perspec-
tive [26], speech acts are chosen by rational agents in pursuit of goals. I say
“the coffee is cold” to convince you of that fact, and by Gricean implicature,
to issue a directive to you to bring me hot coffee. Intentional signs are emitted
by an agent into the environment. Like all signs, intentional signs are physical
patterns that stand for something to someone. In the case of intentional signs,
as opposed to natural and indexical signs, the link from sign to signified is
established by conventions agreed upon by a community of intentional sign
users. Gestures such as pointing may also constitute intentional signs but are
not addressed here.

Speech acts are assembled from lexical units (words and other elements of the
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lexicon) using a grammar. Since my focus will be on primitive descriptive and
directive speech acts, sophisticated grammars are not needed, only basic rules
that map serial order to and from thematic role assignments. For this reason
I will not say much more about parsing and grammar construction here 11

but instead simply assume the requisite primitive grammar is available to the
agent.

6.1 Lexical Units (Words)

Figure 15 shows the internal representational structure of a word. A fifth
type of projection is introduced in this figure, an intentional projection. This
projection is an indicator to the agent that the sign projected by it, in this
case the categorical belief labeled “cup”, is a conventional projection, i.e., one
that can only be interpreted in the context of communicative acts. Intentional
projections block interpretative processes used for natural signs since hearing
“cup” is not the same as seeing a cup. Hearing the surface form of the word
that denotes cups will be interpreted differently depending on the speech act
within which it is embedded in (consider “there is a cup here” versus “where
is my cup?”).

O = cup LEX = "cup"

SPEECH

speechCat

speechGen

SPEECH

speak

senseSpeech

Fig. 15. The structure of a grounded word.

The domain of LEX in Figure 15 is the discrete set of all lexical units known
to the agent. The agent using the schema in Figure 15 is able to convert
discrete lexical units into surface forms in order to emit them into the envi-
ronment through speak actions, hopefully in earshot of other agents attuned
to speech through senseSpeech or functionally equivalent sensor projections.
The speechCat categorizer has been implemented in our systems using stan-
dard statistical methods of continuous speech recognition using hidden Markov
models. To invert the process, a sixth and final type of projection is intro-
duced. SpeechGen is a generator projection which produces an analog sign

11 Elsewhere, we have explored the relationship between grammar acquisition and
visual context [60, 61] and the interaction of visual context on parsing of text [25]
and speech [65].
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corresponding to a categorical belief. Since the mapping from analog to cat-
egorical signs is one-to-many, the inversion of this process leaves room for
variation. If categories are formed on the basis of thresholds on, or compe-
tition between prototypes, then prototypes are natural choices as outputs of
generator projections. In previous work on visual-context guided word acqui-
sition, we implemented word structures that are consistent with the schema
in Figure 15 in which speechGen and speechCat shared acoustic prototypes
of word surface forms [60].

Word schemas can be connected to various schemas within an agent’s store
of schema types. I have made suggestions of ways by which schemas provide
grounding for several classes of lexical units. We have seen examples of schemas
for properties including visual property names (“red”, “round”), affordance
terms (“soft”, “heavy”), spatial and temporal relation labels (“touching”,
“before”), verbs (“lift”, “move”), and nouns (“cup”, “thing”). In addition,
the very notion of an individual arises from the act of instantiating and main-
taining particular schemas, providing the basis for proper nouns and binding
of indexical terms (“that cup”, or more persistent proper names).

6.2 Using Speech Acts

As a basic classification scheme for communicative acts, Millikan has suggested
the distinction between descriptive and directive acts [42] . Descriptives are
assertions about the state of the world and are thus akin to natural signs (as-
suming the speaker can be trusted). Directives are fundamentally different –
they are requests for action (including questions, which are requests for infor-
mation). A speech act may be both descriptive and directive. In the situation
depicted in Figure 2, “This coffee is cold” is a descriptive (it describes the
temperature of a particular volume of liquid) and perhaps also a directive (it
may imply a request for hot coffee). In systems we have constructed to date,
only the more literal interpretation of speech acts have been addressed, thus I
will limit the following discussion to this simplest case. I first discuss how the
framework handles directives, and then descriptives.

Directives are understood by agents by translating words into goals. The
agent’s planning mechanisms must then select actions to pursue those goals
in context-appropriate ways. This approach suggests a control-theoretic view
of language understanding. If we view a goal-directed agent as a homeostasis
seeking organism, directive speech acts are translated by the agent into partial
shifts in goal states which effectively perturb the organisms out of homeostasis.
This perturbation causes the agent to act in order to regain homeostasis.
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In our schema notation, a goal is represented using a dashed outline for the
appropriate analog or categorical distribution which the agent must satisfy
in order to satisfy the goal. These may be called analog goals or categorical
goals. A transition ending in a spreading set of three rays (an iconic reminder
that goals are reached for) connects the analog belief as it is currently believed
to be to the desired target value. In Figure 16, the agent has set the goal of
changing the cup’s location such that the containment relation holds. This
corresponds to the directive, “Put the cup on the plate”.

O = cup
atgoal

L2L2

categorizer

contain(L1, L2)

O = plate
at

L1

Fig. 16. “Put the cup on the plate.”

Ripley understands limited forms of directives such as, “touch the bean bag
on the left”, or, “pick up the blue one”. To perform the mapping from speech
acts to goals, the output of a small vocabulary speech recognizer is processed
by a parser [25] which is integrated with Ripley’s control system and mental
model architecture [64]. In some cases, a directive will lead Ripley to collect
additional information about its environment before pursuing the goal set by
the directive. For example, if the robot is directed to “hand me the heavy one”,
but the weights of the objects in view are unknown, Ripley’s planning system
uses the implicit control structure of the schema underlying “heavy” 12 to lift
and weigh each candidate object to determine which best fits the bill. Details
of Ripley’s planning algorithms are forthcoming. There are of course many
other kinds of directives, but in essence, I believe treating the comprehension
of directives as a problem of translation into goal schemas is a productive path
forward (for another implementation along these lines see [33]).

A higher order verbal behavior, one that we have not yet explored, is the
generation of directive speech acts. To produce goal-directed directives in a
principled way, the agent must be able to plan with the use of instruments,
and treat communication partners as instruments who can be controlled by
influencing their goals through speech acts. This in turn requires that the
speaker have some degree of “theory of other minds” in order to reason about
the goals and plans of other agents. This asymmetry between the cognitive
requirements of language understanding and language generation might in

12 The words “heavy” and “light” are grounded in active perception schemas similar
to those for “soft” and “hard” shown in Figure 10. Accumulation of joint forces
during lifting project the weight of objects.
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part explain why language comprehension always leads production in child
language development.

Understanding descriptive speech acts is treated in a similar vein as inter-
preting natural signs since both provide information about the state of the
world. An interesting challenge in understanding descriptive acts is the prob-
lem of under-specification in linguistic descriptions. “The cup is on the table”
tells us nothing about the color, size, orientation, or precise location of the
cup. Looking at a cup on the table seems to provide all of this information at
first sight, although change blindness experiments demonstrate that even short
term memory encoding is highly goal-dependent (I might recall meeting some-
one yesterday and the topic of our conversation, but not the color of her shirt).
The framework allows for various forms of descriptive under-specification. For
example, to express uncertainty of spatial location, belief can be spread with
high entropy across the domain of an indexical analog belief.

Generation of descriptive speech acts, like generation of directives, also re-
quires some ability to maintain theories of other minds in order to anticipate
effective word choices for communicating descriptions. The Describer system
[61] uses an anticipation strategy to weed out descriptions of objects which the
system predicts will be found ambiguous by listeners. But this implementation
barely scratches the surface of what eventually must be modeled.

There are numerous ideas which we could explore at this point ranging from
context-dependency of word meanings (categorizers may receive bias shift sig-
nals from other categorizers, for example, to differentiate heavy feathers from
light elephants) to the definition of connotative meanings for an agent (as
long term summary statistics of objects, properties, and actions in their like-
lihood to assist or block goals – heavy objects probably block more goals
of a low powered manipulator whose goal is to move things around, so the
robot would develop a negative connotation towards the concept underlying
“heavy”). Given our lack of specific implementations to flesh out such ideas,
however, I will not attempt to elaborate further.

7 Taking Stock

A summary of the elements of the theory provides a complete view of the
framework developed thus far:

(1) Three classes of signs, natural, indexical, and intentional, carry different
kinds of information for agents.
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(2) Agents hold beliefs about analog signs (analog beliefs), and beliefs about
discrete categories (categorical beliefs).

(3) Six types of projections (sensors, actions, transformers, categorizers, in-
tentional projections, and generators) link beliefs to form schemas. Sensor
and action projections are transducers that link schemas to physical en-
vironments.

(4) Schemas may use parameters to control actions.
(5) Objects are represented by networks of interdependent schemas that en-

code properties and affordances. Object schemas subsume property and
action schemas.

(6) Using schemas, an agent is able to interpret, verify, and guide actions
towards objects, object properties, spatiotemporal relations, situations,
and events.

(7) Lexical units are pairs of analog beliefs (encoding surface word forms) and
categorical beliefs (encoding lexical unit identity) connected to defining
schemas through intentional projections.

(8) Speech acts are intentional signs constructed from lexical units.
(9) Two kinds of intentional signs, descriptive and directive, are used to com-

municate.
(10) Directive speech acts are interpreted into goal schemas that an agent may

choose to pursue.
(11) Descriptive speech acts are interpreted into existential beliefs represented

through schemas which are compatible with (and thus may be verified
and modified by) sensing and action.

In my introductory remarks I highlighted the referential-functional duality of
linguistic meaning. I defined grounding to be a process of predictive-causal
interaction with the physical environment. Finally, I proposed three require-
ments for any theory of language grounding. Let us briefly review how the
theory addresses these points.

Both aspects of meaning are addressed to some degree in the framework:
(1) Words are about entities and situations in the world. Words project to
schemas which are constructed out of beliefs about signs, and signs are about
the world due to causal physical laws. The choice of a word’s surface form
is arbitrary and conventional, but the underlying mapping of its categorical
belief is shaped by causal-predictive interactions with the environment. Lan-
guage use is situated via indexical beliefs constructed in the process of using
language. (2) Agents use language to pursue goals. Since all schemas may serve
as guides for controlling action, and words are defined through schemas, the
very representational fabric of word meanings may always be viewed from a
functional perspective.
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Schemas are networks of beliefs. Beliefs are both memories of what has tran-
spired, and also predictions of what will transpire (contingent on action).
This dual use of belief structures satisfies the predictive-causal definition of
the grounding process provided in Section 2.

Finally, we may assess the framework with respect to the three requirements
proposed in Section 3:

(1) Unification of representational primitives: Objects, properties, events, and
higher level structures are all constructed from a unified set of analog be-
liefs, categorical beliefs, and six types of projections.

(2) Cross-modal Translatability: Natural signs, indexical signs, and inten-
tional speech acts are interpreted into schemas. Directive speech acts
are interpreted as goal schemas. Descriptive speech acts (which are of-
ten vague when compared to perceptually derived descriptions) are in-
terpreted into compatible schematized belief structures. In other words,
speech acts (intentional signs) are translated into the same representa-
tional primitives as natural and indexical signs.

(3) Integrated space of actions: Although not explored in this paper, the
framework lends itself to decision theoretic planning in which the costs
and expected payoffs of speech acts and motor acts may be fluidly inter-
leaved during goal pursuit.

8 Social Belief Networks

In Section 2 I gave a relatively stringent definition of grounding that requires
the believer to have direct causal-predictive interaction with the physical sub-
jects of its beliefs. The theoretical framework I have developed does just this
– it provides structured representations of various concepts underlying words
and speech acts that are grounded strictly in sensory-motor primitives. But
of course most of what we know does not come from first hand experience –
we learn by reading, being told, asking questions, and in other ways learning
through intentional signs. I argued that to make use of symbolically described
information, an agent needs an independent path to verify, acquire, and modify
beliefs without intermediaries. Building on this, social networks may collec-
tively ground knowledge that not all members of community can ground. I
depict such networks of belief amongst agents in Figure 17. Everything we
have discussed thus far may be denoted by the graph on the left. It shows a
single agent that holds the belief B(x) about the world. The world (denoted as
the rectangle with a electrical ground sign at bottom) indeed contains x and
causally gives rise to B(x) as indicated by the upwards arrow. The downward

37



B(x)

B(x)B(x)

x

Agent 1 Agent 4

Agent 3

B(x)

Agent 2

B(x)

x

Fig. 17. Social belief networks.

arrow from the agent back to the world denotes that the agent has the ability
to verify B(x) by interacting directly with the physical environment.

The right panel of Figure 17 shows a community of four agents. Only Agent
1 has full and direct grounded beliefs in x. Agent 2 came to know about x
through intentional signs transmitted from Agent 1. Agent 2’s only way to
verify x is to ask Agent 3. Agent 3 also learned of x from Agent 1, but is able
to verify by asking either Agent 1 or Agent 4. This kind of graph is reminiscent
of Putman’s linguistic division of labor [54] in which an expert about x (Agent
1) grounds beliefs about x on behalf of others in the belief network. The claim
I began with is that there exists some basic set of concepts about the world we
all share which each agent must ground directly for itself, and that language
uses these shared concepts to bootstrap mediated networks such as the right
side of Figure 17. The ubiquitous use of physical metaphor in practically all
domains of discourse across all world languages [36] is a strong indication that
we do in fact rely on physical grounding to as the basis of conceptual alignment
underlying symbolic communication.

9 Related Ideas

The theory I have presented brings together insights from semiotics (the study
of signs) dating back to Peirce with schema theory dating back to Kant. There
is a great deal of prior work on which the theory rests. Rather than attempt
a comprehensive survey, I highlight selected work that is most closely related
and that I have not already mentioned elsewhere in the paper.

Perhaps the most well known early work in this area is the SHRDLU system
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constructed by Winograd [76]. This work demonstrated the power of tight
integration of language processing within a planning framework. A key dif-
ference in Winograd’s work was the assumption that the language user has a
complete, symbolically described world model (blocks on a table top in the
case of SHRDLU). The issue of word-to-physical-world connectedness was not
a concern in Winograd’s work. As a result, his approach does not lead in
any obvious way to the construction of physically grounded language systems.
Categorization is not addressed in SHRDLU whereas a central aspect of the
approach I have described here is the processes by which analog signs are
transformed into categorical signs, and the resulting distinction between ana-
log and categorical beliefs. Many of Winograd’s insights on the interaction of
planning, dialog, and reference, however, remain highly relevant for the the-
ory I have presented here, and indeed complement the issues I have addressed.
Over a decade after SHRDLU, Winograd and Flores [77] wrote a critique of
symbolic AI including the methods employed by SHRDLU. The gist of this
critique is to point out the interpretive “sleight of hand” that tends to underlie
symbolic AI systems such as SHRDLU, and the ascriptive errors AI practi-
tioners made in using terms such as “understanding” to describe such systems
(see also [53]). A key reason for this ascription error was that the systems were
unable to link symbols to their physical environment without a human in the
loop. In contrast, grounded language systems address this limitation.

Minsky’s conception of frames [43] is similar in spirit to my approach. Frames
are data structures that represent stereotyped situations, and are instanti-
ated to interpret experienced situations much as I have suggested the role of
schemas here. Minsky suggests frames as a structure for interpretation, verifi-
cation, and control as I have for schemas. Minsky’s paper covered a far wider
range of domains, and thus naturally provided less specific details on any one
domain. In contrast, the theory I have outlined is focused specifically on ques-
tions of language grounding and reflects specific structures that arose from a
concerted effort to build language processing systems.

Schank and Abelson [68] developed a theory of scripts which are organizing
knowledge structures used to interpret the meaning of sentences. Scripts are
highly structured representations of stereotyped situations such as the typi-
cal steps involved in eating a meal at a restaurant. Scripts are constructed
from a closed set of 11 action primitives but an open set of state elements.
For example, to represent the stereotyped activities in a restaurant script,
representational state primitives include hungry, menu, and where-to-sit. In
contrast, I have suggested a theory which avoids open sets of symbolic primi-
tives in favor of a closed set of embodiment-dependent primitives.

Several strands of work by cognitive scientists and linguists bear directly on the
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topics I have discussed. Bates and Nelson have proposed constructivist analy-
ses of early language development [9, 46]. The computational framework pre-
sented here is compatible with both of their approaches. Miller and Johnson-
Laird compiled perhaps the most comprehensive survey to date of relationships
between language and perception [41]. Barsalou’s perceptual symbol system
proposal [7] stresses the importance of binding symbols to sensory-motor rep-
resentations, as evidenced by recent experiments that probe the embodied na-
ture of cognitive processes [24, 73]. Barsalou’s proposal emerged from human
behavioral experiments as opposed to construction of systems, and as a result
provides a more descriptive account in contrast to the computational level of
explanation I have attempted here. Jackendoff [31] presents a compelling view
on many aspects of language that have influenced my approach, particularly
his ideas on “pushing the world into the mind”, i.e., treating semantics from
a subjective perspective.

Some noteworthy approaches in the robotics community are closely related
to the use of schemas I have proposed. Kuipers’ Semantic Spatial Hierarchy
suggests a rich multilayered representation for spatial navigation [35]. This
representation provides a basis for causal-predictive grounding in spatial do-
mains which I believe might be of great value for grounding spatial language.
Grupen’s work on modeling affordances [13] intermingles object and action
representations and also deserves further study from a language grounding
perspective.

Bailey [5] and Narayanan [44] propose the use of modified forms of Petri nets
(a formalism used to model concurrent, asynchronous control flow in networks)
to model schema-like structures underlying natural language verbs. Bailey’s
representation of manipulation actions is similar to ours (Bailey’s implemen-
tations were based on a simulated robot arm). Narayanan used modified Petri
nets as a basis for understanding abstract economic news stories by analogy
to underlying physical action metaphors (e.g., “the economy hit rock bot-
tom”). Siskind [70] proposed an approach to modeling perceptually grounded
representations underlying manipulation verbs by combining force dynamics
primitives with Allen’s temporal relations [1]. The representation of events pro-
posed by Bailey, Narayanan, and Siskind are all able to model more complex
event structures than the approach I have presented here based on sequences
of situation schema. However, my approach provides a holistic account for ac-
tions and other ontological categories such as objects, properties, and spatial
relations, whereas these other approaches focus only on event structure. An
interesting direction would be to investigate ways to incorporate the more ex-
pressive power of Petri nets or Siskind’s representation to augment the schema
structure while retaining the holistic nature of the framework I have presented.
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Littman, Sutton and Singh [39] have proposed the idea of predictive represen-
tations of state through which states of a dynamical system are represented as
“action conditional predictions of future observations”. The exact relationship
between those ideas and the ones I have presented will require detailed study,
but it seems to be very similar in spirit if not formulation. Also closely related
is Cohen’s work with robots that learn “projections as concepts” [14] which
have been linked to linguistic labels leading to a limited form of language
grounding [15].

10 Meaning Machines

There are many important questions that this framework raises that I have
not begun to address. Where do schemas made of analog beliefs, categorical
beliefs, and projections come from? How and to what extent can their struc-
ture and parameters be learned through experience? How might hierarchical
structures be used to organize and relate schemas? What kind of cognitive
architecture is needed to maintain distinct schematic beliefs and desires? How
does an agent perform efficient inference and planning with them? How are ab-
stract semantic domains handled? How are higher level event, action, and goal
structures organized to support more sophisticated forms of inference and so-
cial interaction? These are of course challenging and deep questions that point
to the immense number of future directions suggested by this work.

The framework introduced in this paper emerged from the construction of
numerous grounded language systems that straddle the boundary of symbolic
and non-symbolic realms. In contrast to models that represent word meaning
with definitions made of word-like symbols, I have taken a semiotic perspective
with the intent of unifying language, perception, and action with a small
number of representational primitives. Systems implemented according to this
framework transduce the physical world of patterns and into an inner “mental
world” of beliefs that are structured to support linguistic communication.

Although most language in adult conversation does not refer to the concrete
physical world, I have motivated my focus on concrete semantics by two main
observations about human communication. First, children bootstrap language
acquisition by conversing about their immediate environment – human se-
mantics is physically anchored. Second, a shared external reality, revealed to
agents through physical patterns, is the only way to explain why conceptual
systems are aligned across agents to any degree at all, and thus why we can
communicate with one another. If we are going to bring machines into our
conceptual and conversational world as autonomous agents that understand
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the meaning of words for and by themselves – that truly mean what they say
– grounding will play a central role.
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