
ar
X

iv
:c

s.
R

O
/0

00
60

07
 v

1 
  2

 J
un

 2
00

0

Detecting Novel Features of an Environment Using Habituation ∗

Stephen Marsland Ulrich Nehmzow Jonathan Shapiro
Department of Computer Science

University of Manchester

Oxford Road

Manchester M13 9PL

{smarsland, ulrich, jls}@cs.man.ac.uk

Abstract

In this paper a novelty filter is introduced which
allows a robot operating in an unstructured envi-
ronment to produce a self-organised model of its
surroundings and to detect deviations from the
learned model. The environment is perceived us-
ing the robot’s 16 sonar sensors. The algorithm
produces a novelty measure for each sensor scan
relative to the model it has learned. This means
that it highlights stimuli which have not been pre-
viously experienced. The novelty filter proposed
uses a model of habituation. Habituation is a
decrement in behavioural response when a stim-
ulus is presented repeatedly. Robot experiments
are presented which demonstrate the reliable op-
eration of the filter in a number of environments.

1. Introduction

The ability to detect and respond suitably to novel
stimuli, that is new or changed features within an
environment, is very useful to animals and robots.
Studies have shown that animals can rapidly recognise
changes in their environment (O’Keefe and Nadel, 1977,
Knight, 1996). This ability has two main pur-
poses - to avoid predators and to find potential
food (Pribram, 1992). This paper describes an algorithm
suitable for detecting novel stimuli and applies it to an
autonomous agent. The filter learns to recognise fea-
tures which it has seen before and evaluates the novelty
of sonar scans taken as a robot explores an environment.

Experiments are presented which demonstrate that
the algorithm can learn an internal representation of
one environment and then use this model in a second,
similar, environment to detect new features which were
not present in the first environment. The system could
therefore be used in inspection tasks, being trained in a
section of the environment that is known to be ‘clean’,
i.e., containing no undesired features. Having learned in
the ‘clean’ environment, the robot could move into the
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wider area, highlighting those features which were novel.
These would be features which were not present in the
original environment. A novelty filter can also be used to
direct the attention of the robot to new stimuli, so that
the amount of processing needed to deal with its sensory
perceptions can be reduced. It can also be used to decide
when a feature should be learned by recognising that it
is new, that is, different to previous perceptions.

1.1 Habituation

Habituation – a reduction in behavioural response
when a stimulus is perceived repeatedly – is thought
to be a fundamental mechanism for adaptive be-
haviour. It is present in animals from the sea slug
Aplysia (Bailey and Chen, 1983, Greenberg et al., 1987)
to humans (O’Keefe and Nadel, 1977) through
toads (Ewert and Kehl, 1978, Wang and Arbib, 1992)
and cats (Thompson, 1986). In contrast to other forms
of behavioural decrement, such as fatigue, a change in
the nature of the stimulus restores the response to its
original level - a process known as dishabituation. In
addition, if a particular stimulus is not presented for a
period of time, the response is recovered, a form of ‘for-
getting’. An overview of the effects and causes of habit-
uation can be found in (Thompson and Spencer, 1966,
Peeke and Herz, 1973).

A number of researchers have produced mathematical
models of the effects of habituation on the efficacy of
a synapse. They include Groves and Thompson, Stan-
ley, and Wang and Hsu (Groves and Thompson, 1970,
Stanley, 1976, Wang and Hsu, 1990). The models are
similar, except that Wang and Hsu’s allows for long term
memory, while the others do not. Long term memory
means that an animal habituates more quickly to a stim-
ulus to which it has habituated previously. For simplic-
ity, the model which is used in the work presented here is
that of Stanley. In his model the synaptic efficacy, y(t),
decreases according to the following equation:

τ
dy(t)

dt
= α [y0 − y(t)] − S(t), (1)

where y0 is the original value of y, τ and α are time
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Figure 1: An example of how the synaptic efficacy drops

when habituation occurs. In both curves, a constant stimulus

S(t) = 1 is presented, causing the efficacy to fall. The stimulus

is reduced to S(t) = 0 at time t = 60 where the graphs rise

again, and becomes S(t) = 1 again at t = 100, causing another

drop. The two curves show the effects of varying τ in equation 1.

It can be seen that a larger value of τ causes both the learning

and forgetting to occur faster. The other variables were the

same for both curves, α = 1.05 and y0 = 1.0.

constants governing the rate of habituation and recovery
respectively, and S is the stimulus presented. A graph
of the effects of the equation can be seen in figure 1.

1.2 Novelty Detection

Habituation can be used to detect novel stimuli in a
very simple way. A series of habituating neurons can
be used to build an internal representation of perceived
stimuli, and then stimuli not included in this model
will be the only ones which reach the attention of
the animal. It has been suggested (Heiligenberg, 1980,
Grau and Bastian, 1986) that pulse-type weakly electric
fish use a mechanism similar to this when they use the
returns from weak electric pulses to sample their environ-
ment. Heiligenberg (Heiligenberg, 1980) suggests that
the fish store a ‘template’ of responses received from
their environment, and detect novelty with respect to
this memory, changing the template if novel stimuli re-
main for several samples.

1.3 Related Work

A number of novelty detection techniques have been pro-
posed in the neural network literature. Most of them
are trained off-line. For example, the Kohonen Nov-
elty Filter (Kohonen and Oja, 1976, Kohonen, 1993), is
an autoencoder neural network trained using back-
propagation of error, so that the network extracts the
principal components of the input. After training, any
input presented to the network produces one of the

learned outputs, and the bitwise difference between in-
put and output highlights novel components of the input.
Several authors have investigated the effects of this filter,
notably Aeyels (Aeyels, 1990) who added a ‘forgetting’
term into the equations.

Other approaches include that of Ho and Rouat
(Ho and Rouat, 1998), who used an integrate-and-fire
model inspired by layer IV of the cortex. Their model
measures how long an oscillatory network takes to con-
verge to a stable solution, reasoning that previously seen
inputs should converge faster than novel ones.

Several researchers have used the gated dipole
(Grossberg, 1972), a construct which compares cur-
rent and recent values of a stimulus. Levine and
Prueitt (Levine and Prueitt, 1992) used it to compare
inputs with pre-defined stimuli, novel inputs caus-
ing greater output values. They proposed a model
where a number of gated dipoles were linked into
a ‘dipole field’ and used it to model novelty pref-
erence in frontally lesioned rhesus monkeys. The
gated dipole has also been used by Öǧmen and
Prakash (Öǧmen and Prakash, 1997) who used it as part
of a system to control a robot arm, which moved its
end effector to places which were novel. This was
done by quantising the workspace and associating a
gated dipole with each separate area. Their work
also considered the question of detecting novel objects.
They did this by taking the output of an ART net-
work (Carpenter and Grossberg, 1988), which attempts
to classify the objects into a number of categories, and
feeding it into a network of gated dipoles.

Ypma and Duin (Ypma and Duin, 1997) proposed a
novelty detection mechanism based on the self-organising
map. The distance of the winning neuron from neigh-
bourhoods which have fired recently was calculated,
and those beyond a certain threshold were counted as
novel. This method was used by Taylor and MacIn-
tyre (Taylor and MacIntyre, 1998) to detect faults when
monitoring machines. The network was trained on data
taken from machines operating normally, and data de-
viating from this pattern was taken as novel. This
is a common technique when faced with a problem
for which there is very little data in one class, rel-
ative to others. Examples include machine break-
downs (Nairac et al., 1999, Worden et al., 1999) and
mammogram scans (Tarassenko et al., 1995). Often su-
pervised techniques such as Gaussian Mixture Mod-
els or Parzen Windows are used, and the problem re-
duces to attempting to recognise when inputs do not
belong to the distribution which generates the normal
data (Bishop, 1994). The method proposed by Ypma
and Duin relies very strongly on the choice of thresh-
old and on the properties of the data presented to the
network, which must form strictly segmented neighbour-
hood clusters without much spread.
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Figure 2: The novelty filter. The input layer connects to a

clustering layer which represents the feature space, the winning

neuron (i.e., the one ‘closest’ to the input) passing its output

along a habituable synapse to the output neuron so that the

output received from a neuron reduces with the number of times

it fires.

Growing networks such as Adaptive Resonance The-
ory (ART) (Carpenter and Grossberg, 1988) can be used
to define as novel those things which have never been
seen before, by using a new, uncommitted node to rep-
resent them. The use of habituation allows novelty to
be defined more specifically as those things which have
not been seen in the current context. The filter does this
by learning an online, adaptive representation of the cur-
rent environment. Habituation also allows the novelty of
a stimulus to be evaluated, so that the novelty reduces
with perception over time. The combination of the two
ideas, amalgamating growing networks with habituation
has been considered in (Marsland et al., 2000).

2. The Habituating Self-Organising Map
(HSOM)

This section introduces the novelty filter on which this
work is based. An input vector is presented to a clus-
tering network, which finds a winning neuron using a
winner-takes-all strategy. Each neuron in the map field
is connected to the output neuron (see figure 2) via a
habituable synapse, so that the more frequently a neu-
ron fires, the lower the efficacy of the synapse and hence
the lower the strength of the output. The behaviour
of the habituable synapses is controlled by equation 1.
The strength of the winning synapse is taken as a nov-

elty value for the particular winning neuron, and hence
the perception presented, with more novel stimuli hav-
ing values closer to 1, and more common stimuli values
closer to 0.

There are two choices of how to deal with the output
synapses of neurons which do not belong to the winning
neighbourhood. They could be left without any input,
so that they do not habituate and their value remains
unchanged, or, instead, a zero input (S(t) = 0) could
be given. In this case the synapses will ‘forget’ previ-
ous inhibition over time, with the time controlled by the
constant τ . This can be seen in the second, ascending
part of figure 1. In the results presented here the net-
work remembers all perceptions, forgetting is not used
and the synapses of neurons which are not in the winning
neighbourhood do not receive any input.

In the implementation described below, a Koho-
nen Self-Organising Map (SOM) implementing Learn-
ing Vector Quantisation (Kohonen, 1993) is used as
the clustering mechanism. Kohonen networks are of-
ten used for problems dealing with robot sensory in-
puts (Kurz, 1996). Although guaranteeing convergence
of a two dimensional network is still an unsolved prob-
lem (Erwin et al., 1992), the network performs a useful
dimensionality reduction and clusters the perceptions in
this lower dimensional space. The network calculates the
distance between the input and each of the neurons in
the map field where the distance is defined by:

d =

N−1∑

i=0

(wi(t) − v(t))
2
, (2)

where v(t) is the input vector at time t, wi the weight
between input i and the neuron and the sum is over the
N components of the input vector. The neuron with the
minimum d is selected and the weights for that neuron
and its eight topological neighbours are updated by:

wi(t + 1) = wi(t) + η(t) (v(t) − wi(t)) (3)

where η is the learning rate, 0 ≤ η(t) ≤ 1. The ha-
bituable synapses for both the winning neuron and its
topological neighbours were updated, using equation 1
with S(t) = 1. The value of τ used was different for the
winner and its neighbours, being τ = 3.33 for the win-
ner and τ = 14.3 for the neighbourhood synapses. This
meant that winning neurons habituated quickly, while
neighbourhood neurons, which recognise similar percep-
tions, have a smaller amount of habituation. The effects
of these values can be seen in figure 1. The synapses of
other neurons were not affected. Other variables kept
their values regardless of which neuron is firing, being
α = 1.05 and y0 = 1.0. With these values the synaptic
efficacy never falls below 0.0476 (see figure 1), a function
of the values used for the constants in equation 1.
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Figure 3: The Nomad 200 mobile robot.

A square map field, comprising 100 neurons arranged
in a 10 by 10 grid, was used. The neighbourhood size
was kept constant at ±1 unit in all directions and the
learning rate η was 0.25, so that the network was always
learning.

3. Experiments

The experiments presented investigate the ability of the
novelty filter to learn a model of an external environment
through periodic sonar scans taken whilst exploring, and
to detect deviations from that model.

3.1 The Robot

A Nomad 200 mobile robot (shown in figure 3) was used
to perform the experiments. The band of infra-red sen-
sors mounted at the bottom of the turret of the robot
were used to perform a pre-trained wall-following rou-
tine (Nehmzow, 1994), and the 16 sonar sensors at the
top of the turret were used to provide perceptions of the
robot’s environment. The angle between the turret and
base of the robot was kept fixed. The input vector to
the novelty filter consisted of the 16 sonar sensors, each
normalised to be between 0 and 1 and thresholded at
about 4 metres. The readings were inverted so that in-
puts from sonar responses received from closer objects
were greater.

3.2 Description of the Experiments

Each experiment consisted of a number of trials, with
each trial taking the same form. The robot was po-
sitioned at a starting point chosen arbitrarily within
the environment. From this starting point the robot
travelled for 10 metres using a wall–following be-
haviour, training the HSOM as sensory stimuli were per-
ceived, and then stopped and saved the weights of the
HSOM. Approximately every 10 cm along the route the
smoothed values of the sonar perceptions over that 10 cm
of travel were presented to the novelty filter, which pro-
duced a novelty value for that perception. At the end of
the run a manual control was used to return the robot to

the beginning, and the same procedure repeated, start-
ing with the weights learned during the previous run.

The trials were performed in pairs. After every train-
ing run, where the sonar readings were used to train
the weights of the HSOM, a second, non-learning, trial
was performed. In this run the sonar inputs generated
outputs from the novelty filter, which records how novel
the perceptions were. At the beginning of the first trial
every perception was novel, as they had not been per-
ceived before, but after a short distance the filter began
to recognise some similar perceptions, and after a num-
ber of runs in an environment an accurate representa-
tion had been reached so that no perceptions were seen
as novel, i.e., the output of the novelty filter was only
the resting activity of the output neuron throughout the
run. Once this occurred the environment was changed.
This could either be a modification of the current envi-
ronment (such as the opening of a door), or the robot
could be moved to a new environment. The changes are
described in section 4.

3.3 Environments

Three different environments were used, together with a
control environment for training, as shown in figure 4.
Environments A and B are two sections of corridor on
the second floor of the Computer Science building at the
University of Manchester. The corridors are 1.7m wide
and have walls made from painted breezeblock. Doors
made of varnished wood lead from the corridors into of-
fices. Environment C is part of the first floor of the build-
ing. It is a section of corridor 2.1m wide, with smooth
brick on one side and a wall of glass on the other. This
environment has display boards mounted on the wall, as
can be seen in figure 4. These boards are sufficiently low
to be visible to the sonar sensors. They are made from
a laminated, shiny plastic. In all the experiments the
environments were kept static.

4. Results

4.1 Environment A

In the first experiment, shown in figure 5, the robot
learned a representation of environment A (see figure 4),
using the procedure described in section 3.2, so that it no
longer detected any novelty when traversing it by follow-
ing the wall. The left side of figure 5 shows the sequence
of trials in which the robot learned an internal repre-
sentation of environment A. In the first trial the novelty
filter is learning, as can be seen from the characteristic
habituation shape of successive readings near the begin-
ning of the run and where the door on the right of the
robot is perceived (at about 3 metres). It can be seen
that everything is initially novel, but the filter rapidly
habituates to the brick wall. In all the experiments the
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Figure 4: Diagrams of the three environments used. The robot is shown facing in the direction of travel adjacent to the wall

that it followed. Environments A and B are two similar sections of corridor, while environment C is wider and has walls made of

different materials, glass and brick instead of breezeblock. The photographs show the environments as they appear from the starting

position of the robot. The notice boards which are visible in environment B are above the height of the robot’s sonar sensors, and

are therefore not detected.



Robot Trajectory

Trial 1 (Not Learning)

Trial 5 (Not Learning)

Output of Output Neuron Distance (m)

2 4 6 8 10

Environment A* (identical to A apart from open door)

Trial 3 (Not Learning)

Trial 4 (Learning)

Trial 2 (Learning)

0.5

0.5

0.5

0.5

0.5

(Door Open)

Environment A

Robot Trajectory

Trial 3 (Learning)

Trial 1 (Learning)

Trial 4 (Not Learning)

Output of Output Neuron Distance (m)

2 4 6 8 10

0.5

0.5

0.5

0.5

Trial 5 (Learning)

Trial 6 (Not Learning)
0.5

0.5

Trial 2 (Not Learning)

F
ig

u
re

5
:

T
h
e

resu
lts

o
f
th

e
fi
rst

exp
erim

en
t.

T
h
e

p
ictu

res
o
n

th
e

left
sh

ow
th

e
o
u
tp

u
t
o
f
th

e
o
u
tp

u
t
n
eu

ro
n

o
f
th

e
n
o
velty

fi
lter

as
th

e
ro

b
o
t

m
o
ves

w
ith

in
en

viro
n
m

en
t

A
w

h
en

learn
in

g
an

d
n
o
t

learn
in

g
.

O
n
ce

it
h
as

sto
p
p
ed

d
etectin

g
n
o
velty

featu
res

(so
th

at

th
e

activity
o
f
th

e
o
u
tp

u
t

n
eu

ro
n

is
sm

all),
th

e
en

viro
n
m

en
t

w
as

ch
an

g
ed

b
y

o
p
en

in
g

a
d
o
or.

T
h
e

resu
lts

o
f
th

is
are

sh
ow

n
o
n

th
e

rig
h
t,

an
d

are
d
iscu

ssed
in

sectio
n

4
.1

.



Exp Trial Output of the Output Neuron
(Env) Integrated Maximum
1(A)

1 (L) 9.17 1.00
2 (NL) 2.64 0.53
3 (L) 1.34 0.43
4 (NL) 1.07 0.42
5 (L) 0.52 0.42
6 (NL) 0.30 0.12

1(A*)
1 (NL) 1.44 0.65
2 (L) 1.45 0.65
3 (NL) 0.37 0.17
4 (L) 0.14 0.08
5 (NL) 0.01 0.05

2(B)
1 (NL) 3.38 0.65
2 (L) 1.18 0.42
3 (NL) 1.21 0.42
4 (L) 0.87 0.35
5 (NL) 0.03 0.08
Control 27.09 1.00

3(C)
1 (NL) 9.68 0.65
2 (L) 2.56 0.65
3 (NL) 3.06 0.53
4 (L) 0.98 0.42
5 (NL) 0.29 0.15
Control 27.75 1.00

Table 1: The table shows the integrated output of the output

neuron over each trial and the maximum output of the neuron.

The integrated output has had the resting activity of the neuron

(0.0476 for each time step) subtracted. It can be seen that

both the integrated output and maximum output drop after

each learning trial (labelled L).

robot gets a much clearer picture of the right hand side
of the environment because that is the wall that it was
following. The figures show the strength of output from
the output neuron of the HSOM at each step along the
10 metre section of corridor which make up each envi-
ronment.

In the second trial, where the filter is not learning,
simply using the weights learned during the first, there
is much less novelty. It is interesting to note that the
crack in the wall near the beginning of the environment
is perceived during the first and third trial, but not the
second. This is because the crack is very thin and the
perceptions of the robot depend on the speed at which it
moves and its precise position. The features which take
longer to learn are those which are perceived less fre-
quently. For instance, the robot rapidly learns to recog-
nise the perception of walls, but doorways, which are

seen only occasionally, and from many different angles,
take longer. This demonstrates that novel features are
those which have been seen only infrequently, if at all.

In trial 6 it can be seen that the filter has learned a
representation of the environment, because the output of
the filter does not rise above the baseline resting activity
of the output neuron. At this point the environment was
altered by opening a door so that the sonar perception
changed (shown as Environment A* on the right hand
side of figure 5). In order to prevent the robot from
going through the door a cardboard box was placed in
the doorway. This was of sufficient height to appear on
the infra–red sensors, which were used for wall–following,
but did not appear on the sonar scans. The novelty fil-
ter detects the open door, as can be seen from the burst
of novelty in the figure, but successive trials show that
the filter quickly learns to recognise this new feature.
No other novel features were detected. It can be seen
that the doorways are detected slightly before the robot
reaches them and still detected for a small distance af-
terwards This is because the sonar scans project in front
and behind of the robot.

4.2 Environment B

For the second experiment, shown on the left hand side
of figure 6, the robot was put into environment B (shown
in figure 4) and the novelty filter was initialised with the
weights gained after the representation of environment
A had been learned. Environment B was a very similar
corridor environment to environment A. The procedure
of the first experiment was repeated, with the robot ex-
ploring a 10 metre section of the environment and then
stopping. By comparing the integrated outputs of the
output neuron in table 1 in environments A and B and
the left hand side of figures 5 and 6, it can be seen that
much less novelty was detected in the second environ-
ment than in the first. It can be seen that during the
first trial in environment B, shown on the left of figure 6,
the only place where the output of the neuron is espe-
cially high (signifying novelty) is at the first of the two
doors on the right hand side of the robot (door G in
figure 4). On inspection of the environment, it was dis-
covered that this doorway was inset deeper than those
in the first corridor.

The bottom graph on the left hand side of figure 6
shows the novelty values when the robot is put into en-
vironment B after training in a different environment.
The environment used for the training was a large, open
environment. The robot was steered about a course so
that it moved along close to a wall, turned and moved
into the middle of the environment and then returned to
the wall. Both the graph and table 1 show that much
more novelty was detected when the network trained in
this control environment was moved into environment B.
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4.3 Environment C

The third experiment took the same form as the second,
again starting from the weights gained during training in
environment A. Using these weights the robot explored
the environment labelled C in figure 4, the results of
which are shown on the right of figure 6. Table 1 shows
that much more novelty is detected in environment C
than in environment B when the robot first explores it.
This is to be expected because the environment is signif-
icantly different, being wider and having walls made of
different materials (see the pictures at the bottom of fig-
ure 4). In particular, the doorway, which is particularly
deeply inset, causes a high output from the HSOM, as
do the posters at the end of the environment. Again,
the control trial shows that the novelty filter detects
some similarity between environments C and A, which
are both corridor environments but not between C and
the open area in which the control filter was trained.
The crack in the wall (at about the 7m mark), which is
a similar perception to that seen in environment A, was
not detected.

5. Summary and Conclusions

A novelty filter has been proposed that uses habitua-
tion to assign a novelty value to perceptions. The filter
learns on-line. The novelty filter has been demonstrated
to be capable of learning a representation of features of
an environment whilst running on-line on a mobile robot.
Experimental results show that the filter can accurately
detect novel features of the environment as deviations
from the learned model. The effects of training the filter
in one environment and then testing it in another show
that if the two environments are similar, the filter ac-
curately recognises the familiar features, and highlights
new features. This is an adaptive behaviour, as both
the network and habituation weights change so that the
results of training the filter in one environment and then
using it in another are different to simply using it in the
second environment.

Future work will focus on two areas. The output of
additional sensory systems will be added so that the fil-
ter gains more information about its environment, and
alternative clustering mechanisms will be considered.

The current work showed that the filter works us-
ing sonar scans as inputs. Sonar readings are inher-
ently noisy, but the novelty filter deals with this problem
through the use of the self-organising map. In order to
perceive more information about the environment, it will
be necessary to integrate further sensor modes into the
model. In particular, a monochrome CCD camera will
be used. The images will have to be extensively prepro-
cessed in order for the robot with its limited processing
power to be able to deal with them sufficiently quickly.
How the filter will deal with images, and how the sonar

and image novelty filters will be integrated is currently
under investigation. The vision system will be useful to
give more information about the environment, and to
make possible an analysis of the scene in order to clarify
precisely which stimuli in a perception are novel.

Other work will investigate alternatives to the Self-
Organising Map as a suitable clustering mechanism. A
number of well-documented problems with the SOM ex-
ist for problems like this, in particular the fact that the
size of the network has to be decided before it is used
and remains fixed. This is a problem because the net-
work can become saturated so that previously learned
perceptions are lost, or novel stimuli are misclassified
as normal. These are aspects of the plasticity–stability
dilemma (Carpenter and Grossberg, 1988). Possible
solutions include using a growing network such as
the Growing Neural Gas of Fritzke (Fritzke, 1995).
An alternative is to consider a Mixture of Ex-
perts (Jordan and Jacobs, 1994), with each expert be-
ing responsible for a particular type of perception
and voting on its novelty. A committee of net-
works (Perrone and Cooper, 1993) could be used in a
similar way.

Another interesting problem is how to deal with
features which are spread out over time in the
robot’s perception. For example, for the robot
travelling down a corridor, a door frame is al-
ways followed by a door. If the robot learns this,
then if only one of this pair of perceptions is de-
tected it will be considered novel. This is a ques-
tion of temporal learning (Chappell and Taylor, 1993,
Euliano and Principe, 1998).
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Öǧmen, H. and Prakash, R. (1997). A developmental per-
spective to neural models of intelligence and learning.
In Levine, D. S. and Elsberry, W. R., (Eds.), Optimality
in Biological and Artificial Networks?, chapter 18, pages
363 – 395. Lawrence Erlbaum Associates, NJ.

O’Keefe, J. and Nadel, L. (1977). The Hippocampus as a
Cognitive Map. Oxford University Press, Oxford, Eng-
land.

Peeke, H. V. and Herz, M. J., (Eds.) (1973). Habituation,
volume 1: Behavioural Studies. Academic Press.

Perrone, M. P. and Cooper, L. N. (1993). When networks
disagree: Ensemble methods for hybrid neural networks.
In Mammone, R., (Ed.), Neural Networks for Speech and
Image Processing. Chapman–Hall.

Pribram, K. H. (1992). Familiarity and novelty: The con-
tributions of the limbric forebrain to valuation and the
processing of relevance. In Levine, D. S. and Leven,
S. J., (Eds.), Motivation, Emotion and Goal Direction in
Neural Networks, chapter 10, pages 337 – 365. Lawrence
Erlbaum Associates.

Stanley, J. C. (1976). Computer simulation of a model of
habituation. Nature, 261:146–148.

Tarassenko, L., Hayton, P., Cerneaz, N., and Brady, M.
(1995). Novelty detection for the identification of masses
in mammograms. Artificial Neural Networks.

Taylor, O. and MacIntyre, J. (1998). Adaptive local fusion
systems for novelty detection and diagnostics in condi-
tion monitoring. In SPIE International Symposium on
Aerospace/Defense Sensing.

Thompson, R. (1986). The neurobiology of learning and
memory. Science, 233:941–947.

Thompson, R. and Spencer, W. (1966). Habituation: A
model phenomenon for the study of neuronal substrates
of behaviour. Psychological Review, 73(1):16–43.

Wang, D. and Arbib, M. A. (1992). Modelling the dishabit-
uation hierarchy: The role of the primordial hippocam-
pus. Biological Cybernetics, 76:535–544.

Wang, D. and Hsu, C. (1990). SLONN: A simulation lan-
guage for modelling of neural networks. Simulation,
55:69–83.

Worden, K., Pierce, S., Manson, G., Philp, W., Staszewski,
W., and Culshaw, B. (1999). Detection of defects in
composite plates using lamp waves and novelty detec-
tion. International Journal of Systems Science.

Ypma, A. and Duin, R. P. (1997). Novelty detection us-
ing self-organizing maps. In Proceedings of International
Conference on Neural Information Processing and Intel-
ligent Information Systems.


