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Abstract scaling: while evolving small networks works quite well, the

approach scales badly for larger networks. (3) In many cases

We are interested in the synthesis of autonomous agents s gesirable that the final design exhibits bilateral symme
using evolutionary techniques. Most work in this area try, which is hard to come by using a direct mapping
utilizes a direct mapping from genotypic space to pheno approach.

typic space. In order to address some of the limitations "\, contrast, there is no direct mapping between genotyp:
of this gpproach, we present a simplified yet biologically 44 phenotype in biology. Rather, plant and animal-mor
defensible model of the developmental process. The y5|gies are the result of a growth process that is directe
design issues that arise when formulating this model at )y, the genome. We believe that there are intrinsic propertie
the molecular, cellular and organismal level are dis 5 this deviopmental process that, when used in conjunction
cussed, and for each of these issues we describe howit genetic algorithms, may enable it to address some o
they were resolved in our |mplementat|_on. We present iq gifficulties with the direct mapping pach: (1) When
and analyze some of the morphologies that can bejyerpreted not as a direct encoding but as a set o
explored using this model, specifically one that has geyelopmental rules, a genetic description can lead to muc
agent—hke properties. In addition, we demonstrate that e complex morphologies than those achide with
this developmental model can be evolved. direct mapping. (2) There is some hope that a developmental
1. Introduction process can reduce the scaling problems as well, as it esse
tially builds upon previous discoveries in an imoental
Our long term goal is the co-evolution of bodies and controfashion. (3) Symmetry comes for free in a developmental
systems for complete autonomous agents. The design Bfodel.
autonomous agents is a complex task that typically involves Apart from promising to address some problems, there
a great deal of time and effort when done by hand. Both th@re some additional advantages to using a develdien
physical implementation of robotic agents as well as theimodel in its own right: (1) Development naturally provides a
control architectures present increasingly difficult designivay to sample a spectrum of genetic operators,imgng
challenges as the complexity of the system at hanéfom local hill-climbing operations to long jumps beyond
increases. A number of peoplBeer and Gallagher 1992; the correlation length of the genetic search sgieeffman
Harvey, Husbands and Cliff 1993) have argued it might b@nd Levin 1987). (2) With a developmental model, mor-
advantageous to use evolutionary methods. phologies and behavioral control mechanisms can gra
However, most of the current attempts at solving theciously co-evolve to obtain optimal performance.
design problem using genetic algorithms employ some form This paper describes our first step toward a simplified
of a ‘direct mapping’ between genotype and phenotypebut biologically defensible model of development that is ef
Here, typically there is a one-to-one mmpondence ficient enough to be used in conjunction with a genetic
between some substring on the genome and an associa@@orithm. This preliminary model enables us to explore
parameter or feature in the final design. Examples can beody patterns and relative placement of essential cempc
found in (Beer et al. 1992; Lewis, Fagg and Solidium 1992;nents. After discussing related work is Section 2, in Sectior
Harvey et al. 1993)|n addition, in the majority of these 3 we will hlgh'lght some of the design issues and tradeoffs
cases the authors try to optimize a fixed number of paramdhat come up when modeling development in general alon
ters in some chosen architecture that a priori determine&ith the way we have resolved these issues in our particule
which designs are possible. model. In Section 4 we show the results that can be expecte
One can identify a number of problems with this directfrom it and how the model behaves when used in conjunc
mapping: (1) The designs to be explored are essentially lim  tion with genetic algathms. In Section 5 we analyze the
ited by the chosen architece, because of the fixed dimen developnental sequence of a simple agent, using that as a
sionality. (2) One of the most obvious problems is one of ~ €Xample to show the detailed workings of the model.



Finally, in the Section 6 we will discuss it's strengths and 3.1. Overview

weaknesses, along with directions for future work. )
The developmental process unfolds simultaneously at thre

2. Related Work different levels, each of which will need to have a counter
part in our model: at the level of the organism, of the cell
There is already a body of work wherein the authors bot@nd at the bio-molecular level. At the topmost level, a single
understand and appreciate the importance of incorporatingzgote develops intomulticellular organism by a complex
developmental process into the picture. (Wilson 1989) disepigenetic process: eventually, groups of cells will literally
cusses a general representional framework to set the stagick together and co-ordinate their actions to form tissue:
for simulations of development. A number of people haveand organs that make up the entire organism. This happel
implemented some models, and they can be roughly categpecause at theellular level, individual cells unfold a
rized into two groups: sequence of determination and differentiation events tha
Much work involves some kind of growth-model coding enable them to take up their specific role in the developing
for evolving neural networks: (Kitano 1990) af@uau and  embryo. Ultimately responsible for this unfolding sequence,
Whitley 1993) use grammatical encoding to develop artifi however, is the genetic information contained within each
cial neural networks. (Harp, Samad and Guha 18§90  cell, which brings us down to ttievel of molecular biology.
evolve the “gross anatomy” and general operating parame\ithough each cell has the same copy of the genome, differ
ters of a network by encoding areas and projections ontent genes are expressed in different cells, which in turn leac
them into the genomeNolfi and Parisi 1991) uses an to their difference in behavior. Thus, this pattern of differen
abstraction of axon growth to evolve Connectivity architec tial gene expression lies at the heart of the deve|opment;
tures. Most of these models do not aspire to be biologicallgrocess.
defensible, however. Also, they have not been applied as This genetic regulatory network will be the first princi
such in the area of autonomous agents. pal component of our model. We believe that, for our pur
In contrast, a number of other authors have looked 3joses, the essence of the unfolding pattern of differentia
more blologlcally inspired models of developmental prOCGSgene expression at the genome-|eve| is best Captured ¢
ses: some work is based on the grammar based approaglydeling a network of interacting genetic elements. Eact
first developed by Lyndenmayer, such as (deBoer, Fracchiglement would correspond to the existence of a gene produ
and Prusinkiewicz 1992). For instance, (Mjolsness, Sharpr the expression of some gene. The total state of the ne
and Reinitz 1991) use grammatical rules to account fofyork at a given time can then accordingly be viewed as the
morphological change, coupled to a dynamical neurapattern of gene expression of a given cell at that time
network to model the internal regtday dynamics of the pecause the state evolves over time this then corresponds
cell. (FIeischer and Barr 1994|)ave a hard-coded model for the unfo|ding of a deve|0pmenta| program in each cell.
gene-expression that they combine with a cell simulation The second component consists of a very SII'C@'E'&I’
program. Many other biologically realistic models of difer simulator to model development at the cellular level.
ent developmental processes are found in the theoretic@yentually, every action directed by the genome should firs
biology literature. However, to our knowledge, none ofhave a consequence at the level of the cell, if it wants tc
these more complex models in the second category have Rave an effect on development. Itléats that we will need
yet been used in conjunction with genetic algorithms. to construct a model for how a cell behaves and the way th
It is the combination of a blologlcally defensible mOde|genome can influence this behavior. One way to do this
of development with evolutionary methods that we wouldcould be to build a complex, three dimensional model of
like to apply to the design of autonomous agents, somethingow biological cells actually work. However, our primary
that at this point in time has not yet been addressed in thgterest is not to mimic the actual biological developmental
existing literature. process, but to extract from it the essential beneficial-prop
3. Model erties. That is why we have opted for a simple, two-dimen
- viode sional cellular simulation.

In this section we will first give an overview of the principal  Finally, the last aspect of the model will cover all
components of our model. Then, in the subsequent sub-sgkhenomena at therganismal level. During develoment
tions, we will raise some of the issues that came up whetells interact continuously: in biological dévpment, cells

modeling each of these conmmts. For every issue that we cOmmunicate by touch as well by chemical sigiffalbot
discuss, we will present the way we resolved it when im_and Holder 1987, page 4). This intracellular communication

plementing the model, together with a more detailedS extremely impaant, as it can change the pattern of gene

description of the actual implementation. expression in the participating cells. Thus, we will have to
take this into account in our model. Another issue thattrans

cends the cellular level is that of external influences, such a
how symmetry is somehow broken at the very first stages o



development. These aspects will be modeled at the level dhe nature of the genetic elements

the organism. ) o
While implementing these components, we were-con | "€ génetic elements can be modeled by anythingmang

fronted at each step along the way by the trade off betwedPM Simple binary to complex quantitative models. One of
simplicity and biological defensibility, as ultimately the he choices that must be made is between continuous ar
model was to be used in conjunction with the genetic—algod'screte state varlab_les, and be_tweer_1 continuous or dlsc_re
rithm. Typically, when you want to evolve autonomoustime models. In the I|tera_ture_ this choice has been made_ in
agents you use populations of hundreds of individual ergafflumber of ways, resulting in models that use essentially
isms in parallel. With our developmental model, each ofiMmple binary elements (Kauffman 1969; Jackson, Johnso

these would consist of from a hundred to a thousand cell@d Nash 1986), models with multi-level logithieffry and
and in each cell a genetic regiolgy network would be Thomas 1993), dynamical neural networks (Mjolsness et al
active. It is obvious that with such numbers you want tot991) and fully quantitative models. _
keep the model as simple as possible to keep the computa We have chosen to model the genetic elements as bina
tional demands feasible. Although many aspects of biologi€/€ments. Although the more complex apmfoes are
cal development are important and even crucial for bielogicertainly useful, a binary model is especially attractive from
cal life forms, we feel that some of them can be left out in & Computational viewpoint: their sphcity will allow us to

simplified model without invalidating the results we get. ~ Simulate a large number of them in a reasonable time. A
explained before, this is a necessity when we will use the

3.2. Genetic Regulatory Network model in conjunction with genetic algorithms. In addition,
simplifying genetic elements to binary variables can be
As we will model the patterns of gene expression in eacflefended on a deeper ground: a lot of phenomena that occ
cell as the state of a regulatory network, we will have tjuring embryology and the life span of a cell have an on/of
address each aspect of these networks, i.e. the nature of ﬁﬂ_ﬂi“ty or have some mechanism of se|f-amp|ification_ For
elements and the way they interact. example, biochemical pathways linking cell-surface recep
tors to the DNA have lots of amplifation steps built in
(Walbot et al. 1987, page 32Bnsuring that their response

The major issue here is at what level of detail one wishes t§ O/Off like. Kauffman (1993) presents additional argu-
simulate the genetic elements and their interactions. In tH@€Nts why the major features of many coatus dynami-
biological cell there are a number of strategies for the-regif@! Systéms can be captured by a Boolean idealization.
lation of gene expression: essentially each step of the patq/ . .

way between the coding sequence on the DNA and it's fina) e will model the genetic regulatory networks by Boolean

gene product presents an opportunity to regulate the exprerlef_:‘tworkS

sion of that particular gene (Alberts et al. 1991, page 551Gijven all these considerations, we decided to model the
556). Do we want to make a distinction between transcripgenetic regulatory network by a Boolean network, as first
tional control and RNA degradation control and incorporateyioneered in this context iKauffman 1969) and extended
them as different bU|Id|ng blocks in our model ? Chancesby (Jackson et al. 1986) to systems of mu|tip|e’ communi
are that doing so will yield some insight into the detailedcating networks. This model is both readily understood,
workings of these processes, but it will also pose an-enogfficiently implemented and easily analyzéd/uensche
mous computational problem to simulate. 1994), in contrast with the more complex continuous time
In our model we will assume the existence of one type O(ﬂynamica| networks as used by (Mj0|sness et al. ]_g'g'j_e
abstract genetic element and one way in which thesgtter work is more focused on parameter identificaof
elements can influence each other. Although the genetigctual biological processes however, in which case this
elements in a biO'OgiC&' cell include not only DNA more comp“cated approach makes sense.
sequences but also regulatory proteins, cell-surface receptors A Boolean network is much like a cellular automaton,
and a whole lot more, we will assume there is only one typayut where in the latter the neighborhood of a node is fixec
This assumption does also imply that we will model onlyand consists of neighboring cells, there is no such restrictiol
one way of inteaction between these elements, becausg the former. The basic elements arekheodes, each with
most of the time the differences between different regulations own associated K-node neighborhood and updating rule
strategies in the cell come down to differences in the type CEach node can assume a state of 1 or O, according to tt
players involved. Of course, if you decide on this course oétate of itsK inputs at the time it was updated. It is easy to
action, you have to make the assumption that the essencefe that there ar¢N*)Npossible wiring configurations.

development is not to be -found in the details 9f all th.e dlfFig.l illustrates one possiblesitance of a Boolean network
ferent regulatory mechanisms, but rather the interaction of . 2\3 N
mutually influencing elements with N=3 andK=2 out of (37)° = 729 possibilities.

The interactions between the genetic elements



been found that switch on whole gene-batteries at a tim
(McGinnis and Kuziora 1994Yhus acting as a representa
tive for a whole class of genes. This could suggest that actt
ally a small number of genes might be responsible for the
regulatory mechanisms within the cell.

The genome that we use in the genetic algorithm is ¢
straightforward description of one such possible Boolear
network. Both the connection parameters and the Boolea
function are subject to mutation. In some experiments-how
ever, constraints can be imposed to explore restricted sear:

Fig.1. Example of a wiring configuration in a Boolean  spaces. Most of the time we used parameter settingys@f
network withN=3 andK=2. andK=2.

The updating rule of a node can be any Boolean function 3.3. Cellular level

of its K inputs, and can be specified by a lookup table with
t the cellular level we will have to model all the properties

2K entries. As each entry can contain a value of 1 or 0, thefd i : .
of the cell that play a role in the developing organism at the

K

are 2 possible upding rules for each no_de in the net- higher level and that can be influenced by the geneticregu

work. As an (_axample, one out of the sixteen pOSSIbIGi’atory networks at the lower level. These properties include

Boolean fun_ct|0ns foK=2 would be the Io_gmal AND . the physical characteristics of the cell, the cell cycle-con

operator, which can be represented by the siring <0001> 'ntﬁalling the cell’'s behavior and how a cell differentiates into

lookup table. a particular cell type, which we will discuss here. We will
. ... also touch on the aspects of biological cells that we left ou

The total number of possible Boolean networks with 9iVen.¢ the model and why we left them out.

N

N and K is then’(NK)(Z2K )] , a number that can be very _ o
The physical characteristics of the cell
large. For the example oN=3 and K=2, there are
5,02 13 6 _ When modeling the physical characteristics of the cell, we
[(3 )2 )] 300" possible networks. are looking for a model that is both simple enough to be
efficiently simulated in large numbers, and yet captures
Some additional issues enough of the aspects of a biological cell that makes it wor}

We h h ¢ date th Bool work within a developmental poess. We think two properties are
€ have chosen 1o update nese boolean NeWorks SyRsqeantia) in this respect: it has to have some form of physic:

chronotuzly, €. tiveryltlme fSttf]p trt1et Who'? Statltti VeCtor '&xtent and it has to be able to undergo division. Granted the
computed using the values ot the state vector at (n€ previoyge o o extreme simplification of what a real cell actually

time step_. D|scret<_a tlm_e, synchronoursl_y updating r]e'[WOrk%onstitutes: our ultimate goal is the synthesis of autonomou
are certainly not biologally defensible: in development the agents, however, not the modeling of biological develop

interactions between regulatory elements do not occur in fent. and we think that these two properties suffice for oul
lock-step fashion. The alternative is to update all nOde%urpc’)ses

asynchronously, each node having a given probability at an
time to recompute its value from its inputs at that time. This
introduces an element of non-detenmim however, that
might render any genetic search in a space of such networks
very difficult. In addition, they are less readily analyzed
than their synchronous counterparts, for which there are
excellent analysis tools available (Wuensche 19%%en
again, they would be useful to examine phenomena like Fig 2. zygote square dividing two times to yield 4 ‘cells’.
spontaneous symmetry-breaking interactions between cells,
that can not occur with lock-step updating. Thus, we will simulate the physical appearance of a cell
We ended up using a comparatively small number oPy & simple, two-dimensional, square element that car
elements in the Boolean networks. When one looks at théivide in any of two directions, vertical or horizontal. If
function of genes in eukaryotic genomes, one finds that théivision occurs it always takes place in such a way that the
vast majority of gene products will be responsible forlongest dimension is halved, and the two resulting daughte
housekeeping functions that are anom between cell cells together take up the same space as the original ce
types, and most of the others are cell-type specific genekhis very simple approach has as a consequence that we
(Walbot et al. 1987, page 174-17%) addition, genes have not have to deal with cells changing shape as a result of ce




division: after two cleavages the shape is again a square. Sedferentiation into distinct cell-types

Fig.2 for an illustration. ) )
There are two ways in which we could model how the

genome determines the final differentiation of a cell: by
combinatorial specification or using ‘master genes’. In
A simulated cell cycle consisting of two phases, interphaskiology, the combinatorial gene regulation theory hypothe
and mitosis, co-ordinates the updating of the Booleasizes that the cell can ‘detect’ a partamucombination of

network state and cell division, respectively. In one organregulatory proteins and thus is able to differentiate into the
ism, each cell would have a copy of the same Booleanorresponding cell type. For instance, this type of mecha
network constituting the genetic information of that organ nism is thought to underlie the division of the imaginal discs
ism. However, the state of the network, corresponding to thim Drosophila into sharply demarcated compartments
pattern of gene expression in a particular cell, may be diffefAlberts et al. 1991, page 930). In principle, three different
ent in each cell, as they underwent different influencegenes would be sufficient to specify a unique address fo
during their life span or started out with a different initial each of the eight compartments formed. Alternatively, there
state. In Fig.3 the cell cycle is depicted graphically, and weould be several regulatory ‘master’ genes whose expressic

Thecell cycle

will discuss each phase here. determines the gxession of a whole gene batteries needed
in a particular cell type. Se@®avidson 1990) for a com-
bit off parative overview of a number of cell fate specification me
chanisms.
0010000 In our implementation we have modeled both these
(0010100 mechanisms and we can choose between them when runni
Q simulations. In combinatorial mode, a subset of genetic
elements is chosen to determine the final differentiation of

the cell. Every distinct combination of activity in these
elements then corresponds to a particular cell type. Thit
simply corresponds to a binary encoding of the cell types
e.g. forN=3 cell type 5 would be represented by the string
<101>. In the other, ‘master gene’ mode, we relate differen
tiation to the activity of one specific genetic element, with
the additional constraint that there should be no conflict

During the first phase, interphase, the state is- Synbetween competing cell type_s. For encoding a cell type 5
chronously updated until a steady state is reached: a stea@§ thus need at lealst=6, and it would then be represented
state corresponds to a stable pattern of gene expression. R the string <100000>. All the results reported in this papei
make the assumption that each cell has enough time to rea¢f€ combinatorial specification, as we have found that i
such a stable state, and when used with the genetie a|gt@kes considerably longer to evolve the additional mapping
rithm we will discard any organism whose regulatory- net between the state of the network and the different ‘maste
work leads to a cyclic pattern. Waiting for a steady state als@enes’. _
means that in every cell the number of updates may be diffe Our_model uses color as an abs_tract|on for cell type. As
rent, because the transient behavior of the network depenig$ ultimately our goal to synthesize autonomous agents
both on the original state vector as on the new environmefihe final differentiation of a cell will then correspond to it
tal stimuli (see below). being a sensor, actuator or control-neuron. For the time¢

Then, in the second phase, according to the setting of @ing, however, it will be suitient to simulate this by a
specific bit the cell either goes through mitosis and dividedlifferent color that the cell can take on: it will enable us to
into two daughter cells, or it stays intact and waits for th&lemonstrate the different architectures that can be explore
next interphase to start. When the cell divides, it's stat&/Sing the model. In the combinatorial mode, we assign ¢
vector is inherited by the two daughter cells. Note that in th&0lor according to the settings of @(specific bits in the
following interphase, unless something in the environmengtaté vector, wher€ is the number of colors. MostlZ=8
changes or there is some other external interference, th@fd the three bits used are bit[0], bit[1] and bit[2].
state vector will correspond to a stable pattern and nothin
will happen, i.e. that pattern of gene expression will b
passed on to the next generation. Also, our ‘cell cycle- deﬁAIthough many aspects of biological development at the
nition is not entirely comparable with the biological equiva ce|jylar level are important and even crucial, we feel that
lent, as in _our.model the cell does not necessarily have t0 @ me of them can be left out in a simplified model without
through mitosis. invalidating our results. Cell movement and coordinated cel

sheet deformations, for instance, lie at the basis of all but th

Fig.3. The cell cycles between interphase and mitosis.
Mitosis is skipped if the ‘dividing bit’ is not set.

iological properties we did not include in the model



simplest morphologies encountered in multicellular orga A second spatial clue is introduced by supplying the
isms. However, they would make the model quite complexieveloping organism with the notion of a midline. As we
and much more difficult to implement. We think it is betterwill explain in Section 6, it was sometimes nes@y to

to start off exploring what is possible with ‘simple’ intracel provide more spatial clues than only the first cleavage sym
lular communication (see below) and genetic regulatorynetry breaking. Thus, we also provided the cells with
networks, rather than make the model too complicated frormformation on whether they are adjacent to the horizonta
the start. Once it is clear what can be achieved with a simphaidline of the organism, acating to a bit flipping scheme
model, it is certainly worthwhile to add incorporate moresimilar to the one used in the first cleavage step, althoug!

complex mechanisms. this time a bit in the neighborhood vector is flipped (see
. below). Actual biological embryos get this midline notion
3.4. Organismal level for free because of the threerdinsional topology in which

T Lo tpey develop: as an example, in the frog embryo neurulatiol
In the subsequent paragraphs we will discuss how 'nd'V'du?akes place along the dorsal midline of thebeyn, which
cells function within the organism and how two very impor '

. : after gastrulation lies closest to thesodermal germ layer
tant aspects of development, synimédreaking and intra . ) L
L : that is responsible for the initian of the process (Walbot et
cellular communication, are implemented.

al. 1987, page 368-375).

The organism as a collection of cells -
Intracellular communication

The organism itself is a two-dimensional squaresesiimg
) ; One of the key elements of the developmental process ar
of many cells. Development starts out with one single . )
Fonsequently of our model is how the cells commicate.

square that represents the zygote, which then subsequen deed, following the initial symmetry-breaking the cells

divides according to the state of the genetic regulatory net v have a rough plan for the positioning of major body

work. As discussed, whenever a square divides the twg . . g
- Structures. In all but the simplest organisms, however, ¢
daughter cells take up the same space as the original one: . LT X
. . | . feat deal of fine-tuning is necessary, and this can b
there is no pushing away of neighboring cells or shap€ | . T ) ) :
. achieved by intracellular communication or induction, i.e.
change involved, except that after an odd number of €lea . .
. he way in which one group of cells can alter the develop
ages, cells may be rectangular in shape rather than square.

: ! . . -meéntal fate of another group by providing it with some
The organism !s then’the collection of squares tha‘mnglsignal (Walbot et al. 1987, page 366). We have put a lot 0
nated from the ‘zygote’ square.

thought into whether to model this by actually siminigt
the existence of cell-surface receptors and cbahsignal’
molecules. As an alternative, one could link the genetic
We will have to address a way to break the symmetryegulatory networks in a more direct way, by letting their
between the very first cells at the early stages of develomext state depend not only on their own state, but also o
ment, otherwise we will end up with a uninte¢ieg, home  that of surrounding cells.

geneous collection of cells: because of the deterministic,
synchronous updating and as they are all descendants of the

Symmetry breaking in the early stages of development

same ‘zygote’, all the cells will have the same state vectors

at each step unless sothmi@g disturbs this symmetry. [000010 [0111000 /L@@
Biological development faces the same problem, and there %

are diverse mecimsms by which in early development the |7

correct spaal pattern of differential gene expression is —
imposed (Davidson 1990). (001010 Midline

We will break the symmetry at the time of the first

cleavage by assuming the existence of a ‘maternally’

imposed a-symmetry in the ‘zygote’ square, that can lead to @

different patterns of gene expression in the first two

daughter-cells. This is certainly biologically defensible, as *

in many organisms this anisotropic distribution of some

entity is actually observed (Walbot et al. 1987, page 340- I 0110001 I
353). We will simulate by flipping a bit of the Boolean-net

work state vector in only one of the two daughter cells. If

you will, the genetic element of which the state is flipped Fig.4. The state vectors of two neighbor cells are ORed
corresponds to an asymmetrically distributed deteamti in together to yield a neighborhood vector that is combined

the zygote. with the cell’s state vector to determine the next state.



b. cE dﬁ

Fig.5. Four different examples that demonstrate the range of organisms we have been able to develop so far.

To implement induction we used a modified version of4. Examples and Evolvability
the Boolean Network: whereas normally each nodekhas
incoming edges from other nodes in the network (or recur

rent), we now allow for some of these incoming edges i¢:g 5 shows several examples thamdestrate the range of
connect to nodes in an abstract ‘neighborhood” vector. Thgyanisms we have been able to evolve until now. Althougt
latter is the logical OR of all the state-vectors of the neighhase are preliminary explorations, mostly found using

boring gells. Fig.4 shows this arrgngement. In our gene“‘biomorph mode’ (sitting down at an X-terminal and select
description of the network, a negative connection parameteq the fittest individual according to subjective taste, see
implies that the corresponding bit in the neighborhood Statfbawkins 1989)), they nevertheless exhibit interesting fea

vector is taken, in stead of from the cell’s state vector. NOt€ res that can conceivably be put to use in the context
that an edge to the neighborhood vector can be interpreteg:1omous agents.

as the exitence of a cell-surface receptor, sensing the pres- g 54 displays an interesting ‘layered’ characteristic,
ence of specific chemical agents introduced by cells in it§,ii, cell-types at the sides of the organism (it is facing
environment. towards the right) different from those in the middle, and

This implementation implies that our simulation has tOyih an intermediate layer in between. Note that in bielog

keep track of which cells are neighbors. Although this may., development the three germ layers exhibit the sam

sound an easy thing to do, it does actually complicate thingg, atia| order: ectoderm to face the outside, endoderm at tt
somewhat, as the cells are not static entities but instedfsige and mesoderm in between them.

divide all the time. Thus, a scheme must be devised by \ye have selected the organism in Fig.5b because it has
which topqloglcal relations are constantly kept up to datesegmentation property, as you can discerriatesally sym-
However, it becomes soon intractable to let each cell poll,atrical repeat structure at the sides of the organism

every other cgll in .the organism, 'because the numper of Ce'ﬁnally, Fig.5c and d represent more complex morphologies
rises exponetially in each organism. We solved this prob- 41 ‘a.symmetric with respect to the vertical axis and

lem by letting each cell pass on a list of it's neighbors at thﬁaving more detailed patterning at the rostral side.
time of division and then letting each daughter cell poll

these neighbors to check whether they are still adjacent. Itis4.2. Evolvability
interesting to note that our particular implementation allows
to easily substitute a more complex (even three dimensiongfiven that our basic goal is to efficiently evolve auto
geometry for the 2-D square one. Indeed, we have alreadymous agents, one of the things to look at is how the mode
modeled one-dimensional ‘string’ organisms in this way,Pehaves when used in conjunction with a genegorahm.
and plan to look at the more detailed topological framework 0 investigate this, we have devised a generitopaance
model as proposed by (Matela and Fletterick 1988  function that maximizes the number of colors, taking care
recently elaborated on fpuvdevani-Bar and Segel 1994). that no color is more represented than any other. Althoug|
Another type of induction is the influence exercised bythis particular criterion has no direct reémce to
the external environment: we modeled this by reserving on@utonomous agents design, it is nevertheless useful to-exar
bit in the neighborhood state vector for that purpose: it ishe the discoveries made by evolution in maximizing this

forced to ON if the cell in interphase is at the border of thdunction.
organism, otherwise it is OFF (See Fig.4.). We have found that we can successfully evolve Boolear

networks that can steer the developmental model so that tr

4.1. Developmental Examples
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Fig.6. The best individual after each fithess jump during evolution. The respective performance values of these
individuals are 45, 170, 210, 1200 and 5600. Of the last individual, the developmental stages are also shown.

fully developed organism optimizes some performance func (= network) must not only be beneficial from a performance
tion. This is a strong result: there is no obvious relationshifunction viewpoint to be incorporated in the population, it
between the setting of a bit in an update rule of the genetimust also take care not to interfere with the existing devel
regulatory network and the performance function to beopmental process in a ‘wrong’ way.

optimized. The color of a square in the final design is quite Also, we have observed that the computational fosexd

far removed from the particular wiring of the network. Ininduced is not as bad as one might expect when introducin
addition, the organism is evaluated only at the end of the fulk model with so many different elements. A typical simula
developmental process, so that any mutation in the genontien with population size of 20, network parametét$ and
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Fig.7. : Maximum fitness and average fitness.

K=2, and a maximum of 64 cells per organism takes aboL
10 minutes to at most half an hour on a Sparc 10 for 20(
generations, depending on the performance function and th
mutation rate. Typically, we used mutation rates of 0.1 anc
cross-over probabilities of 0.5.

Fig.6 and Fig.7 show the results for a typical run. In
Fig.7 we plotted the maximum and average fitness. The G/
we used for this experiment used elitisteston, i.e. the
best indivdual is never thrown away, which explains the
step-like manner the marum fitness evolves. In Fig.6 five
organism are shown, each a snapshot of the best individu:
of its generation. The snapshots were taken just after a jum
in fitness ocurred: the way our performance function was
constructed, this corresponds to thecdisery of a new
color. The last organism has discovered all eighirso

In the first individual, we can immediately see evidence
of the a-symmetry we introduced at the time of the firstdivi
sion: all individuals that did not make use of that were
discarded from the first sample, as it is very easy for the G/
to 'discover' this a-symmetry.



All evolved organisms shown are bilaterally syntrire  tor-cells are out of place, but the overall relative placemen
cal. This is a direct consequence of how the model is set upf the components is quite good.
the only a-symmetrical stimulus is our first bit-flip, and the
other external stimulus is the emmiment, which is sym- |4 2 6 2 6 16 [2 |2
metrically introduced at all sidés Because of the syn-
chronous updatg of the networks, no other a-symmetries
are introduced. Thus, in this model we get symmetry fof
free.

The next discovery made by the GA is that of the exter

nal environment. Notice that in the second square there isf[& [6 [2 |2 AT 14T4 14141212 [6[6[6 [616 [61 212
difference between the center and the border cells of the 0|0[0J0[0][0]2]
organism. Together with the a-symmetry, the developmenta S PI° AL i (1(1 (i(i (ici T
process is able to specify 4 colors. In the further course g3 3|6 NI L N O R A
the evolutionary process, the previously formed layer$ 2701000 [0]0 J]
themselves provide inforation for new cells to assume dif- 12 2 [ 1F1F 114 42 éf 8 g g g g

ferent colors. The next big discovery is six colors, ther
evertually eight.

The last individual shown has discovered all eight
colors, and its developmental sequence is reminiscent of the
discoveries made by the GA during the time span of the
experment. We have shown the sufjgent stages of devel-
opment this individual goes through: as you can readily The ‘seeker’ organism will serve as an excellent example
observe, the steps that development goes through follow thg jjjystrate in somewhat more detail just how the develop
‘discoveries’ made in the course of eviidin: a-symmetry,  mental model works. To do this we will frequently refer to

external envionment, induction. As we have argued in therig g put this in itself does not say much about the underly

opmental model: evotion is able to gradually build on pre  researchers in biology - to every variable at every stage ¢

vious discovees, and extend themwards fitter organisms.  the developmental process, from the outward appearance

5. Development of a simple “Agent” the cells up to and including the complete desgription of the
genome. In the subsequent paragraphs we will analyze th

We have evolved a simple organism that exhibits the reldnformation and show what it can tell us about the sequenc

tive placement of sensors, actuators and control system 8f events in the development of ‘seeker’.

the kind one would like to see in a simple chemotacti¢

Fig.8. The six consecutive stages of development in the
‘seeker’ organism, with digits denoting cell types. Bold
digits indicate the cell type changed relative to the previ
developmental stage.

agent. Any attempt at the design of autonomous agenfs) 0101} b) | Equivalent
using a developmental model will have to deal with morphol.node | 0011 | inputs node] Boolean function
logical features such as these. For the simple task of cherrol 0010 3-6 1 ~3 AND mid
taxis we specifially looked for a bilaterally symmetric | 2 1100 -2-1 2 | =(1)

organism, with sensors and actuators placed sideways at thé 0001 55 3 ext AND 5

front and the back, respectively, and a control structure qr4 1101| 4 4 4 |=4OR4=TRUE
‘neural tissue’ connecting them. The performance functiof S 0110| 6-6 5 [6XOR mid

we used tried to minimize the difference between the eolo:r 6 0111 6-1 6 |6OR-1

patterns in the fully developed organism and a template that

to us represented the features needed in a chemotaxic agent.
In Fig.8 the organism, which we have termed ‘seeker’, is

shown along with its developmental sequence. A number The genome, shown in detail in Fig.9a, specifies the
coded representation is used for the different cell types. 'Wiring of a Boolean network (Fig.10) and the update rules
the last stage of development, with 64 cells, you can obsernyt each of the nodes (Fig.9b). The ‘seeker’ organism ha
how the different components are placed: cell type 2petwork parameters d=6 andk=2, so the genome consists

prominent at the right-side corners of the organism, €orreyf 6 ypdate rules and 12 input addresses. Induction fron
sponds to sensors, whereas cell type 4 and 1 corresponddger cells is modeled by a negative address, correspondir
actuators and ‘neural tissue’, respectively. Note that 2 actugg gn incoming edge from outside the cell. The numbers -
and -6 are reserved for conveying the influence of the
external environment and the midline, respectively: if a cell

Lin this particular run there is no notion of a midline, as introducegs on the perimeter of the organism the value of bit -5’ will
in the previous section.

Fig.9. a) the actual genome of the ‘seeker’ organism.
b) The Boolean functions in a more readable form.




be TRUE and FALSE if not. Likewise, the value of bit ‘-6’ not completely alike, so that the symmetry is broken. The
is TRUE when the cell borders the midline of the organismorganism starts out as a single ‘zygote’ square with all bu
which runs horizontally acrods one genetic elements inactive, i.e. zero state vector, exce|
for the ‘dividing bit’ node 4, which is forced to 1. This will
ensure that the cell division will take place, dividing the
zygote into two cells L and R (Left and Right). In addition,
at the time of that first cleavage bit 1 is set to 1 in one
daughter cell and to 0 in the other, so that the symmetry i
broken. We then have two cells with state vectors 00010(
and 100100 respectively, as depicted in Fig.11. As the cel
type or color is determined by the first three bits (least
significant bit at left) this corresponds to color [0] at the left
and color [1] at the right.

From now on interphase and mitosis will alternate until
the final design of the organism is reached after stage 6 ¢
the developmental process. We will look at the first stages
in detail and then paint the broader picture when a detaile:
explanation becomes both tedious and too space-demandin
To understand the detailed picture, keep in mind that at eac

The wiring of the network can serve very specificdevelopnental stage a cell does three things: (1) it deter-
purposes: one thing that immediately catches the eye whenines its neighborhood vector, (2) it repeatedly updates it:
looking at these figures is that both inputs to node 4 aretate vector in interphase until a steady state is reached, ai
recurrent connections and that the updating ruld3) assumes a color and decides whether to divide in th
(~4 OR 4=TRUE) ensures that the corresmimg genetic next stage.
element will be permanently active. This can be explained

Fig.10. the ‘seeker’ wiring diagram: the dashed lines
represent extracellular inputs. The ‘midline’ and ‘external’
have value 1 when the cell in question is on the midline
resp. the perimeter of the organism.

by the particular fitness function that was used to evolve the Cell L:

organism, i.e. it rewarded a high number of cells in the final Neighborhood vector: 100110

design: as bit 4 is used to decide whether to enter mitosis or Interphase: 000100 -> 000101 -> 001111
not, the genetic algorithm found this positive feedback loop Color = [4], divide

to ensure that division would take place at every step, fesult Cell R:

ing in a maximum number of cells. Neighborhood vector: 000110

Interphase: 100100 -> 010100
Color = [2], divide

R

Fig.12. Before, during and after interphase in each of the
daughter cells L and R.
Mitosis
[00010§) —— | [00010q| [100104| After the first interphase, we will have reached the 2-cell
stage of the developmental sequence depicted in Fig.10. A
described in Fig.12, the two daughter cells of the zygote
each go through the three steps described above befo
entering mitosis, and you can see that the colors now matc
[0] [0] [1] up with the colors shown in Fig.10. We will examine the
behavior of cell L in somewhat more detail: bit 6 switches to
Fig.11. The zygote square divides at least once because we 1 because its updating rulé OR -1, as we know from
force the dividing bit 4 to TRUE prior to the first mitosis Fig.9b evaluates to TRUE because of the tpasinduction
phase. Colors are read from the first three bits in the state from cell R: bit 6 is 0 but bit -1, i.e. bit 1 in the neighbor
vector and are indicated in square brackets. hood vector, is 1, sS® OR -1 = 1. To put this into more gen
eral terms, the activity of the genetic element 1 in cell R
induces a change in the pattern of gene expression of cell |
Afhose perturbed stable state will now elicit a transient
behavior in the regulatory network. The final pattern of gene
2|n the simulatied evolution that led to this particular organism, £Xpression is not reached until after a steady state is reache
midline notion is only present from the 16-cell stage and onwarddIl0wever, which happens after one more synchronou:
Up to and including the 8-cell stage, bit 6 in the neighbourhood/pdate. The color of cell L can now be read from the first
vector is always 0. three bitS, i.e. color [4]

At the very first stage, it is ensured that the zygote will
divide at least once and that the resulting daughter cells




Because cells inherit steady state vectors after mitosis, Eventually, via quantitatively similar interactions and
some change in the environment is needed to trigger iafluence from the external environment, the more complex
change in behavior and/or color. After cell L and R gopicture at the last stage of development emerges.
through mitosis, we get 4 cells which we will denote by LT, . ) .

LB, RT and RB, where T and B stand for Top and Bottom6- Discussion and Conclusions
Because the inherited state vectors represent a steady SW

of the regulatory network, nothing will happen unless som he developmental process. We have shown that it ca

value changes that triggers a perturbation of this stea gccount for a range of morphologies and that it is evolvable
state. As it hapens, this only occurs in the cells LT and LB, . 9 P 9

where the resetting of bit 1 in the neighborhood vectol® the genetic regulatory networks can be evolved te opti

causes bit 2 to switch on (rule ~(-1) ), resulting in color [6] mize some performance function for the fully developed

for both cells after interphase settles down. The details arg ganism. Moreover, we have analyzed in some detail th

given in Fig.13, and the colors can be verified by looking aﬁevelopmental spience of an agent-ike morphology.

Fig.10: only the left cells have changed color from [4] to The work described in this paper is thus fully in line with
6], our longer-term goal to use this developmental model foi

co-evolving body and control system in autonomous agents
Although to reach that goal, with computational simplicity
in mind, we do not intend to modify the model all that
much, our initial exploration with the model has raised a
number of questions and suggested some issues that may
worthwhile to investigate further:
Fig.13. The two left cells at stage 2 undergo a transition (1) It would be of value to look at a model where symmetry
from color [4] to color [6]. breaking is the norm, rather than theeption. Continuous
time networks with some intduced noise component are an
Now that we have looked in detail at the mechanism thaéption, as are a-sylhronous|y updating Boolean networks.
underlies the transitions in cell color at a given developmen(2) Many important aspects of biological development that
tal stage, we can at least qualitativelylerstand the subse \ve have excluded from our model provide rich developmen
quent stages of the developing organism of Fig.10. In stagg| possibilities and could be taken into account.
3, it looks as if all state vectors remain unperturbed becausg) Instead of binary induction between neighboring cells, it
the colors are unchanged: when looking at the tracefiles ghight be advantageous to model gradients of morphogen:
the simulation, we have found that this was indeed the casgs they are hypothesized to underlie both the expression ¢
To make this difference between ‘active’ and ‘inactive’ segmenting gene@Valbot et al. 1987, page 648s the
interface apparent, we have marked the colors in Fig.10 bolgattern formation in limbs (Wolpert 1977)
when they resulted from a tggred transient, i.e. ‘active’ (4) One might want to incorporate a less direct mapping
interphase. from genome to genetic regulatory network, using insteac
A ‘neurulation-like’ event takes place at the 16-cellgne that lends itself more naturally to operators that splice
stage: suddenly all cells lying around the midline of theput or insert genes, affecting the size of the regulatory net
organism undergo a color change. It is clear that thigyork.
resulted from the influence of the ‘midline bit’ 6 in the Our future work involves, as Suggested' extending the
neighborhood vector, that has value 1 for these cells byhodel tavards actually functioning autonomous agents. We
value O for the cells at the sides of the organism. This induGuill examine whether it is possible to co-evolve
tive step sets the stage for the specification of sensors as@nsor/actuator placement in an organism thegewith a
actuators away from the midline, and for ‘neural tissue’ incontrol structure - or nervous system, if you will - based on
the middle. The reminiscence of neurulation is not-altonon-linear neural networks. To that end, we will associate
gether surpsing as we implemented the midline conceptcolors with real functional ‘cell-types’ like neuron, sensor
with just that phenomenon in mind (see Model Section).  and actuator, and then let evolved organisms perform som
A secondary induction event occurs at the 32-cell stagaask in a simulated environment, evaluating them on basis ¢
all the cells of color [3], created by the ‘neurulation’ eventperformance of that task. An obvious candidate, and easy t
in the 16-cell stage, in turn induce a perturbation in the cellfnplement, is chemotaxis. Evolving non-linear neural net-
around this group. Indeed, it can be verified from Fig.9b thafyorks for controlling a chemotactic agent has already beel
bit 2, with rule=(-1), will switch off in response to the now ggne within our research-groyBeer et al. 1992)and it
active genetic element 1 in the middle of the organism. Thlﬁ”” be of considerable interest to compare the two
at least accounts for the change to color [4] resp. [1], for thapproaches.
cells that had color [6] resp. [3]. The picture is more compli
cated for some other cells, and we will not get into it here.

& have built a simple yet biologically defensible model of

Cells LT and LB:
Neighborhood vector: 011110
Interphase: 001111 -> 011111
Color = [6], divide
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